Justin P. Rohrer <u>rohrej@ku.edu</u> EECS-800: Wireless Security 2006.12.12

SECURITY IN HETEROGENEOUS NETWORKS: GENERIC SECURITY PROTOCOL

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Introduction

- Looking at Heterogeneous networks in the context of the next-generation Internet
- Will certainly be more diverse than current Internet
- Needs a unified approach to security
- Security policy needs to be communicated beyond trust boundaries
- Work based on *proposed* architecture, details not yet defined

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Background

- This work is an extension of Postmodern Internetwork Architecture (PoMo),
- Funded by NSF under NeTS-FIND 10/2006
- Unconstrained by backward-compatibility issues
- Considers security to be a fundamental requirement for each network component

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Security Categories

- Authentication
 - Use existing methods
- Collaboration Incentives
 - Network access treated as privilege which can be lost due to misbehavior
 - Current mindset difficult to change
- Denial of Service Prevention
 - Can be malicious or accidental
 - Needs continued research

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Related Work

- Two categories of DOS avoidance research
 - Improved resource management
 - Attack prevention
- Each approach addresses a specific scenario
 - 3G cellular multicast
 - 3G cellular scheduling
 - Cellular SMS
 - (Cellular is a popular topic)

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Environmental Model

- PoMo consists of the basic elements *links*
- Links interconnect nodes
- Nodes may be single devices or entire subnetworks defined recursively
- These virtual nodes are referred to as *realms*
- *Realms* are separated from one-another by trust/policy boundaries
- Centralized administration with trusted resources
- Unforgeable return path for each packet

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Design: Goals

- Generic Security Protocol (GSP) [1]
- Unify policy implementation
- Facilitate inter-domain policy communication
- Enhance performance, resilience, and survivability of the network as a whole

Design: Proposed Solution

- Protocol which operates within network stack
- Roughly layer 4.5

- Relies on PoMo Internetwork layer and below
- Required for all realms, but not every individual node
- Placement comparable to BGP

Design: Framework

- Security Agent (SA) run within each realm
- Security Client (SC) optionally run on end nodes
- Security Packets (SP) carry information between entities

Design: Security Agents

Centralized or distributed within realm

- Run on devices associated with security
 - Gateways
 - Firewalls
 - Intrusion Prevention Systems
- Policy defined around links
- Policy distributed to all SA in realm
- Events trigger response based on policy

Design: Security Clients

- Receives relevant policy info from SA within own realm
- Communicates upwards with application and/or user
- Optional implementation on given end node

Design: Security Packets

Packet format with fields needed by GSP

- Authentication (Both source and message contents)
- GSP code

- Content field for user customizable data
- Encapsulated in PoMo packet which provides source, destination, and routing/forwarding info

Design: Security Domains

Intra-Realm

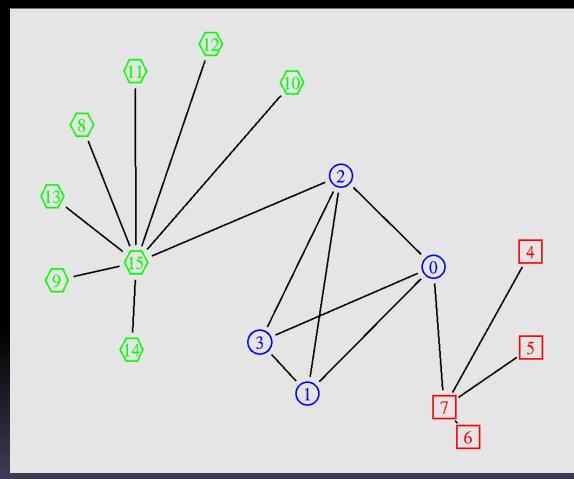
- Implement unified policy
- Coordinate security measures (and appliances)

Inter-Realm

- Communicate policy to other realms on asneeded basis
- SP's prioritized above other traffic to ensure delivery even in DOS scenario

Security of GSP

- GSP has potential to become liability if exploited
- Public key encryption used for authentication
- SP's examined at injection and every trust boundary
- Details left to future work, must be bulletproof prior to mass deployment


- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

Simulations

- ns-2, three realms with different bandwidth links
- duplex links with drop-tail queuing
- Legitimate traffic simulated with PackMime traffic generator
- Misbehaving traffic simulated using single CBR stream

Simulations

Green nodes on low bandwidth network Blue nodes highbandwidth core Red nodes server farm Well behaved HTTP 1.1 traffic generated at rate of 1 request per node per second

