

MicroBlaze Tutorial www.xilinx.com 1
WT001 (v4.0) August 30, 2006 1-800-255-7778

EDK 8.2 MicroBlaze Tutorial in Spartan 3

Objectives
This tutorial will demonstrate process of creating and testing a MicroBlaze system design using the Embedded

Development Kit (EDK). The tutorial contains these sections:

• System Requirements

• MicroBlaze System Description

• Tutorial Steps

The following steps are described in this tutorial:

• Starting XPS

• Using the Base System Builder Wizard

• Create or Import IP Peripheral

• Design Modification using Platform Studio

• Implementing the Design

• Defining the Software Design

• Downloading the Design

• Debugging the Design

• Performing Behavioral Simulation of the Embedded System

System Requirements
You must have the following software installed on your PC to complete this tutorial:

• Windows 2000 SP2/Windows XP

Note: This tutorial can be completed on Linux or Solaris, but the screenshots and directories illustrated in
this tutorial are based on the Windows Platform.

• EDK 8.2i or later

• ISE 8.2i sp1 or later

• Familiarity with steps in the Xilinx ISE 8 In-Depth Tutorial

http://www.xilinx.com/support/techsup/tutorials/tutorials8.htm

In order to download the completed processor system, you must have the following hardware:

• Xilinx Spartan-3 Evaluation Board (3S200 FT256 -4)

EDK 8.2 MicroBlaze Tutorial in Spartan 3

2 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

• Xilinx Parallel -4 Cable used to program and debug the device

• Serial Cable

Note: It should be noted that other hardware could be used with this tutorial. However, the completed design
has only been verified on the board specified above. The following design changes are required:

♦ Update pin assignments in the system.ucf file

♦ Update board JTAG chain specified in the download.cmd

MicroBlaze System Description
In general, to design an embedded processor system, you need the following:

• Hardware components

• Memory map

• Software application

Tutorial Design Hardware

The MicroBlaze (MB) tutorial design includes the following hardware components:

• MicroBlaze

• Local Memory Bus (LMB) Bus

♦ LMB_BRAM_IF_CNTLR

♦ BRAM_BLOCK

• On-chip Peripheral Bus (OPB) BUS

♦ OPB_MDM

♦ OPB_UARTLITE

♦ 3 - OPB_GPIOs

♦ OPB_EMC

Tutorial Design Memory Map

The following table shows the memory map for the tutorial design as created by Base System Builder.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 3
WT001 (v4.0) August 30, 2006 1-800-255-7778

Address Device
Min Max

Size Comment

LMB_BRAM 0x0000_0000 0x0000_1FFF 8K bytes LMB Memory

OPB_MDM 0x4140_0000 0x4140_FFFF 64K bytes MDM Module

OPB_UARTLITE 0x4060_0000 0x4060_FFFF 64K bytes Serial Output

OPB_GPIO 0x4002_0000 0x4002_FFFF 64K bytes LED output

OPB_GPIO 0x4000_0000 0x4000_FFFF 64K bytes Push Buttons

OPB_GPIO 0x4004_0000 0x4004_FFFF 64K bytes DIP switches

SRAM (EMC MEM0) 0x2010_0000 0x201F_FFFF 512K bytes SRAM Memory

Table 1: Tutorial Design Memory Map

Tutorial Steps

SetUp

• Spartan-3 board with a RS-232 terminal connected to the serial port and configured for 57600 baud, with

8 data bits, no parity and no handshakes.

Creating the Project File in XPS

The first step in this tutorial is using the Xilinx Platform Studio (XPS) to create a project file. XPS allows you to

control the hardware and software development of the MicroBlaze system, and includes the following:

• An editor and a project management interface for creating and editing source code

• Software tool flow configuration options

You can use XPS to create the following files:

• Project Navigator project file that allows you to control the hardware implementation flow

• Microprocessor Hardware Specification (MHS) file

Note: For more information on the MHS file, refer to the “Microprocessor Hardware Specification (MHS)”
chapter in the Platform Specification Format Reference Manual.

• Microprocessor Software Specification (MSS) file

Note: For more information on the MSS file, refer to the “Microprocessor Software Specification (MSS)”
chapter in the Platform Specification Format Reference Manual..

