
EECS 388
Computer Systems and Assembly Language

System Addressing and Data

David Andrews
dandrews@ittc.ku.edu

All the worlds a stage…

• We look at the “Computer” from the CPU’s perspective
– The “system” is a contiguous set of addresses

• We map specific devices into that address range
– ROM
– RAM
– I/O Devices

• Lets see….

Memory Address Breakdown

System
Space

0x00000000

0x000001FF

Code
Space

0x00000200

0x000002FF

I/O
Space

0x00000400

0x000004FF

Heap

Stack

Free Memory

0x00000300

0x000003FF

ROM

ROM or RAM

RAM

I/O Devices

Heap = new, Malloc()

Stack = local variables,
function parameters

Free = static, globals

How CPU Addresses System

• 1st Dependency on “Common Bus”
– Our system has separate bus lines for Address, Data
– Don’t worry about control lines shown

• Our CPU is a RISC load/store
– ALU <--> Internal Registers <--> Memory
– CPU -> System “store word”

• Sw Ra, Rb, Rc
• Ra -> Mem[Rb + Rc]

– System -> CPU “load word”
• Lw Ra, Rb, Rc
• Ra <- Mem[Rb + Rc]

Common
System

Bus

CPU
Subsystem

Memory
Subsystem

I/O Subsystem

8 8 8 8
6 8

Desired Actual
Δh Δφh φ h φdsr_In Act_In Out RS-232

A19:0

D15:0

Control

Example

• Sw R3,R1,R2

Common
System

Bus

CPU
Subsystem

Memory
Subsystem

I/O Subsystem

8 8 8 8
6 8

Desired Actual
Δh Δφh φ h φdsr_In Act_In Out RS-232

A19:0

D15:0

Control

O
O
O

R0
R1
R2
R3

Rn

O
O
O

123
456
789

+
579

Addr
Data

576
577
578
579
57A
57B

0789

0789

How Data Is Stored In Our System
(Microblaze CPU)

• Motorola:= Big Endian
• Intel := Little Endian
• “Word” = 32 bits

– int A;
• Half Word = 16 bits

– Short int A;
• Byte = 8 bits

– Char A;

Addressing I/O
• I/O Devices are accessed through their registers:

– The number and meaning of registers depends on the specific device
– Typically, there are two types of registers

• Command/Status:
– Command: Most devices are programmable. The CPU sets up the device by writing into the

command register.. The CPU can continue to communicate and control the device during
execution by writing into this register

– Status: The CPU can read this register to see what the device is up to.
• Data:

– For I/O devices, this is were data is written in order to send, and read in order to receive.
– Registers physically connect the I/O device to the bus.
– They are simply address locations to the CPU

• Load actually reads from a memory location
• Store actually writes to a memory location

• We can communicate with devices directly from higher level languages such as C.
– Lets look……

