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Abstract—Understanding network behavior under challenges
is essential to constructing a resilient and survivable network.
Due to the mobility and wireless channel properties, it is
more difficult to model and analyze MANETs (mobile ad hoc
networks) under various challenges. Previously, we have modeled
network attacks based on a priori complete knowledge of network
structure and mobility. In this paper, we present the analysis of
MANET behavior under random node failures and centrality-
based attacks based on real-time topological information, and
provide a comparison of network performance under complete
information and real-time attacks. In addition, we adapt between-
ness and closeness centrality to measure node significance in
asymmetric source/sink network scenarios. The ns-3 simulator
is used to examine network throughput under various intelligent
attacks. By analyzing network topological properties, we provide
a theoretical verification of the simulation results.

Index Terms—mobile wireless topology challenge modeling,
MANET, time-varying weighted graph, resilient survivable
disruption-tolerant network, ns-3 simulation

I. INTRODUCTION

MANETs (mobile ad hoc networks) have been widely
utilized in many real-world scenarios, such as VANETSs (ve-
hicular ad hoc networks), WSNs (wireless sensor networks),
and PANSs (personal area networks) [1]. With the emergence of
driverless cars, using ad hoc networking for communications
between auto-piloted vehicles could be an emerging applica-
tion. In addition, with the fast growth of tablets, cellphones,
and wearable devices in recent years, people use wireless net-
works in their daily lives to an unprecedented level. However,
due to the properties of wireless channels, the potential attacks
and challenges are also tremendously high [2]. A resilient and
survivable MANET needs to be established so that network
performance can remain above a certain level even under
malicious attacks or node failures.

Previously, we built a model to simulate malicious attacks
against MANETSs with complete knowledge of the entire net-
work topology [3]-[5]. Malicious attackers can camouflage as
normal nodes within MANETSs and obtain complete network
topology information by exploiting routing messages [6], [7].
In addition, topology inference algorithms have been proposed
for wireless sensor networks [8]. Physical or DDoS attacks
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can be conducted against nodes of highest importance [6].
Dynamic topologies within certain time windows are aggre-
gated into a weighted graph, so that centrality metrics can
be calculated based on the aggregated graph to identify the
most significant nodes in the network. However, in most real-
world scenarios, it is difficult for the attackers to accurately
predict the network topology in the future. In this paper,
we model network attacks based on the real-time topological
information.

In our previous work, all the nodes within MANETS have
been considered as both traffic sources and sinks [3]-[5].
However, in many real-world applications, MANETSs are es-
tablished such that only some nodes in the network function
as the receivers of information. For example, two companies
(Open Garden [9] and TextMe [10]) recently teamed up so
that Android devices without cellular or 802.11 access can
text and make voice calls. When there is no direct access
to the Internet, devices can access the Internet through a
multihop chain of other devices that have Internet access.
Such a scenario differs from traditional MANETSs in which
each device is symmetric to every other device in terms
of the role of data sending and receiving. In certain WSN
scenarios, not all nodes in the network perform the function of
data collection. Hence, in addition to the traditional MANET
scenarios, it is also important to understand the impact of
attacks against asymmetric source/sink networks, in which
some nodes may be more critical than others due to their
special role in providing connectivity to other nodes.

Traditional centrality metrics have been used to measure rel-
ative node significance in various network scenarios in which
network activities could occur among all node pairs [11],
[12]. When calculating closeness and betweenness centrality,
asymmetric sink/source networks require a different approach
of considering node pairs, since the traffic flow is exchanged
only between specific sink and source nodes. By understanding
how nodes of varying significance impact the network per-
formance, we can design networks with enhanced resilience
and survivability. In this paper, our major contributions are as
follows:
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1) proposing adjusted betweenness and closeness

2) simulating real-time centrality-based attacks

3) modeling asymmetric application scenarios

4) verifying simulation results with theoretical values

The rest of the paper is arranged as follows. In Sec-
tion II, we introduce background about dynamic network
modeling and graph centrality. In Section III, we introduce
the approach to model the malicious attacks in MANETS. In
Section IV, we use the ns-3 simulator to simulate complete
information and real-time attacks based on centrality metrics.
Cross-comparison analysis between topological structures and
application performance is provided in Section V. Finally, we
summarize our work and discuss future steps in Section VI.