XPS supports the software tool flows associated with these software specifications. Additionally, you can use

XPS to customize software libraries, drivers, and interrupt handlers, and to compile your programs.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

4 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Starting XPS
• To open XPS, select Start → Programs → Xilinx Platform Studio 8.2i → Xilinx Platform Studio

• Select Base System Builder Wizard (BSB) to open the Create New Project Using BSB Wizard dialog box

shown in Figure 1.

• Click Ok.

• Use the Project File Browse button to browse to the folder you want as your project directory.

• Click Open to create the system.xmp file then Save.

• Click Ok to start the BSB wizard.

Note: XPS does not support directory or project names which include spaces.

Figure 1: Create New Project Using Base System Builder Wizard

Defining the System Hardware

MHS and MPD Files

The next step in the tutorial is defining the embedded system hardware with the Microprocessor Hardware

Specification (MHS) and Microprocessor Peripheral Description (MPD) files.

MHS File

The Microprocessor Hardware Specification (MHS) file describes the following:

• Embedded processor: either the soft core MicroBlaze processor or the hard core PowerPC (only available

in Virtex-II Pro and Virtex-4 FX devices)

• Peripherals and associated address spaces

• Buses

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 5
WT001 (v4.0) August 30, 2006 1-800-255-7778

• Overall connectivity of the system

The MHS file is a readable text file that is an input to the Platform Generator (the hardware system building tool).

Conceptually, the MHS file is a textual schematic of the embedded system. To instantiate a component in the

MHS file, you must include information specific to the component.

MPD File

Each system peripheral has a corresponding MPD file. The MPD file is the symbol of the embedded system

peripheral to the MHS schematic of the embedded system. The MPD file contains all of the available ports and

hardware parameters for a peripheral. The tutorial MPD file is located in the following directory:

$XILINX_EDK/hw/XilinxProcessorIPLib/pcores/<peripheral_name>/data

Note: For more information on the MPD and MHS files, refer to the “Microprocessor Peripheral Description
(MPD)” and “Microprocessor Hardware Specification (MHS)” chapters in the Embedded System Tools Guide.

EDK provides two methods for creating the MHS file. Base System Builder Wizard and the Add/Edit Cores Dialog

assist you in building the processor system, which is defined in the MHS file. This tutorial illustrates the Base

System Builder.

Using the Base System Builder Wizard

Use the following steps to create the processor system:

• In the Base System Builder – Select “ I would like to create a new design” then click Next.

• In the Base System Builder - Select Board Dialog select the following, as shown in Figure 2:

♦ Board Vendor: Xilinx

♦ Board Name: Spartan-3 Starter Board

♦ Board Revision: E

EDK 8.2 MicroBlaze Tutorial in Spartan 3

6 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 2: BSB: Select a Board

• Click Next. MicroBlaze is the only processor option for this board.

• Click Next. You will now specify several processor options as shown in Figure 3:

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 7
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 3: Configure Processor

The following is an explanation of the settings specified in Figure 3:

• System Wide Setting:

♦ Reference clock frequency: This is the on board frequency of the clock.

♦ Processor-Bus clock frequency: This is the frequency of the clock driving the processor system.

• Processor Configuration:

♦ Debug I/F:

 On-Chip H/W Debug module: When the H/W debug module is selected; an OPB MDM module is

included in the hardware system. This introduces hardware intrusive debugging with no software

stub required. This is the recommended way of debugging for MicroBlaze system.

 XMD with S/W Debug stub: Selecting this mode of debugging interface introduces a software

intrusive debugging. There is a 1200-byte stub that is located at 0x00000000. This stub

communicates with the debugger on the host through the JTAG interface of the OPB MDM

module.

 No Debug: No debug is turned on.

Note: For more information about the Xilinx Microprocessor Debugger (XMD), refer to the Xilinx

EDK 8.2 MicroBlaze Tutorial in Spartan 3

8 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Microprocessor Debugger (XMD) chapter in the Embedded System ToolsReference Manual.

♦ Users can specify the size of the local instruction and data memory.

♦ Cache setup:

 No Cache: No caching will be used

 Enable OPB cache: Caching will be used through the OPB bus

 Enable cache link: Caching will be used through the FSL bus

♦ You can also specify the use of the floating point unit (FPU).

• Click Next.

Select the peripheral subset as shown in Figure 4 and Figure 5. It should be noted that the number of peripheral

shown on each dialog box is dynamic based upon your computers resolution.

