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Abstract—With the rapid advancement of wireless technology
and the exponential increase of wireless devices in the past
decades, there are more consumer applications for MANETs
(mobile ad hoc networks) in addition to the traditional military
uses. A resilient and robust MANET is essential to high service
quality for applications. The dynamically changing topologies of
MANETs pose a huge challenge to normal network operations.
Furthermore, malicious attacks against critical nodes in the
network could result in the deterioration of the network. In this
paper, we employ several real-world human mobility traces to
analyze network robustness in the time domain. We apply attacks
against important nodes of the human topology and compare
the impact of attacks based on different centrality measures.
Our results confirm that nodes with high betweenness in a well-
connected large dynamic network play the most pivotal roles in
the communication between all node pairs.
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I. INTRODUCTION AND MOTIVATION

MANETs (mobile ad hoc networks) have existed for more
than two decades and were originally used in military tactical
networks. Mobile devices including cellphones, tablets, and
wearable devices have proliferated in an unprecedented way in
the past several years. Smart phones have become indispens-
able in peoples’ daily lives for the purposes such as shop-
ping, personal banking, and communicating. MANETs now
have applications for a variety of situations including sensor
networks, emergency services, education, and entertainment.
MANETs are established in such a way that mobile nodes
can dynamically self-organize into an ad hoc network without
infrastructure. Communication between node pairs relies on
multihop traffic forwarding from other nodes. The robustness
of the underlying wireless dynamic topology is the key to
the normal functioning of the network applications in mobile
devices.

MANETs inherit some problems from traditional wireless
networks due to the open channel of wireless medium. Infor-
mation about device positions can be obtained using passive
eavesdropping [1]. This is difficult to detect as it does not
produce traffic within the network. Malicious attackers could

determine the most significant nodes in a network in terms
of their roles of providing connectivity to other nodes. We
previously proposed an approach to model malicious attacks in
MANETs [2], [3]. Dynamic networks within a certain window
size are aggregated and represented by a weighted static
adjacency matrix. Weighted centrality metrics are used as node
significance indicators. Based on calculated weighted central-
ity metrics of each node, we apply attacks against nodes with
high centrality values prior to low centrality nodes. A major
constraint of this approach is that node positions are assumed
to be known in advance so that weighted centrality values
can be calculated. This makes the modeling approach only
applicable in very limited scenarios such as pre-programmed
networks.

There are many scenarios in which mobile devices are at-
tached to or operated by human beings. In this paper, we study
and analyze an important subset of MANET applications of ad
hoc communications in conferences, campuses, local fairs, and
theme parks. The publicly available GPS traces representing
humans’ walking provide a realistic moving pattern for our
analysis [4]. As there is a certain level of correlation between
consecutive steps, the high centrality nodes of the current time
instance can be used to predict the significant nodes in the near
future. Based on real-world human mobility traces, we further
examine the correlation between dynamic topologies within
a certain window size. We analyze network robustness from
the perspectives of structural change of dynamic topologies
and network flow robustness under malicious attacks. We
assume the attackers are able to obtain the global information
and attack nodes with more essential roles. After identifying
the significant nodes, topology control techniques used in
wireless networks such as adapting transmission power [5]
can be exploited to minimize the variances of node roles.
The rest of the paper is arranged as follows. In Section II,
we introduce the background and related work for this paper,
including MANET security, robustness measurements, and
mobility models. Section III provides details of the data sets
used for this paper. We provide a comprehensive robustness
analysis for several selected scenarios in Section IV. Finally,
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we summarize this paper and discuss the steps for future work
in Section V.

II. BACKGROUND AND RELATED WORK

We have used synthetic mobility models such as Random
Waypoint [6] and Gauss-Markov [7] to evaluate network
robustness of MANETs [2], [3]. However, the way a person
moves is not random, and synthetic mobility models cannot
accurately simulate the real-world moving patterns of human
beings. The previous work is based on the knowledge of
complete historical topology information, which makes it very
limited to real-world applications. In this section, we first
introduce potential security threats in MANETs, which could
be exploited by malicious attackers to obtain global network
topology. Next, we present and compare existing robustness
metrics and select flow robustness as the metric for the analysis
of dynamic mobile networks [8]. Finally, we present different
mobility models used in MANET research and introduce the
real-world mobility of human movement used in this work.

