
1

Synchronization for
Multiprocessor Architectures

Most slides adopted from David Patterson

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

SMP—Shared Memory Organization

 Caches serve to:

 Increase bandwidth
versus bus/memory

 Reduce latency of access

 Valuable for both private
data and shared data

 I/O & Memory Global Access

3

Distributed Directory MPs

4

Synchronization Basics

 Build With User-Level Software Routines
 Policy Given by API

 Mechanism within library routine

 Two Flavors, Shared Memory and Message Passing

 Shared Memory Synchronization Through Semaphores
 Mutex := Simple Binary Semaphore {0,1}

 pthread_mutex_lock(mutex)

– Will block calling thread if M[mutex] =0
– Will allow thread to continue if M[mutex] = 1;

» Will also set M[mutex] = 0; (show locked)

 Message Passing
 int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

5

Programmers Perspective

 Mutex is "mutual exclusion".
 Mutex variables are one of the primary means of implementing thread synchronization and for

protecting shared data when multiple writes occur.

 A mutex variable acts like a "lock" protecting access to a shared data
resource.

 Only one thread can lock (or own) a mutex variable at any given time. No other thread can own
that mutex until the owning thread unlocks that mutex. Threads must "take turns" accessing
protected data.

 Mutexes can be used to prevent "race" conditions.
 An example of a race condition involving a bank transaction is shown below:

$1,200Update Balance

$1000 + $200 = $1,200

$1,200Update Balance

$1000 + $200 = $1,200

$1,000Deposit $200

$1,000

$1,000Read Balance: $1,000

$1,000Read balance: $1000

BalanceThread 2Thread 1

6

Using the mutex

Thread1(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Thread2(){

Pthread_mutex_lock(&gate)

Read Balance
Balance += deposit

Pthread_mutex_unlock(&gate)

Critical Region

7

Synchronization

 Issues for Synchronization:
 Uninterruptible instruction to fetch and update memory (atomic

operation);

 User level synchronization operation using this primitive;

 For large scale MPs, synchronization can be a bottleneck;
techniques to reduce contention and latency of synchronization

8

Problem for Multiprocessors

gate

Memory

PE1 PE2

Ld R1, gate

0

0

Pthread_mutex_lock(&gate) Pthread_mutex_lock(&gate)

Ld R2, gate0Bne again

St “1”, gate Bne again

St “1”, gate

1

Both Threads Enter The Critical Region !

9

Uninterruptible Instruction to Fetch and Update Memory

 Atomic exchange: interchange a value in a register for a value in
memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
 Set register to 1 & swap
 New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

 Key is that exchange operation is indivisible

 Original Atomic Instructions:
 Test-and-set: tests a value and sets it if the value passes the test
 Fetch-and-increment: it returns the value of a memory location and atomically

increments it
 Guaranteed Atomicity by locking bus

 Very poor performanceon a shared bus system

10

Uninterruptible Instruction to Fetch and Update Memory

 Modern Version
 Load linked (or load locked) + store conditional

 Load linked returns the initial value
 Store conditional returns 1 if it succeeds (no other store to same memory location since

preceeding load) and 0 otherwise

LL(Rx,Ry) {
 Rx <- Mem[Ry] sem value from memory
 link_reg <- Ry put address into link reg
 Valid <- 1 set valid bit
}

SC(Rx,Ry) {
 if(Ry == link_reg && valid == 1)
 Mem[Ry] <- Rx
 Rx <- 1
 else
 Rx <- 0
}

11

Examples

 Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

 Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

12

Architecture Support

LL(R1, A)

A 1

LL (R2, A)

A 1

A, read A, read

A 0SC (R2,A)

 {fails}
SC(R3,A)

{success}

A 01

13

Architecture Support

 Link Register Doesn’t Typically Sit on Bus
 That’s What the Cache is For !

 Ties into Snoopy Cache Lines to Monitor Address

 Snoopy Cache Also Eliminates Bus Saturation
 For Spin Locks, We Just Keep Trying…..