Note: The Baud rate for the OPB UARTLITE must be updated to 57600.

Figure 4: Configure I/O Interfaces

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 9
WT001 (v4.0) August 30, 2006 1-800-255-7778

• OPB UARTLITE baudrate → 57600

• LED_7SEGMENT peripheral → deselect

• Click Next

Figure 5: Configure Additional I/O Interfaces

• Click Next on the second Configure Additional IO Interfaces page.

• Click Next through the Add Internal Peripherals page as we will not add any in this example.

This completes the hardware specification and we will now configure the software settings.

Using the Software Setup dialog box as shown in Figure 6, specify the following software settings:

• Standard Input (STDIN) → RS232

• Standard Output (STDOUT) → RS232

• Sample Application Selection → Memory Test

EDK 8.2 MicroBlaze Tutorial in Spartan 3

10 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 6: Software Setup

• Click Next.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 11
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 7: Configure Memory Test Application

Using the Configure Memory Test Application dialog box as shown in Figure 7, specify the following software

settings:

• Instructions → ilmb_cntlr

• Data → dlmb_cntlr

• Stack/Heap → dlmb_cntlr

• Click Next.

The completed system including the memory map will be displayed as shown in Figure 8. Currently the memory

map cannot be changed or updated in the BSB. If you want to change the memory map you can do this in XPS.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

12 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 8: Completed Processor System

• Click Generate and then Finish, to complete the design.

• Select Start Using Platform Studio and click OK.

Review

The Base System Builder Wizard has created the hardware and software specification files that define the

processor system. When we look at the project directory, shown in Figure 9, we see these as system.mhs and

system.mss. There are also some directories created.

• data – contains the UCF (user constraints file) for the target board.

• etc – contains system settings for JTAG configuration on the board that is used when downloading the

bit file and the default parameters that are passed to the ISE tools.

• pcores – is empty right now, but is utilized for custom peripherals.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 13
WT001 (v4.0) August 30, 2006 1-800-255-7778

• TestApp_Memory – contains a user application in C code source, for testing the memory in the system.

Figure 9: Project Directory

Project Options

To see the project options that Base System Builder has configured select: Project → Project Options. As

shown in Figure 10, the device information is specified.

Figure 10: Project Options - Device and Repository

Select: Hierarchy and Flow. This window is shown in Figure 11. This window provides the opportunity to export

the processor system into an ISE project as either the top level system or a sub-module design.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

14 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 11: Project Options - Hierarchy and Flow

Create or Import IP Peripheral
One of the key advantages of building an embedded system in an FGPA is the ability to include customer IP and

interface that IP to the processor. This section of the tutorial will walk through the steps necessary to include a

custom IP core.

• In XPS, select Hardware → Create or Import Peripheral… to open the Create and Import Peripheral

Wizard.

• Click Next. Select Create templates for a new peripheral.

By default the new peripheral will be stored in the project_directory/pcores directory. This enables XPS to find the

core for utilization during the embedded system development.

• Click Next. In the Create Peripheral – Name and Version dialog, enter custom_ip as the name of the

peripheral. This is shown in Figure 12.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 15
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 12: Create Peripheral - Name and Version

• Click Next. In the Create Peripheral – Bus Interface dialog, select On-Chip Peripheral Bus (OPB), as this

is the bus to which the new peripheral will be connected.

• Click Next. The Create Peripheral – IPIF Services dialog enables the selection of several services. For

additional information regarding each of these services, select More Info. Select the User logic S/W

register support option.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

16 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 13: Create Peripheral - IPIF Services

• Click Next. In the Create Peripheral – User S/W Register dialog, change the Number of software

accessible registers to 4.

Figure 14: Create Peripheral - User S/W Register

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 17
WT001 (v4.0) August 30, 2006 1-800-255-7778

• Click Next. In the Create Peripheral – IP Interconnect (IPIC).

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Simulation Support dialog, a Bus

Functional Model (BFM) simulation environment can be generated. This tutorial will not cover BFM

simulation. Leave the option unchecked.

• Click Next. In the Create Peripheral – (OPTIONAL) Peripheral Implementation Support dialog, uncheck

the Generate ISE and XST project files to help you implement the peripheral using XST flow.

• Click Next and then Finish.

