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1.   Introduction 
  
 Embedded computers are no longer used as 
simple controllers. Instead, high-performance 
embedded processors perform complex algorithms and 
are linked together to form multiprocessors. Embedded 
computing provides students different take on 
computer system design because of the requirements 
imposed on these systems:  
• Embedded computing systems generally require 

real-time performance. Real-time and average-
time performance are very different animals. 

• Battery-powered embedded systems must meet 
very stringent energy requirements [Aus04]. 

• Although the software in embedded systems can 
be changed to optimize the overall system, the 
software must also meet the specifications of the 
application. 

As such, an architecturally-oriented embedded 
systems class emphasizes somewhat different concepts 
than a traditional, general-purpose computer architect-
ure class. An embedded computing architecture class 
must use a methodology to help students quickly get 
their hands around an unfamiliar application. They 
must explore a broad range of architectures. They 
should also explore trade-offs between architectural 
modifications and software modifications to meet 
system goals. 

Distributed embedded systems, which are built 
from networks of embedded processors, are also 
widely deployed. This paper will concentrate, however, 
on systems-on-chips. 

 
1.   Multiprocessor Systems-on-Chips 

 
Multiprocessor systems-on-chips (MPSoCs) 

[Jer04] are, first of all, systems-on-chips. They 
implement complete applications on a single chip. 
(Although as Rich Page points out, most systems-on-
chips are marketing single-chip solutions---they use 
one chip plus all the other chips that you need to make 
the SoC work.) MPSoCs are systems-on-chips that 
include one or more programmable processors. 

Systems-on-chips are generally adapted to the 
application to meet performance, power, and cost 
goals. Although modern VLSI fabrication technology 
provides us with very large chips, applications keep 
getting larger. Some markets are large enough that 
specialized architectures are inevitable and desirable. 

Multiprocessor systems-on-chips try to balance 
specialization and programmability. Programmable 
processors allow the SoC to be programmed after 
fabrication; MPSoCs are often referred to as platforms 
because they allow for many implementations of a 
given type of system. Programmability offers many 
advantages: the same chip can be used in several 
products, reducing product cost; design tasks can be 
compartmentalized; and the platform chip may have a 
longer shelf life than a highly specialized SoC. 

Because these are systems-on-chips, they generally 
aren’t traditional symmetric multiprocessors. They may 
use hardwired function units in addition to 
programmable processors. They may use several 
different instruction sets. They may have non-uniform 
memory spaces supported by asymmetric networks. 

 Many multiprocessor systems-on-chips are 
now available for several types of applications: 

• Mobile multimedia requires both high 
performance and low energy consumption. 
The ST Nomadik and TI OMAP architectures 
are MPSoCs that provide specialized architec-
tures for audio, video, and communications. 

• Home multimedia is not as tightly constrained 
on power as mobile multimedia but requires 
very high performance for applications like 
HDTV. The Philips Nexperia architecture is a 
well-known MPSoC for set-top box applica-
tions. 

• Networking requires very high performance 
and provides some opportunities for 
specialized parallelism. Network processors 
from Intel, Cisco, and others use hetero-
geneous architectures to process packets at 
high rates. 

 



3. Architectural Challenges 
 

Embedded computing and MPSoCs make for a full 
employment act for computer architects.  We are in no 
danger of running out of applications that can make use 
of large amounts of computing power and that can 
support the design effort required to create an efficient 
application-specific platform. Several specific 
challenges flow out of our continuing need to design 
MPSoCs. 

Configurable processors, such as those provided 
by Tensilica, allow the SoC designer a convenient way 
of quickly building processors with customized 
instruction sets. One area in which designers need help 
is figuring out which instruction set extensions should 
actually be implemented. Another important goal is 
figuring out how to connecting configurable processors 
into multiprocessor networks. 

Hardware/software co-design [DeM01] is another 
way to increase system performance for a particular 
application. Accelerators, when properly designed, can 
significantly and efficiently increase performance. 
However, the application must be carefully analyzed to 
be sure that an accelerator actually improves overall 
performance. 

Heterogeneous multiprocessors for embedded 
applications generally implement pipelines of 
processes. Our own smart camera system [Oze05] is an 
example of a pipelineable application. The smart 
camera processes video in real time, using a number of 
distinct steps. The amount of work performed by these 
stages is generally data dependent and buffers are 
required to smooth out rates. As video data is 
processed, it is boiled down in size so that data rates at 
the end of the process are trivial compared to the input 
video data rates. Pipelined application architectures 
bring up both hardware and software questions about 
buffer management and rate control. 