A. Threat to MANETs

Compared to fixed wireless networks, MANETs are more
vulnerable to information and physical attacks [1]. MANETs
inherit the traditional problems in wireless networks, including
the open wireless medium, unprotected channel, and hidden-
terminal problems. Due to the mobility of each node, dynamic
and intermittent connectivity poses even greater challenges for
the normal operation of MANETs [1]. Malicious attackers can
bypass intrusion detection systems and impersonate part of the
network undetectably. An approach has been proposed to infer
routing topology for wireless sensor networks based on the
measurement received in the sink [9]. Empirical human contact
networks were shown to be predictable [10], which could be
utilized by malicious attackers to disrupt the normal operation
of MANETs. A mobile multi-agent-based framework has
been proposed to discover topology in the ad hoc wireless
environment [11]. Topology prediction in mobile wireless
networks has been be used to improve network throughput
and delay [12]. Malicious attackers that might camouflage
themselves as a member of the network or hijack the existing
node in the network can use a similar approach to obtain and
predict the network topology [13]–[15].

B. Robustness metrics

k-connectedness describes how well networks survive node
or link failures without being partitioned [16]. However,
the algorithmic complexity for calculating the k is NP-
complete. Algebraic connectivity and other graph spectrum
metrics also provide informative characterization of network
robustness [17]–[20]. One of the main disadvantages of using
these metrics to measure robustness is that they provide the
same measurement values if the network is disconnected.
Particularly in a MANET environment, the network might
be partitioned into several small components from time to
time. Giant component size captures the size of the largest

connected component [21]; however, when the network con-
sists of several node clusters of similar size, giant compo-
nent size cannot provide an accurate description of network
connectivity. The flow robustness metric can capture both the
number of components and the size of each component [8]. It
is computed as the ratio of the number of reliable flows to the
number of total flows in the network [8]. A flow is considered
reliable if there exist at least one path between source and
destination. The total number of traffic flows is n(n− 1) for
a connected n-node network. This metric captures the ability
of network nodes to communicate with each other. The value
range for flow robustness is [0, 1], where 1 indicates that all
the nodes can communicate and 0 means there is no node-pair
communication within the entire network. In this paper, we
focus on the analysis of MANETs, and flow robustness is the
best metric fit for our scenario since it can accurately describe
communication ability between node pairs in a disconnected
network.

C. Mobility models

A survey of synthetic mobility models for MANETs re-
search and simulation has showed that the selection of mobility
model has great impact on the performance of MANET
protocols [22]. Mobility models including Random Walk [23],
Random Waypoint [6], Gauss-Markov [7] might provide
movement patterns that match the real-world scenarios if
appropriate parameters are chosen [22]. However, the selection
of parameters could be very difficult as there is no guidance in-
dicating what parameters should be used to represent a certain
real-world scenario. Furthermore, most synthetic traces have
not been validated against real-world movements. The publicly
available real-world mobility traces collected by different or-
ganizations and institutes have been summarized [24]. A trace-
validated mobility model called SLAW (Self-similar Least
Action) that simulates human walks has been proposed [25].
Lévy-walk nature of human mobility has been validated with
heavy-tail distribution of flight length and pause-time [4],
which cannot be captured by the existing synthetic mobility
models such as Random Waypoint and Gauss-Markov. In this
paper, instead of using synthetic mobility traces, we analyze
the robustness of several real-world traces publicly available
from CRAWDAD [26]. In the next section, we will provide
more details regarding these traces.

III. HUMAN MOBILITY TRACES

We choose human mobility traces collected from five
different sites [26]. These traces were originally used to study
the statistics of human mobility pattern and similarity between
human walks and Lévy Walks [4]. The data sets provided are
30 seconds average of GPS coordinates recorded using Garmin
60CSx handhold devices. Table I presents basic information
regarding the five traces.