The Create or Import Peripheral Wizard creates a new directory called custom_ip_v1_00_a in the pcores

directory. This new directory contains the following:

Figure 15: Custom IP Directory Structure

The following is a description of the files located in each directory:

HDL source file(s)

♦ MB_tutorial\pcores\custom_ip_v1_00_a\hdl

 vhdl/custom_ip.vhd

This is the template file for your peripheral's top design entity. It configures and instantiates the

corresponding IPIF unit in the way you indicated in the wizard GUI and connects it to the stub

user logic where the user logic should get implemented. You are not expected to modify this

template file except in certain marked places for adding user specific generics and ports.

 vhdl/user_logic.vhd

This is the template file for the stub user logic design entity, either in VHDL or Verilog, where the

actual functionalities should get implemented. Some sample code may be provided for

demonstration purpose.

 XPS interface file(s)

♦ MB_tutorial\pcores\ custom_ip_v1_00_a\data

 custom_ip_v2_1_0.mpd

EDK 8.2 MicroBlaze Tutorial in Spartan 3

18 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

This Microprocessor Peripheral Description file contains interface information of your peripheral

so that other EDK tools can recognize the peripheral.

 custom_ip_v2_1_0.pao

This Peripheral Analysis Order file defines the analysis order of all the HDL source files that are

used to compile your peripheral.

 Driver source file(s)

 MB_tutorial\drivers\ custom_ip_v1_00_a\src:

custom_ip.h

This is the software driver header template file, which contains address offsets of

software addressable registers in your peripheral, as well as some common masks,

simple register access macros and function declarations.

custom_ip.c

This is the software driver source template file to define all applicable driver functions.

custom_ip_selftest.c

This is the software driver self test example file which contain self test example code to

test various hardware features of your peripheral.

makefile

This is the software driver makefile to compile drivers.

Now that the template has been created, the user_logic.vhd file must be modified to incorporate the custom IP

functionality.

• Open user_logic.vhd. Currently the code provides an example of reading and writing to four 32-bit

registers. For the purpose of this tutorial, this code will not be modified.

• Close user_logic.vhd

In order for XPS to add the new custom IP core to the design, the pcores directory must be rescanned. This can

be accomplished by selecting Project → Rescan User Repositories. XPS also automatically rescans the

pcores directory when the project is opened.

Design Modification using Platform Studio

Once a design has been created with the Base System Builder, it can be modified from within the System

Assembly view.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 19
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 16: System Assembly View

Double clicking on any of the IP’ s listed in the System Assembly View allows modification of that particular IP.

The System Assembly View has the following filters:

Bus Interface filter: With the Bus Interface activated, the patch panel to the left of the System Assembly View gets

activated. The bus connectivity of the core is shown when the hierarchy of the IP is expanded.

Ports filter: With this filter on, the port connections appear when the hierarchy of the IP is expanded. You

need to activate this filter to be able to add external ports.

Addresses filter: The IP’ s addresses can be viewed when expanding the IP. This is where you can generate

addresses for the IP’ s.

The IP Catalog tab shows all of the IP that is available to use in the EDK project. To add new IP:

• Bring the IP Catalog tab forward.

• Expand the Project Repository hierarchy

• Drag and drop the IP into the System Assembly View or double click on the IP.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

20 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 17: Inserting IP

With the Bus Interface filter still activated:

• Press the Connection Filter button and select All

• Expand the custom_ip_0 instance

• Highlite the slave OPB connection (SOPB)

• Select the No Connection pull down menu and change it to mb_opb

Figure 18: Modifying bus connections

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 21
WT001 (v4.0) August 30, 2006 1-800-255-7778

• Now select the Ports filter

• Press the Connection Filter button and select All

• Expand the custom_ip_0 instance

• Highlite the OPB_Clk port

• Select the Default Connection pull down menu and change the clock connection to sys_clk_s

Figure 19: Changing port connections

Note: Right clicking on the Name column in the System Assembly View provides more filtering options.

Select the Addresses filter to define an address for the newly added custom_ip peripheral. The address can be

assigned by entering the Base Address or the tool can assign an address. For the purpose of this tutorial, the tool

will be used to assign an address.

• Change the size if the dlmb_cntlr and ilmb_cntlr to 8K.

• Click Generate Addresses.