 First Load Linked Actually a Read Miss

– Address Stored in Both Cache and Link Register
» Address marked as shared in cache

– SC is Write
» If some one else read SC doesn’t actually happen (valid == 0)
» Subsequent LL reloads are read from cache
» If no-one else attempted to read then SC goes to Cache
» Now Marked as Exclusive
» Invalidates everyone else’s cache copy
» Subsequent reloads using LL cause new value to be written back and

cache will be updated with new value

14

Interesting Performance Issues

 Suppose 5 “threads” waiting for value to change (release)
 Lock gets set back to “0” (in cache) What happens ?

 Exclusive in owner, invalidates in the 5 waiting caches

 First requestor causes write back and update

– Second requestor can cause invalidate of first requestors link_reg
– Third requestor can cause invalidate of second req’s link_reg
– Fourth requestor can cause invalidate of third req’s link_reg
– Fifth requestor can cause invalidate of fourth req’s link_reg
– Hmmm……hardly seems fair to be quick….

 Also, can cause poor performance through starvation

 For these reasons, blocking semaphores are used
 Can control “release” order

 Also eliminates massive bus activity when semaphore is released

15

Image Processing Example

CPU

BRAM

Semaphores
HW

Thread

SDRAM

Ethernet

 bus

Ethernet

Virtex2ProP7

ControllerController

IBM Compatible

16

Image processing flow

CPU loads
image into
memory at
address a1

HW thread
interface*

sema
s1

CPU
init()

ether_init()
a1 = malloc()
a2 = malloc()
hw_create(a1, a2)

receive image
recv(a1, img_size)

get image from
memory
- read (a1)

sema
s2

CPU reads
memory a2
and send
processed

image

HW thread
image

processing*
(Filter)

HW thread
interface*

store processed
image in memory
- write (a2)

hw image process
- 3x3 win median
- invert
- threshold
- 3x3 win binomial

send image out
send(a2, img_size)

image in

image out

Note* VHDL

8 6

1 2 4

5

3

7

sem_post(s1) sem_wait(s1)

sem_wait(s2)

sem_post(s2)

17

Thread Structure
main(){
//Initialize Ethernet link
ether_init();

//Raw image data pointers
address1 = malloc(image_size)

// Processed image data pointer
address2 = malloc(image size)

img->in = address1;
img->out = address2;

//Hardware thread create API
hw_thread_create(address1, address2, algorithm)

while (1) {
 // Get image from ethernet
 receive(img->in, img_size)

// Let hw thread know image data is available
sem_post(S1);

//Wait for hw thread finish processing
 sem_wait(S2);

// Send processed image
 send(destination, img->out, img_size); } }

If command == run

SW: sem_wait(S1)

//get image from main memory
RD: read data (address1)

// wait for transformed image
process wait

 // store mage to main memory
 write data(address2)

 if count != image_size
RD:

 else
 SP:

 SP: sem_post (S2)

 branch SW

18

Hardware Median Filter

2w+22w

w+2

0 2

w

1 w-1

P0 P1 P2

P3 P4 P5

P6 P7 P8

P0 P1 P2 P3 P4 P5 P6 P7 P8

Nine stages of 8-bit parallel comparators

Padding zero to handle boundary condition

Frame buffer
size: 2W+3, each 8 bit

data in

shift

shift

data out

19

HW vs.SW Image Processing

 Image frame size 240 x 320 x 8 bits

 FPGA & CPU clocked at 100 MHz

 FPGA can process 100 frames/sec, speed-up about 40x

 Performance advantages of custom hardware

Image
Algorithms

HW Image
Processing

SW Image
Processing
Cache OFF

SW Image
Processing
Cache ON

Threashold 9.05 ms 140.7 ms 19.7 ms
Negate 9.05 ms 133.9 ms 17.5 ms
Median 11.2 ms 2573 ms 477 ms
Binomial 10.6 ms 1084 ms 320 ms

