
Embedded Computer Architectures in the MPSoC Age

Wayne Wolf
Dept. of Electrical Engineering

Princeton University
wolf@princeton.edu

1. Introduction

 Embedded computers are no longer used as
simple controllers. Instead, high-performance
embedded processors perform complex algorithms and
are linked together to form multiprocessors. Embedded
computing provides students different take on
computer system design because of the requirements
imposed on these systems:
• Embedded computing systems generally require

real-time performance. Real-time and average-
time performance are very different animals.

• Battery-powered embedded systems must meet
very stringent energy requirements [Aus04].

• Although the software in embedded systems can
be changed to optimize the overall system, the
software must also meet the specifications of the
application.

As such, an architecturally-oriented embedded
systems class emphasizes somewhat different concepts
than a traditional, general-purpose computer architect-
ure class. An embedded computing architecture class
must use a methodology to help students quickly get
their hands around an unfamiliar application. They
must explore a broad range of architectures. They
should also explore trade-offs between architectural
modifications and software modifications to meet
system goals.

Distributed embedded systems, which are built
from networks of embedded processors, are also
widely deployed. This paper will concentrate, however,
on systems-on-chips.

1. Multiprocessor Systems-on-Chips

Multiprocessor systems-on-chips (MPSoCs)

[Jer04] are, first of all, systems-on-chips. They
implement complete applications on a single chip.
(Although as Rich Page points out, most systems-on-
chips are marketing single-chip solutions---they use
one chip plus all the other chips that you need to make
the SoC work.) MPSoCs are systems-on-chips that
include one or more programmable processors.

Systems-on-chips are generally adapted to the
application to meet performance, power, and cost
goals. Although modern VLSI fabrication technology
provides us with very large chips, applications keep
getting larger. Some markets are large enough that
specialized architectures are inevitable and desirable.

Multiprocessor systems-on-chips try to balance
specialization and programmability. Programmable
processors allow the SoC to be programmed after
fabrication; MPSoCs are often referred to as platforms
because they allow for many implementations of a
given type of system. Programmability offers many
advantages: the same chip can be used in several
products, reducing product cost; design tasks can be
compartmentalized; and the platform chip may have a
longer shelf life than a highly specialized SoC.

Because these are systems-on-chips, they generally
aren’t traditional symmetric multiprocessors. They may
use hardwired function units in addition to
programmable processors. They may use several
different instruction sets. They may have non-uniform
memory spaces supported by asymmetric networks.

 Many multiprocessor systems-on-chips are
now available for several types of applications:

• Mobile multimedia requires both high
performance and low energy consumption.
The ST Nomadik and TI OMAP architectures
are MPSoCs that provide specialized architec-
tures for audio, video, and communications.

• Home multimedia is not as tightly constrained
on power as mobile multimedia but requires
very high performance for applications like
HDTV. The Philips Nexperia architecture is a
well-known MPSoC for set-top box applica-
tions.

• Networking requires very high performance
and provides some opportunities for
specialized parallelism. Network processors
from Intel, Cisco, and others use hetero-
geneous architectures to process packets at
high rates.

3. Architectural Challenges

Embedded computing and MPSoCs make for a full
employment act for computer architects. We are in no
danger of running out of applications that can make use
of large amounts of computing power and that can
support the design effort required to create an efficient
application-specific platform. Several specific
challenges flow out of our continuing need to design
MPSoCs.

Configurable processors, such as those provided
by Tensilica, allow the SoC designer a convenient way
of quickly building processors with customized
instruction sets. One area in which designers need help
is figuring out which instruction set extensions should
actually be implemented. Another important goal is
figuring out how to connecting configurable processors
into multiprocessor networks.

Hardware/software co-design [DeM01] is another
way to increase system performance for a particular
application. Accelerators, when properly designed, can
significantly and efficiently increase performance.
However, the application must be carefully analyzed to
be sure that an accelerator actually improves overall
performance.

Heterogeneous multiprocessors for embedded
applications generally implement pipelines of
processes. Our own smart camera system [Oze05] is an
example of a pipelineable application. The smart
camera processes video in real time, using a number of
distinct steps. The amount of work performed by these
stages is generally data dependent and buffers are
required to smooth out rates. As video data is
processed, it is boiled down in size so that data rates at
the end of the process are trivial compared to the input
video data rates. Pipelined application architectures
bring up both hardware and software questions about
buffer management and rate control.

Networks for embedded systems are another
important challenge. Several networks have been
proposed for on-chip use. Many of these are general-
purpose networks designed to be used in many
different systems. However, our own experiments
indicate that asymmetric networks offer significant
advantages.