Networks for embedded systems are another 
important challenge. Several networks have been 
proposed for on-chip use. Many of these are general-
purpose networks designed to be used in many 
different systems. However, our own experiments 
indicate that asymmetric networks offer significant 
advantages. 

 Balancing generality with efficiency is a key 
goal in MPSoC architectures. As we pointed out 
elsewhere [Wol05] even relatively simple consumer 
devices must now implement a wide range of 
functions. Consider what must be performed by simple 
devices like digital music players or digital cameras in 
addition to their core functions: 

• User interface. 
• Cryptography. 

• Networking, either through Internet or 
specialized protocols. 

• Digital rights management. 
• File systems that are compatible with PC file 

systems. 
This wide range of functions arguably calls for a 
general-purpose processor; on the other hand, some of 
these functions may call for application-specific 
hardware to meet performance/power goals. We do not 
yet fully understand the architectural implications of 
the networked consumer device. 

Overall, methodology is an important aspect of 
embedded system design that does not often come into 
play in general-purpose systems [Wol00]. Because 
embedded system designers need to design many 
systems and do so in a predictable amount of time with 
a predictable number of people, they need to develop 
methodologies that allow them to repeatably make 
reasonable decisions in new design domains. Giving 
students an insight into the design process can be as 
important as showing them specific design outcomes.   
 
4. Benchmarks 
 

Benchmarks are at least important in embedded 
computing as they are in general-purpose computing.  
When you are designing an application-specific 
system, the wrong choice of a benchmark program or 
input data for that program can lead to fatal 
misjudgments. 

I believe that larger programs make more useful 
design examples for embedded computing for several 
reasons. First, high-performance embedded systems 
typically run several different types of algorithms; it 
takes a certain amount of code to exhibit all that 
complexity.  Second, larger programs do a better job of 
exercising multi-tasking. Third, they give students a 
more realistic taste of the nature of embedded software 
and performance analysis. 

However, it is hard to get good benchmarks and 
data sets. Although several reference implementations 
of various standards are available, they can be very 
hard to use. Reference implementations may make 
inappropriate use of dynamic memory; they may also 
use inefficient algorithms for critical modules. For 
example, many reference video encoders come with 
full-search motion estimation, even though that algor-
ithm is not used in practice. Measurements made on 
unrealistic algorithms will lead to bad design decisions. 
 
5. Labs 
 

Laboratories are a critical part of an embedded 
systems course. As embedded systems become more 



complex, it becomes harder to create an enriching set 
of labs for students. 

Most instructors worry about the cost of lab 
equipment, particularly if they want to reach a broad 
audience. Although many microprocessor manufac-
turers and third parties sell evaluation boards, the 
associated development system is a hidden cost of 
these boards. Some vendors provide software along 
with the board while others charge a good deal of 
money for development systems. Ideally, students 
should be able to install on their own machines student 
versions of the development systems they use in labs; 
in the FPGA world, Xilinx is an excellent model for 
how to make devices and tools accessible to students. 

Instructors can select from among a large number 
of uniprocessors, but it is hard to find a good 
experimental setup for multiprocessors. The TI OMAP 
processor is one of the very few embedded 
multiprocessors for which there exists an even 
moderately-priced development board, but that board is 
still expensive and the software environment is 
complex.  

Much development work must be done on 
simulators, both in the real world and in class. 
Uniprocessor performance and power simulators are 
widely available. Although several open-source 
multiprocessor simulators are available, most of them 
are designed for symmetric multiprocessors and cannot 
be easily modified to handle heterogeneous 
multiprocessors. The MESH simulator from CMU was 
developed to handle heterogeneous multiprocessors as 
seen in systems-on-chips. 
 
6. Conclusions 
 
We live in an exciting time in which we have the 
opportunity to develop a new generation of courses on 

high-performance embedded computing. But because 
these are complex systems, instructors have to be 
prepared to invest time to set up lectures and labs that 
mate their students’ interests with the applications that 
drive system-on-chip and large-scale distributed 
embedded systems. Although each institution has its 
own special requirements, particularly for labs, group 
effort may help us all build this new generation of 
courses. 
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