UART-based I/O

Lab Goal:

To write functions in assembly for putchar and getchar that interact with the UART.  Additionally, a printString function must be written that will print a null-terminated string via the UART.

Lab Description:

The functions putchar and getchar are the canonical functions that interact with the UART.  These functions are normally already implemented for a given architecture in the standard C libraries.  In this lab, these functions will be implemented by hand in MicroBlaze assembly.

The putchar routine takes a single character as input, and sends this character to the UART.  The signature of the function (in C) would look like the following:

void putchar(char c)

When writing this function in assembly, one must pass a single character to the putchar function in register 5 (r5).

The getchar routine gets a single character from the UART and returns it to the caller.  The signature for this function (in C) would look like the following:

char getchar(void)

When writing this function in assembly, one must return the character that is read from the UART in register 3 (r3).

Once these functions have been written and demonstrated to your TA, you should then begin on creating a printString function that utilizes the putchar function to send each character of a NULL-terminated string to the display.  The signature of the printString function (in C) would look like the following:

void printString(char s[])

When writing this function in assembly, one must pass a pointer to the string in register 5 (r5).  The reason for this being that an entire string (a arbitrarily large set of characters) cannot be passed in a single 32-bit register.  This is why we merely pass a pointer that points to where the string is located in memory --- and this is why the default print and xil_printf routines take a pointer as their first parameter.

Implementation Details:

Consultation of the UART-Lite documentation as well as the UART-hints.txt file provide information about the user-interface of the UART as well as pseudo-code of how to correctly interface to the UART for the putchar and getchar routines.