 Balancing generality with efficiency is a key
goal in MPSoC architectures. As we pointed out
elsewhere [Wol05] even relatively simple consumer
devices must now implement a wide range of
functions. Consider what must be performed by simple
devices like digital music players or digital cameras in
addition to their core functions:

• User interface.
• Cryptography.

• Networking, either through Internet or
specialized protocols.

• Digital rights management.
• File systems that are compatible with PC file

systems.
This wide range of functions arguably calls for a
general-purpose processor; on the other hand, some of
these functions may call for application-specific
hardware to meet performance/power goals. We do not
yet fully understand the architectural implications of
the networked consumer device.

Overall, methodology is an important aspect of
embedded system design that does not often come into
play in general-purpose systems [Wol00]. Because
embedded system designers need to design many
systems and do so in a predictable amount of time with
a predictable number of people, they need to develop
methodologies that allow them to repeatably make
reasonable decisions in new design domains. Giving
students an insight into the design process can be as
important as showing them specific design outcomes.

4. Benchmarks

Benchmarks are at least important in embedded
computing as they are in general-purpose computing.
When you are designing an application-specific
system, the wrong choice of a benchmark program or
input data for that program can lead to fatal
misjudgments.

I believe that larger programs make more useful
design examples for embedded computing for several
reasons. First, high-performance embedded systems
typically run several different types of algorithms; it
takes a certain amount of code to exhibit all that
complexity. Second, larger programs do a better job of
exercising multi-tasking. Third, they give students a
more realistic taste of the nature of embedded software
and performance analysis.

However, it is hard to get good benchmarks and
data sets. Although several reference implementations
of various standards are available, they can be very
hard to use. Reference implementations may make
inappropriate use of dynamic memory; they may also
use inefficient algorithms for critical modules. For
example, many reference video encoders come with
full-search motion estimation, even though that algor-
ithm is not used in practice. Measurements made on
unrealistic algorithms will lead to bad design decisions.

5. Labs

Laboratories are a critical part of an embedded
systems course. As embedded systems become more

complex, it becomes harder to create an enriching set
of labs for students.

Most instructors worry about the cost of lab
equipment, particularly if they want to reach a broad
audience. Although many microprocessor manufac-
turers and third parties sell evaluation boards, the
associated development system is a hidden cost of
these boards. Some vendors provide software along
with the board while others charge a good deal of
money for development systems. Ideally, students
should be able to install on their own machines student
versions of the development systems they use in labs;
in the FPGA world, Xilinx is an excellent model for
how to make devices and tools accessible to students.

Instructors can select from among a large number
of uniprocessors, but it is hard to find a good
experimental setup for multiprocessors. The TI OMAP
processor is one of the very few embedded
multiprocessors for which there exists an even
moderately-priced development board, but that board is
still expensive and the software environment is
complex.

Much development work must be done on
simulators, both in the real world and in class.
Uniprocessor performance and power simulators are
widely available. Although several open-source
multiprocessor simulators are available, most of them
are designed for symmetric multiprocessors and cannot
be easily modified to handle heterogeneous
multiprocessors. The MESH simulator from CMU was
developed to handle heterogeneous multiprocessors as
seen in systems-on-chips.

6. Conclusions

We live in an exciting time in which we have the
opportunity to develop a new generation of courses on

high-performance embedded computing. But because
these are complex systems, instructors have to be
prepared to invest time to set up lectures and labs that
mate their students’ interests with the applications that
drive system-on-chip and large-scale distributed
embedded systems. Although each institution has its
own special requirements, particularly for labs, group
effort may help us all build this new generation of
courses.

6. References

[Aus04] Todd Austin, David Blaauw, Scott Mahlke,

Trevor Mudge, Chaitali Chakrabarti, and
Wayne Wolf, “Mobile Supercomputers,”
IEEE Computer, 37(5), May 2004, pp. 81-83.

[DeM01] Giovanni De Micheli, Rolf Ernst, and Wayne
Wolf, eds., Readings in Hardware/Software
Co-Design, Morgan Kaufman, 2001.

[Jer05] Ahmed A. Jerraya and Wayne Wolf,
“Hardware/software interface codesign for
embedded systems,” IEEE Computer, 38(2),
February 2005, pp. 63-69.

[Oze05] I. Burak Ozer, Tiehan Lu, and Wayne Wolf,
“Design of a real-time gesture recognition
system,” IEEE Signal Processing Magazine,
22(3), May 2005, pp. 57-64.

[Wol00] Wayne Wolf, Computers as Components:
Principles of Embedded Computing System
Design, Morgan Kaufman, 2000.

[Wol05] Wayne Wolf, “Multimedia applications of
systems-on-chips,” in Proceedings, DATE ‘05
Designers’ Forum, ACM Press, 2005, pp. 86-
89.

.