A. Data sets

There are occasional cases that GPS signals cannot be
received when GPS holders move indoors in the original data

2



TABLE I
THE AVERAGE FLOW ROBUSTNESS OF ALL SITES

Site Min. trace Pause-time Avg. flow robustness Avg. node degree Avg. giant component size
(# of traces) duration [s] [s] tr(250) tr(500) tr(1000) tr(250) tr(500) tr(1000) tr(250) tr(500) tr(1000)

KAIST (83) 15180 5440 0.509 0.777 0.822 15.6 27.8 53.9 56.6 73.1 75.2
Orlando (41) 7860 1546 0.167 0.208 0.233 3.8 7.1 8.5 12.1 13.0 14.0
NewYork (39) 4440 1382 0.022 0.041 0.190 0.8 1.2 2.8 4.2 5.6 14.6
NCSU (35) 6180 2490 0.112 0.238 0.488 3.5 4.8 9.5 9.5 13.7 23.9
StateFair (19) 5340 380 0.825 0.993 1.000 6.8 13.9 17.9 16.6 18.9 19.0

sets. In addition, the average speed during a 30-second window
for some nodes is calculated as high as 200 m/s based on
the original trace. We remove the traces from the data sets if
there is any occurrence of velocity higher than 50 m/s during
a 30-second time window. NewYork traces were collected
from volunteers living in the Manhattan NY area, and they
traveled by cars and buses. The KAIST and NCSU traces were
collected in two campuses, one in Korea Advanced Institute of
Science and Technology and the other in North Carolina State
University. The Orlando traces were obtained from volunteers
who spent their holidays in the Disney World. The StateFair
traces were obtained from participants who went to the North
Carolina State Fair. This set of traces were collected outdoors,
and the size of the StateFair site is the smallest of all. As each
trace in the same site lasts for different durations of time, we
truncate all traces based on the minimum trace time for each
site. The trace duration used for each site is listed in second
column of Table I. The first column provides the number of
traces collected for each site.

B. Trace statistics

In real-world MANET scenarios including the five sites used
here, the actual network density depends on the number of
nodes and transmission range of each node. The number of
nodes in MANETs is based on the number of traces provided
in the data sets even though the node number in a real
case could be significantly higher since only a small portion
of people are selected as candidates for trace collection.
Theoretically, transmission range can be adjusted by increasing
the radio power of the handhold devices. Noting that handheld
devices are mostly battery-powered, the transmission range
cannot be increased infinitely. We choose 250 meters to 1000
meters as an acceptable range.

In Table I, we present the average pause-time of all nodes
for each site. Pause-time is the duration a person halts before
moving to another location. The StateFair site has the smallest
average pause-time, which accounts for about 7% (380/5340)
of the entire trace time. In contrast, the pause-time of KAIST
and NCSU account for a very high percentage of entire trace
duration, which indicates the dynamic topologies remain stable
most of the time. We analyze the distribution of node velocities
for all 30-second windows. The CCDF (Complementary Cu-
mulative distribution function) of node velocities are presented
in Figure 1. Both x and y axes use log-scale. It is apparent that
node velocities follow a non-linear distribution. For NCSU and

StateFair sites, almost 90 percent of velocities are distributed
below 1 m/s while the maximum velocity for NCSU is around
20 m/s. The velocity of the New York site is generally higher
than the other 4 sites, and probability of velocity higher than
5 m/s is approximately 0.1. About 80% of velocities in the
KAIST site is less than 1 m/s while the maximum velocity
could be as high as 50 m/s. The non-uniform distribution
of node velocities cannot be captured by synthetic mobility
models such as random waypoint and Gauss-Markov. This
also poses a big challenge for MANET robustness as whenever
nodes starts moving with high speed, the network performance
cannot be guaranteed.

Fig. 1. CCDF of average node velocities

We also present average flow robustness, node degree,
average giant component size of each site using 3 different
transmission ranges in Table I. With the same transmission
range, the StateFair site has the highest average flow robust-
ness of all. When the transmission range is 1000 m, the
network becomes a full-mesh as the average giant component
size is equal to the total number of nodes. The NewYork
site has the lowest average flow robustness. Even when the
transmission range is set to 1000 m, the average node degree
is 2.8 noting that there are 39 nodes in total. The average
flow robustness of the Orlando site is slightly higher than
NewYork but still presents a very low network connectivity.
The average giant component size of the KAIST site with 500
and 1000 m transmission range are 73.1 and 75.2, while the
average degree almost doubles from 27.8 to 53.9. This means
that there are several nodes far apart from the largest node
clusters, and the increase of transmission range only leads to
a higher connectivity within a local cluster with other nodes
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(a) Snapshots of Statefair trace, tr = 250
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(b) Snapshots of NCSU trace, tr = 1000
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(c) Snapshots of KAIST trace, tr = 500