A message in the console window will state that the address map has been generated successfully. The design is

now ready to be implemented.

Implementing the Design
Now that the hardware has been completely specified in the MHS file, you can run the Platform Generator.

Platform Generator elaborates the MHS file into a hardware system consisting of NGC files that represent the

processor system. Then the Xilinx ISE tools will be called to implement the design for the target board. To

generate a netlist and create the bit file, follow these steps:

• Start ISE by selecting Start → Programs → Xilinx ISE 8.2i → Project Navigator.

• In ISE, select File → New Project to create a new Project Navigator project.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

22 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

• In the New Project dialog box shown in Figure 20, browse to the XPS project directory and then enter the

Project Name, project_navigator.

Figure 20: ISE New Project

• Click Next. Configure the Device and Design flow as shown in Figure 21. It should be noted that these

settings need to be consistent with the XPS project settings.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 23
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 21: New Project - Device and Design Flow

• Click Next. ISE has the ability to add an XPS project file as a new source file. However, the tutorial will

not cover this aspect.

• Browse up into the XPS project and add the system.xmp in the New Project Wizard - Add Existing

Sources dialog window.

• Deselect the Copy to Project checkbox

• Click Next

• Click Finish

• Click OK

• Select the system.xmp source file and double click on the View HDL Instantiation Template.

Once the process has completed the editor window will contain the instantiation template called system.vhi.

• In ISE, select Project → New Source. Select the VHDL module and name it system_stub.vhd in

the project_navigator directory. Then instantiate the system.vhi into system_stub.vhd:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

EDK 8.2 MicroBlaze Tutorial in Spartan 3

24 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity system_stub is

port (

 fpga_0_RS232_RX_pin : in std_logic;

 fpga_0_RS232_TX_pin : out std_logic;

 fpga_0_LEDs_8Bit_GPIO_d_out_pin : out std_logic_vector(0 to 7);

 fpga_0_Push_Buttons_3Bit_GPIO_in_pin : in std_logic_vector(0 to 2);

 fpga_0_DIP_Switches_8Bit_GPIO_in_pin : in std_logic_vector(0 to 7);

 fpga_0_SRAM_256Kx32_Mem_A_pin : out std_logic_vector(12 to 29);

 fpga_0_SRAM_256Kx32_Mem_DQ_pin : inout std_logic_vector(0 to 31);

 fpga_0_SRAM_256Kx32_Mem_OEN_pin : out std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_CEN_pin : out std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_CEN_1_pin : out std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_WEN_pin : out std_logic;

 fpga_0_SRAM_256Kx32_Mem_BEN_pin : out std_logic_vector(0 to 3);

 sys_clk_pin : in std_logic;

 sys_rst_pin : in std_logic

);

end system_stub;

architecture Behavioral of system_stub is

COMPONENT system

 PORT(

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 25
WT001 (v4.0) August 30, 2006 1-800-255-7778

 fpga_0_RS232_RX_pin : IN std_logic;

 fpga_0_Push_Buttons_3Bit_GPIO_in_pin : IN std_logic_vector(0 to 2);

 fpga_0_DIP_Switches_8Bit_GPIO_in_pin : IN std_logic_vector(0 to 7);

 sys_clk_pin : IN std_logic;

 sys_rst_pin : IN std_logic;

 fpga_0_SRAM_256Kx32_Mem_DQ_pin : INOUT std_logic_vector(0 to 31);

 fpga_0_RS232_TX_pin : OUT std_logic;

 fpga_0_LEDs_8Bit_GPIO_d_out_pin : OUT std_logic_vector(0 to 7);

 fpga_0_SRAM_256Kx32_Mem_A_pin : OUT std_logic_vector(12 to 29);

 fpga_0_SRAM_256Kx32_Mem_OEN_pin : OUT std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_CEN_pin : OUT std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_CEN_1_pin : OUT std_logic_vector(0 to 0);

 fpga_0_SRAM_256Kx32_Mem_WEN_pin : OUT std_logic;

 fpga_0_SRAM_256Kx32_Mem_BEN_pin : OUT std_logic_vector(0 to 3)

);

