Explicit Memory

Access & Management

By Jason Agron

(o | CA A

Variables are heavily used constructs in any
programming language.

Variables are often “nicknames” of storage
locations:

e Registers or memory locations.

Who cares where variables are stored?

e Usually, not the programmer.
* It can be handled solely by the compiler.

Original Source:

int x =0;
inty=1;
X=X+ 3;
y=X+Y;
Assume...

e Compiler chooses variable
locations.

e Address of x = 0x0A.
e Address of y = OxFF.

Program and Associated Actions:

° intx=0;

e Mem[0x0A] = 0x00000000
° inty=1;

* Mem|[0xFF] = 0x00000001
° X=X+ 3;

e R12 =Mem|[0x0A]

e RI2Z=RI2+3

e Mem[0x0A] =R12
° y=X+Yy;

e RI13 = Mem[0OxFF]

e RI3=RI2+RI3

e Mem[0xFF] = R13

Variables in a user’s program can usually be
put anywhere.

But what about variables (data) that

corresponds to fixed devices?

e 1.e. hardware devices.

These variables have fixed addresses.

* How does one read variables at a fixed
address?

Pointers are programming constructs:

* They provide the idea of “indirection”.

* They are merely variables which are used to
access other places.

pointers have the following:

T'he “address™ that the pointer “points to™.

T'he “data” that 1s being pointed at.

- VP\ \/m-ﬂ—md P Y=
S S (@ | AaANNICD

In the previous example...

* Variable names were merely “nicknames” for
addresses.

e Memory location OXxOA was named ‘x’
 Memory location OXFF was named ‘y’.

e The value stored at the memory location 1s data.

Pointers work a bit differently.
* They too are nicknames for a memory location.

* The value stored in that memory location i1s an
address, not data!

Declared Variables

intx=15:

Address
Variabie Name = X

Tyoe of Vanable = Integer
Value in Varlable = 15
Address = 0x00

0x00

0x01

Ox02

Ox03

Ox04

Ox05

Ox06

int *myPtr = (void *) Ox00;

O0x07

variable Name = myP1r

Type of Varlable = Integer ptr
Address to Point 1o = 0x00

Ox08

0x09

Ox0A

A A A A A A A 1
() 3

(%
Y Y Y VAT VAV AR VAR VAR

ox0B

ATV VARVAR VA VA VAR VARV AR YA
GOV ANNANANNNNT
Paoints To

In this case, the address of variable %' is known to be 0x00.
Therefore it is possible to set the pointer 'myPtr' to point to 'x'
by setting it's value to 0x00.

If the address of "' is not known to the programmer, then it can
be looked up instead by using '&' which is the "address-of" operator:

int *myPtr = (void *) (&x);

The “value” of a pointer 1s the address that it
points to.

* int *myPtr = <ADDRESS_TO_POINT_TO>;
The “type” in front specifies what type of data you

are pointing at.
e Important!!
* Integers are 32-bit (4 bytes), Chars are 8-bit (1 byte)...

To get the address pointed to...
* <addressPointedTo> = myPtr;

To set the address pointed to...
* myPtr = <newAddressPointedTo>;

To get the “data” that 1s pointed to, the pointer
must be dereferenced.

* This 1s done using the **’ operator.
To read the data being pointed to...

e <dataPointedTo> = *myPtr;

To write the data being pointed to...
* *myPtr = <newData>;

— - on m «
Addrace . O Onaratar
Address-Of Operato

_a&

The ‘&’ operator 1s used to calculate the
address of a variable.

In our first example...
* &x would return OxOA.
* &y would return OxFF.

This 1s how pass-by-reference works!
* You don’t pass the value.

 Instead you pass a “reference” (address) to
where the value 1s located.

- T =Y S PN hﬁh/\
AC1 DI YUSe W CaADODS

There 1s a hardware device with three 32-bit
registers attached to the system bus.

Base address of the device 1s 0x40000000.
Reg0 = base + 0xO.

Regl = base + 0x4.

Reg2 = base + 0x8.

Registers are readable and writable.

Why are the register addresses each
separated by Ox4??

First declare pointers to access the registers:
 volatile int *reg0 = (int *)(0x40000000);
* volatile int *regl = (int *)(0x40000004);
* volatile int *reg2 = (int *)(0x40000008);

The ‘volatile” keyword tells the compiler:
e Variable cannot be stored in on-CPU registers.

e Because i1t can be modified by “external” processes.

Forces the compiler to produce code that always
does bus transactions to write/read such variables.

Ranict
16 \

—

Now let’s write/read the variables...

e Put values in reg0, regl, and reg2...
e *reg0 = 15678;
e *regl =1+ 3;
e *reg?2 =-99;

* Read values from registers...
e *reg?2 = (*regl + 10) / (*reg2);

Now you are interacting with the data stored in the
device’s registers!!