Fig. 2. Snapshots at start, middle, and end time instances
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(a) Zoomed snapshots of giant comp. in NCSU trace, tr = 1000
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(b) Zoomed snapshots of giant comp. in KAIST trace, tr = 500

Fig. 3. Zoomed snapshots of giant components

still isolated from the giant component.
The normal functioning of MANETs requires network con-

nectivity to remain above certain level since all routes are
established in real time. For the flow robustness analysis, we
will focus on StateFair, NCSU, and KAIST due to space limit.
Snapshots of the three sites are provided in Figure 2. Both x
and y coordinates are the distance from a reference in meters.
Each color represents the snapshot of start (blue), middle (red),
and end point (yellow) of the traces respectively. StateFair
traces are confined within a relatively small area (1200×1000
m2). Both NCSU and KAIST site span a large area with most
nodes clustering around a particular part of the map, as shown
in Figures 2b and 2c.

IV. DYNAMIC TOPOLOGY ANALYSIS

In this section, we first examine autocorrelation of time-
varying flow robustness. Next, we evaluate the change of high
centrality nodes over time. Finally, we apply attacks against
high centrality nodes using different window sizes. All the
analyses performed in this paper are from the topological per-
spective, which does not include network simulation involving
protocols of multiple network stacks. We want to understand
how network robustness is affected by the dynamic topologies.

Note that the nodes are mobile most of the time, but topology
does not necessarily change as long as nodes stay within
transmission range of each other. Furthermore, in terms of
identifying the significant nodes in the network, high centrality
nodes might remain the same if the topology changes only
slightly.

A. Time-varying flow robustness

Network robustness changes over time as nodes disconnect
and reconnect to others constantly. We compute the flow
robustness for each 30 s topology snapshot, and then calculate
the autocorrelation between time-varying flow robustness. In
order to compare fairly among three different sites, we only
analyze first 4500 s trace data. Figure 4 presents time-varying
flow robustness for StateFair, NCSU, and KAIST sites. Fig-
ure 5 shows the corresponding autocorrelation coefficient for
3 sites (RStateFair, RNCSU, RKASIT) using different transmission
ranges. For the StateFair site, flow robustness is always 1
for 1000 m transmission range; hence we do not provide the
autocorrelation as the variance is 0. For 500 m transmission
range, StateFair flow robustness falls below 100% for a short
period of time after 3600 s and remains at 100% for the rest
of time. This indicates a very high network connectivity as we
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Fig. 4. Time-varying flow robustness
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Fig. 5. Autocorrelation coefficient

can also see that average giant component size is 18.9 from
Table I. For StateFair traces with 250 m transmission range,
flow robustness fluctuates between 50% and 100%. RStateFair
displays a linear decrease to 0 within 300 s, and certain
levels of periodicity are observed since participants of North
Carolina State Fair are moving in a relatively confined area.
Flow robustness of the NCSU site increases during specific
short time windows as shown in Figure 4b. RNCSU with a
250 m transmission range is weaker than 500 and 1000 m
transmission ranges. As shown in Figure 2b, the majority
of nodes move slowly within a small area in the map, and
a smaller transmission range causes the nodes to disconnect
from others more frequently.

Flow robustness of the KAIST site shows the strongest
autocorrelation of all three sites. Similar to RNCSU, RKASIT is
higher with longer transmission range. RKASIT with 500 and
1000 m transmission ranges presents a more linear decrease of
autocorrelation, and time-varying flow robustness is strongly
correlated within 1800 s. RKAIST with 250 m transmission
range decreases to 0 significantly faster than with 500 and
1000 m transmission ranges. As shown in Figure 4c, flow
robustness oscillates far more frequently between 0.35 and
0.7 with 250 m transmission range. The giant component
gets partitioned into half of the original size. Whenever flow
robustness goes up or down to a new state, the network
connectivity remains for a certain period of time. Remediation
measures can be taken to improve network connectivity, such

as adjusting transmission power of certain nodes or adding
extra static nodes to bridge the network if there is a repeated
pattern of network disconnection. For the rest of the section,
we narrow down our scenarios to 250 m transmission range
for StateFair, 500 m for KAIST, and 1000 m for NCSU.