 END COMPONENT;

begin

Inst_system: system PORT MAP(

 fpga_0_RS232_RX_pin => fpga_0_RS232_RX_pin,

 fpga_0_RS232_TX_pin => fpga_0_RS232_TX_pin,

 fpga_0_LEDs_8Bit_GPIO_d_out_pin => fpga_0_LEDs_8Bit_GPIO_d_out_pin,

 fpga_0_Push_Buttons_3Bit_GPIO_in_pin => fpga_0_Push_Buttons_3Bit_GPIO_in_pin,

 fpga_0_DIP_Switches_8Bit_GPIO_in_pin => fpga_0_DIP_Switches_8Bit_GPIO_in_pin,

 fpga_0_SRAM_256Kx32_Mem_A_pin => fpga_0_SRAM_256Kx32_Mem_A_pin,

 fpga_0_SRAM_256Kx32_Mem_DQ_pin => fpga_0_SRAM_256Kx32_Mem_DQ_pin,

 fpga_0_SRAM_256Kx32_Mem_OEN_pin => fpga_0_SRAM_256Kx32_Mem_OEN_pin(0 to 0),

 fpga_0_SRAM_256Kx32_Mem_CEN_pin => fpga_0_SRAM_256Kx32_Mem_CEN_pin(0 to 0),

 fpga_0_SRAM_256Kx32_Mem_CEN_1_pin => fpga_0_SRAM_256Kx32_Mem_CEN_1_pin(0 to 0),

 fpga_0_SRAM_256Kx32_Mem_WEN_pin => fpga_0_SRAM_256Kx32_Mem_WEN_pin,

EDK 8.2 MicroBlaze Tutorial in Spartan 3

26 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

 fpga_0_SRAM_256Kx32_Mem_BEN_pin => fpga_0_SRAM_256Kx32_Mem_BEN_pin,

 sys_clk_pin => sys_clk_pin,

 sys_rst_pin => sys_rst_pin

);

end Behavioral;

By creating system_stub.vhd to the Project Navigator project the hierarchy is updated as shown in Figure 22.

Figure 22: Project Navigator Project Hierarchy

• In ISE, select Project → Add Source. Select the system.ucf file in the <xps_project>\data directory.

• Select system_stub.vhd and double click on Generate Programming File to implement the design and

generate a bit file.

ISE will call XPS to generate the EDK to create the following directories:

o hdl – contains the VHDL files that define the processor system

o implementation – contains the NGC files

o synthesis – contains the projects and information from synthesizing the files in the hdl directory to create

those in the implementation directory

Defining the Software Design

Now that the hardware design is completed, the next step is defining the software design. There are two major

parts to software design, configuring the Board Support Package (BSP) and writing the software applications. The

configuration of the BSP includes the selection of device drivers and libraries.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 27
WT001 (v4.0) August 30, 2006 1-800-255-7778

Configuration of the BSP

Configuration of the BSP is done using the Software Platform Settings dialog. In XPS, select Software →

Software Platform Settings... This will open the Software Platform Settings dialog box as shown in Figure 23.

The Software Platform Settings dialog box contains four views. Each of these views is used to control all aspects

of the BSP creation.

The Software Platform view allows the user to modify processor parameters, driver, operating system and

libraries. The following Operating Systems are supported:

o Standalone

o xilkernel

o uclinux

o nucleus

No changes are required in this view.

Figure 23: Software Platform Settings Dialog

EDK 8.2 MicroBlaze Tutorial in Spartan 3

28 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

• Select the OS and Libraries view as shown in Figure 24. This view allows the user to configure OS and

library parameters. No changes are required.

Figure 24: OS and Libraries view

• Select the Drivers view. This view allows you to select the software versions for the peripherals in the

system as shown in Figure 25. Notice that the driver version is independent of the HW version.

Figure 25: Drivers view

The Interrupt Handlers view allows you to modify the parameters for the interrupts. This project does not have

any interrupts.

• Click OK.

• In XPS, select Software → Generate Libraries and BSPs to run LibGen and create the BSP which

includes device drivers, libraries, configures the STDIN/STDOUT, and Interrupt handlers associated with

the design.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 29
WT001 (v4.0) August 30, 2006 1-800-255-7778

LibGen creates the following directories in the microblaze_0 directory, shown in Figure 26:

o code: contains the compiled and linked application code in an ELF file

o include: contains the header files for peripherals included in the design (such as xgpio.h and

xuartlite.h)

o lib: contains the library files (such as libc.a and libxil.a)

o libsrc: contains the source files used to create libraries

Note: For more information on these files, refer to the Embedded System Tools Guide.