- Introduction
- Background
- Security Categories
- Related Work
- Environmental Model
- Design
- Simulations
- Results
- Conclusion

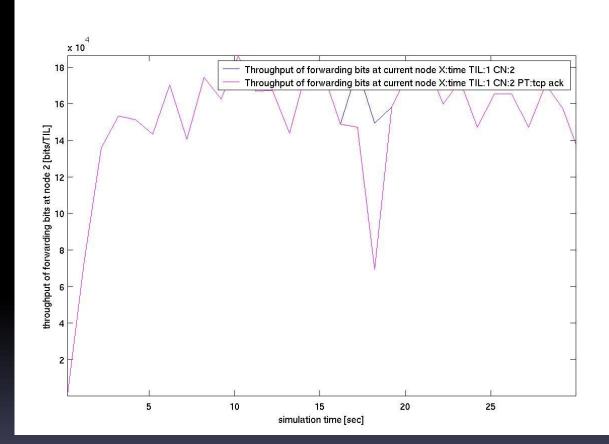
Results: Without GSP

Node 15 acts as ordinary firewall

Graph shows goodput on link 2-15

CBR stream starts at about 16s

Poor performance due to both DOS and TCP backoff


Results: With GSP

Node 15 is a firewall with a SA

Signals node 7 when CBR stream is detected

Misbehaving traffic blocked at source

Goodput returns to normal after brief downward spike

Conclusions

- Simulation limited in scope, intended to show power and flexibility of approach
- Could have been a spam flood or SSH brute force attack being block
- Many more scenarios to simulate, whole PoMo project in infancy
- Most difficult aspect will be ensuring that GSP cannot be exploited

Questions

References

- [1] Evans, J.B., Wang, W. and Ewy, B.J. (2006) 'Wireless networking security: open issues in trust, management, interoperation and measurement', *Int. J. Security and Networks*, Vol. 1, Nos. ¹/₂, pp. 84-94
- [2] Bhattacharjee, B., Calvert, K., Griffioen, J., Spring, N., and Sterbenz, J. (2006)
 'NeTS-FIND: Postmodern Internetwork Architecture', NSF Proposal, Funded 10/2006

- [3] Durst, R.C., Miller, G.J., Travis, E.J., 'TCP Extensions for Space Communications', *Proceedings of the 2nd annual international conference on Mobile computing and Networking*, pp. 15 - 26, ACM Press, November 1996, ISBN:0-89791-872-X
- [4] Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., Scott, K., Weiss, H., 'Delay-Tolerant Networking: An Approach to Interplanetary Internet', *Communications Magazine*, IEEE, Volume 41, Issue 6, June 2003 pp. 128 - 136

- [5] Bhargava, B., Wu, X., Lu, Y. and Wang, W. (2004) 'Integrating heterogeneous wireless technologies: a cellular-assisted mobile ad hoc networks', *Mobile Network and Applications*, Vol. 9, No. 4, pp.393-408
- [6] Wang, W., Liang, W. and Agarwal, A. (2005) 'Integration of authentication and mobility management in third generation and WLAN data networks', *Journal of Wireless Communications and Mobile Computing*, Vol. 5, No. 6, pp.665-678

- [7] Yang, H. and Lu, S. (2002) 'Self-organized network layer security in mobile ad hoc networks', *Proceedings of the First ACM Workshop* on Wireless Security (WISE), pp.11-20
- [8] Lamparter, B., Paul, K. and Westhoff, D. (2003) 'Charging support for ad hoc stub networks', Journal of Computer Communication, Vol. 26, No. 13, pp. 1504-1515

- [9] Ben Salem, N., Buttyan, L., Hubaux, J-P. and Jakobsson, M. (2003) 'A charging and rewarding scheme for packet forwarding in multi-hop cellular networks', Proceedings of Forth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp.13-24
- [10] Bhatia, R., Li, L.E., Luo, H. and Ramjee, R.
 (2006) 'ICAM: integrated cellular and ad-hoc multicast', *IEEE Transactions on Mobile Computing, Vol. 5, No. 8, pp. 1004-1015*

- [11] Soahant Bali All Hands Meeting Presentation at ITTC 2006.11.09
- [12] Traynor, P., Enck, W., McDaniel, P., and La Porta, T. (2006) 'Mitigating attacks on open functionality in SMS-capable cellular networks', Proceedings of the 12th Annual international Conference on Mobile Computing and Networking (MobiCom), pp. 182-193

 [13] Enck, W., Traynor, P., McDaniel, P. and La Porta, T. (2005) 'Exploiting open functionality in SMS-capable cellular networks', *Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS)*, pp.393-404