B. High centrality nodes change over time

Centrality metrics (degree, closeness, and betweenness)
have been used to measure relative node significance within
a network in various areas [27]–[29]. Node degree centrality
is a measure of local node communication ability. Both be-
tweenness and closeness centrality are related to the shortest
paths between node pairs. Node betweeness is a measure of the
degree to which it enables communication between other node
pairs. A disadvantage of using betweenness is that if none of
the nodes falls on the shortest paths of other node pairs, they
receive the same 0 betweenness value. A node’s closeness is a
measure of the extent to which its communication capabilities
are independent of the functioning (or malfunctioning) of oth-
ers. We use these three centrality metrics to measure relative
node significance for each snapshot of topology. We compute
the top 20% highest centrality nodes for each 30 s snapshot
and round it up to an integer value. Node centrality metrics are
calculated adaptively after the removal of each node [30]. Then
we compare how many common high-centrality nodes between
two different snapshots. For example, in the StateFair trace,
we calculate a set of 4 nodes with highest degree, closeness,
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Fig. 6. Change of high centrality nodes over time

and betweenness respectively. We compare the node sets with
a range of time differences and then calculate the average
number of common nodes for each range. In Figure 6a, for
two snapshots of 30 s time difference, the average number of
common nodes between them is approximately 3 for all three
centrality metrics, which indicates a relatively high similarity.
It is apparent that with the increase of time difference, each
node has a larger deviation from the original position. When
window size is increased to 300 s, the average number of
common nodes decreases to less than 2. For window sizes
that are larger than 600 s, the average common nodes is
approximately 1 with no more decrease. This can be explained
as nodes in StateFair site move within a confined area and have
a high chance to meet each other repeatedly after a certain
period of time.

For the NCSU site, the top 7 nodes with the highest
centrality are compared across different time window sizes.
There are more than 6 nodes shared between the top centrality
nodes with 30 s window size, which indicates extremely
slight change of topology structure. Even with a window size
of 900 s, an average 5 out of 7 nodes are the same. This
would explain the difference of centrality-based attacks using
different window sizes in the next subsection.

The average number of common high centrality nodes
within a 30 s window size for the KAIST site is about 15
out of 17 for all centrality metrics, which also shows a high
correlation within a 30 s window. When the window size
increases, the common nodes with high betweenness decreases
faster. This is because shortest paths between all nodes pairs
are more sensitive to the change of node positions in a
comparatively larger network and node betweenness highly
relies on the count of shortest paths. When the window size
is increased to 900 s, an average of approximately 10 of 17
nodes are the same for two snapshots of topologies.

C. Flow robustness under centrality-based attacks

We apply centrality-based attacks against the above three
scenarios using window sizes of 30, 300, and 900 s. We
compare the average network flow robustness of centrality-
based attacks with random failures. Five different levels of
damage are applied adaptively with up to 50% of the total

number of nodes being removed in each scenario.
For StateFair scenarios, betweenness-based attacks have

the heaviest impact on network flow robustness. With 300 s
window size, the gap between random failures and centrality-
based attacks decreases compared to attacks using 30 s win-
dow size. With 900 s window size, the difference between
random failures and centrality-based attacks becomes smaller.
In Figure 8, the baseline flow robustness is only 50% for
the NCSU site with 1000 m transmission range. As shown
in Figures 2b and 2c, nodes in this site span a large cam-
pus area, while the majority of them construct a connected
component with the rest being isolated most of the time.
The difference between the impact of each centrality-based
attack on the network is modest for 30, 300, and 900 window
sizes. This is because network structure remains relatively
stable within the giant components of the NCSU site shown
in Figure 6b. In addition, with failure rate higher than 0.3,
betweenness-based attacks have less impact on the network
than attacks based on degree and closeness. When the network
is partitioned into small fully-connected components, all the
remaining nodes have the same betweenness of 0, which
makes them indistinguishable from each other. With a total
of 83 nodes in the KAIST site, a significant difference among
betweenness-based attacks and other metrics for 10% and 20%
node removal is observed in Figure 9a. Degree and closeness
become better node significance indicators when there are
more than 30% of nodes removed from the network. As the
calculation of node degree is based on its neighborhood, it
makes sense that local network structural change becomes
dominant in overall connectivity of the entire network. Both
betweenness and closeness metrics are calculated based on
the global shortest paths of the entire network. However, the
betweenness metric provides more accurate indication of node
significance in terms of providing connectivity of the entire
network. The global influence of node closeness is less than
node betweenness because the sum of the inverse of farness to
every other node also takes into account all local nodes within
the neighbors.