Figure 26: MicroBlaze Drivers Directories

Building the User Application

In EDK 8.2, XPS provides the ability for the user to create multiple software projects. These projects can include

source files, header files, and linker scripts. Unique software projects allow the designer to specify the following

options for each software project:

o Specify compiler options

o Specify which projects to compile

o Specify which projects to download

o Build entire projects

Software application code development can be managed by selecting the Applications tab as shown in Figure 27.

The Base System Builder (BSB) generates a sample application which tests a subset of the peripherals included

in the design.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

30 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 27: Applications Tab

Compiling the Code

Using the GNU GCC Compiler, compile the application code as follows:

• Select Software → Build All User Applications to run mb-gcc. Mb-gcc compiles the source files.

Figure 28: XPS Output Window - Software Compiled

Downloading the Design

Now that the hardware and software designs are completed, the device can be configured. Follow these steps to

download and configure the FGPA:

• Connect the host computer to the target board, including connecting the Parallel-JTAG cable and the

serial cable.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 31
WT001 (v4.0) August 30, 2006 1-800-255-7778

• Start a hyperterminal session with the following settings:

o com1 – This is dependant on the com port your serial cable is connected to.

o Bits per second: 57600

o Data bits: 8

o Parity: none

o Stop bits: 1

o Flow control: none

• Connect the board power

• In ISE, Select system_stub.vhd in the source window

• In the process window, double click on Update Bitstream with Processor Data

• In the process window, double click on Configure Device (iMPACT) under Generate Programming File

• With iMPACT, configure the FPGA using system_stub_download.bit located in the project_navigator

directory choosing to bypass all of the other chips in the JTAG chain

After the configuration is complete, you should see a display similar to that in shown in Figure 29:

Figure 29: Hyperterminal Output

Debugging the Design

Now that the device is configured, you can debug the software application directly via the MDM interface. GDB

connects to the MicroBlaze core through the MDM and the Xilinx Microprocessor Debug (XMD) engine utility as

shown in Figure 30. XMD is a program that facilitates a unified GDB interface and a TCL (Tool Command

Language) interface for debugging programs and verifying microprocessor systems. The XMD engine is used

with MicroBlaze and PowerPC GDB (mb-gdb & powerpc-eabi-gdb) for debugging. Mb-gdb and powerpc-eabi-gdb

EDK 8.2 MicroBlaze Tutorial in Spartan 3

32 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

communicate with XMD using the remote TCP protocol and control the corresponding targets. GDB can connect

to XMD on the same computer or on a remote Internet computer.

To debug the design, follow these steps:

• In XPS, select Debug → XMD Debug Options. The XMD Debug Options dialog box allows the user to

specify the connections type and JTAG Chain Definition. Three connection types are available for

MicroBlaze:

♦ Simulator – enables XMD to connect to the MicroBlaze ISS

♦ Hardware – enables XMD to connect to the MDM peripheral in the hardware

♦ Stub – enables XMD to connect to the JTAG UART or UART via XMDSTUB

♦ Virtual platform – enables a Virtual (C model) to be used (not covered in this tutorial)

• Verify that Hardware is selected.

• Select Save.

• Select Debug → Launch XMD.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 33
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 30: XMD Window

• In XPS, select Debug → Launch Software Debugger to open the GDB interface.

• In GDB, select File → Target Settings to display the Target Selection dialog box as shown in Figure 31.

• Click OK.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

34 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 31: GDB Target Selection

• In GDB, select File → Open…

• Select executable.elf in the TestApp_Memory directory. The C code is visible because the Create

symbols for debugging (-g option) is selected by default in the compiler options.

• In GDB, select File → Exit.

• In the Applications window of XPS, double click on the Project: TestApp_Memory label.

• In the Debug and Optimization tab set the Optimization Level to No Optimization

• Click OK.

Figure 32: Compiler Options

• Recompile the code

• Load the new executable.elf into GDB

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 35
WT001 (v4.0) August 30, 2006 1-800-255-7778

• Select Run → Run

There is an automatic breakpoint at main. GDB allows you to single step the C or assembly code.

Note: The default values displayed in the Registers Window are in hex, while the values displayed in the
Source Window are in decimal.

Performing Behavioral Simulation of the Embedded System

Performing a behavioral simulation of the complete system, which includes the embedded processor system, is a

powerful verification technique. In order to perform a behavioral simulation of the complete system in ISE, the

simulation file for the embedded system must be generated.

First, increase the Baud rate of the UART so that simulation of the UART can happen more quickly. Remember

to change the Baud rate value back to 57600 before downloading to the Spartan3 demo board.

• In XPS double-click on the MHS file

• Change the value of PARAMETER C_BAUDRATE to 3125000 (value of C_CLK_FREQ/16)

• Save the MHS file and close it

• XPS, select Project → Project Options. In the Project Options dialog box select the HDL and Simulation

tab.

Browse to the precompiled EDK Library and Xilinx Library as shown in Figure 33. It should be noted that the paths

will be different to match you system. For additional information on compiling the simulation libraries refer to the

Embedded System Tools Reference Manual Chapter 3.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

36 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

Figure 33: Project Options - HDL and Simulation tab

• Click Ok.

• Select Simulation → Generate Simulation HDL Files. This will generate all of the EDK HDL Simulation

files in the EDK\simulation\behavioral directory created by SimGen.

• Now that the EDK simulation files have been created, the ISE simulation environment can be created.

• In ISE, select system_stub.vhd and double click on Create New Source in the Process Window.

• In the New Source dialog, select the source type as “ VHDL Test Bench” and the File Name as

“ testbench”

• Click Next. Select system_stub as the source file to which the testbench will be associated.

• Click Next and Finish.

Now select Behavioral Simulation in the Sources window as shown in Figure 34.

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 37
WT001 (v4.0) August 30, 2006 1-800-255-7778

Figure 34: Behavioral Simulation View

Testbench.vhd will now open in the ISE Editor Window.

Scroll to the bottom of the file and remove the following code:

 tb : PROCESS

 BEGIN

 -- Wait 100 ns for global reset to finish

 wait for 100 ns;

 -- Place stimulus here

 wait; -- will wait forever

 END PROCESS;

Add the following code:

tb_clk : PROCESS

 BEGIN

 sys_clk_pin <= '1'; wait for 10 ns;

 sys_clk_pin <= '0'; wait for 10 ns;

 END PROCESS;

tb_reset : PROCESS

 BEGIN

 sys_rst_pin <= '1'; wait for 5 us;

 sys_rst_pin <= '0'; wait;

 END PROCESS;

EDK 8.2 MicroBlaze Tutorial in Spartan 3

38 www.xilinx.com EDK 8.2 MicroBlaze Tutorial in Spartan 3
 1-800-255-7778 WT001 (v4.0) August 30, 2006

fpga_0_RS232_RX_pin <= fpga_0_RS232_TX_pin;

In order to populate the BRAMs with the TestApp_Memory Application, a configuration statement must be

created. Add the following after the testbench architecture:

configuration testbench_vhd_conf of testbench_vhd is

 for behavior

 for uut: system_stub

 for Behavioral

 for Inst_system: system

 use configuration work.system_conf;

 end for;

 end for;

 end for;

 end for;

end testbench_vhd_conf;

Save and close the testbench.vhd file.

Select testbench.vhd in the ISE Source Window. Expand the ModelSim Simulator in the process window then

right-click on the Simulate Behavioral Model and select Properties.

Change the simulation run time to 0ns, select Use Configuration Name and insert testbench_vhd_conf in the

Configuration Name field as shown in Figure 35.

Figure 35: Loading the VHDL configuration

Click on the OK button.

Double-click on the Simulate Behavioral Model to simulate your processor design.

To see the output of the UART, type in the following command in the Modelsim console window:

EDK 8.2 MicroBlaze Tutorial in Spartan 3

MicroBlaze Tutorial www.xilinx.com 39
WT001 (v4.0) August 30, 2006 1-800-255-7778

add wave -radix ascii /testbench_vhd/uut/ inst_system /rs232/rs232/opb_uartlite_core_i/opb_uartlite_tx_i/fifo_dout

At the command prompt type “ run 300us” to begin running the simulation. It will take several thousand uS to

run the design to simulate the functionality of the design because of the printf routines. You should see a

Modelsim wave form similar to the one shown in Figure 36.

Figure 36: Simulation results