Figure 10 presents the giant component component sizes
under centrality-based attacks with a 30 s window size. The
relationship among giant component sizes under different cen-

6



av
g.

 fl
ow

 r
ob

us
tn

es
s

percent of node failures

random

degree

closeness

betweenness

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

(a) Window size of 30 s

av
g.

 fl
ow

 r
ob

us
tn

es
s

percent of node failures

random

degree

closeness

betweenness

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

(b) Window size of 300 s

av
g.

 fl
ow

 r
ob

us
tn

es
s

percent of node failures

random

degree

closeness

betweenness

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

(c) Window size of 900 s

Fig. 7. Centrality-based attacks using different window sizes for StateFair trace
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Fig. 8. Centrality-based attacks using different window sizes for NCSU trace
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Fig. 9. Centrality-based attacks using different window sizes for KAIST trace
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trality attacks are similar to the corresponding flow robustness
under attacks. When the percentage of nodes being attacks
reaches 0.3, the slope of the curve for betweenness-based
attacks becomes less sharp than the degree- and closeness-
based attacks. Even though average giant component size is
more than 20 as shown in Figure 10c, all nodes in each fully-
connected component have the same betweenness value of 0.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the network robustness of real-
world humans’ movement traces. We present the time-varying
flow robustness and its autocorrelation. Periodical patterns are
observed within confined areas. We study how high centrality
values of nodes change over different time window sizes.
The highest betweenness centrality change more frequently
in large networks. High betweenness nodes play a significant
role in providing connectivity to the communications of other
nodes in the network, particularly with relatively large network
size, whereas node betweenness fails to differentiate node
significance in networks consisting of isolated fully-connected
components. Future work includes the analysis of network
performance using ns-3 by running different MANET routing
protocols [31]. In addition, robustness analysis of humans
walking using DTN (delay-tolerant network) routing protocols
will be conducted.
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[18] A. Jamaković and P. Van Mieghem, “On the Robustness of Complex
Networks by Using the Algebraic Connectivity,” in Proceedings of the
7th International IFIP Networking Conference, vol. 4982 of Lecture
Notes in Computer Science, pp. 183–194, May 2008.

[19] P. Van Mieghem, Graph Spectra for Complex Networks. Cambridge
University Press, 2011.

[20] J. Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, “Spectral measure of
structural robustness in complex networks,” Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on, vol. 41,
no. 6, pp. 1244–1252, 2011.

[21] B. Bollobás, “The evolution of random graphs,” Transactions of the
American Mathematical Society, vol. 286, no. 1, pp. 257–274, 1984.

[22] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing, vol. 2, no. 5, pp. 483–502, 2002.

[23] “Anejos: a java based simulator for ad hoc networks,” Future Generation
Computer Systems, vol. 17, no. 5, pp. 573–583, 2001. I: Best of
Websim99. II: Traffic Simulation.

[24] N. Aschenbruck, A. Munjal, and T. Camp, “Trace-based mobility
modeling for multi-hop wireless networks,” Comput. Commun., vol. 34,
pp. 704–714, May 2011.

[25] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: A new
mobility model for human walks,” in IEEE INFOCOM, pp. 855–863,
IEEE, 2009.

[26] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong, “CRAW-
DAD data set ncsu/mobilitymodels (v. 2009-07-23).” Downloaded from
http://crawdad.org/ncsu/mobilitymodels/, July 2009.

[27] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215–239, 1978–1979.

[28] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted
networks: Generalizing degree and shortest paths,” Social Networks,
vol. 32, no. 3, pp. 245–251, 2010.

[29] E. Daly and M. Haahr, “Social network analysis for information flow
in disconnected delay-tolerant MANETs,” IEEE Transactions on Mobile
Computing, vol. 8, no. 5, pp. 606–621, 2009.

[30] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability
of complex networks,” Phys. Rev. E, vol. 65, p. 056109, May 2002.

[31] “The ns-3 network simulator.” http://www.nsnam.org, July 2009.

8