II. BACKGROUND AND RELATED WORK

Fundamental mathematical properties of MANETs have
been studied with networks being modeled using the log-
normal shadowing radio model [13], [14]. The graph connec-
tivity of wireless multihop networks has been investigated, and
a mathematical derivation between node density and desired
k-connectedness has been shown [15]. A simulation frame-
work that models simple jamming effect in wireless mesh
networks has been developed [16]. The impact of the number
of placement sources and node density on the performance
of WSNs using data-centric routing has been examined [17].
The aggregation of consecutive network topologies into an
unweighted static graph fails to capture the time information of
the entire network. The overestimation of the number of links
in the aggregated graph results in an inaccurate estimation of
many graph properties [5].

In social networks or delay-tolerant networks, temporal cen-
trality metrics have been proposed to overcome the shortage of
static aggregation by taking into account time-varying infor-
mation [18]. Temporal network robustness has been adopted
to evaluate network performance in the face of random node
failures and it does provide better estimation of the resilience
of real-world temporal networks [19]. However, this approach
is not appropriate for non-delay-tolerant MANETSs because
real-time routing protocols must be used if we want packets
to be delivered without store-and-forward delay. Therefore,
we have proposed another approach to model the dynamics
of MANETSs by aggregating time-varying topologies into a
weighted graph, in which the weights represent link availabil-
ity during a specific time window [3], [4].

Centrality metrics have been used as structural attributes
in social networks [11]. Generalized centrality metrics have
also been proposed, in which a tuning factor is introduced to
control the tendency toward link weights or the number of
links (the length of weighted paths) [12]. Traditionally, indi-
vidual betweenness and closeness centrality of each node in a
network are calculated based on all pairs of nodes. However,
for networks with asymmetric source/sink pairs, betweenness
and closeness metrics need to be adjusted so that they can
reflect the actual application traffic flow model. Centrality
metrics can in some way indicate relative node significance
in the network; however, it has been shown in social networks

that they are not optimal in terms of how the removal of
high centrality nodes impact overall network connectivity [20].
An approximation algorithm has been proposed to assess the
vulnerability by investigating how many nodes/links need to be
torn down such that the pairwise connectivity can be degraded
to a certain low level [21]. A general mathematical formulation
of this problem is how to select a subset of nodes in a graph
so that after the removal of selected nodes, the connectivity
of the rest of the graph is minimized, which is known as NP-
hard [22]. Heuristics and algorithms have been to proposed
to solve this problem by putting certain constraints on the
types of graph structure [22]-[24]. However, these solutions
cannot be applied to general weighted graphs. As there are no
efficient algorithms to compute optimally-critical nodes in a
general graph, we use centrality metrics to measure relative
node significance in this work.

III. MODELING APPROACH

We model network attacks for two types of scenarios:
attacks based on real-time topology information and complete-
chronological topology information. We previously assumed
that we have complete information of network topologies
during the entire simulation time [3], [4]. In order to identify
the most significant nodes, the dynamic topologies within a
certain time window are aggregated into a static weighted
graph, and weighted centrality metrics are calculated based on
the aggregated graph. For real-time attacks, due to correlation
of network topologies within a short time period, we identify
node significance based on centrality metrics calculated using
the topology of current time instance.

The significance of each node is judged by how the entire
network is impacted if that node fails. It has been shown
that the higher the average node velocity, the faster net-
work topologies change as expected [5]. This might result
in rapid replacement of the most significant nodes. Central-
ity metrics can be calculated based on each snapshot of
dynamic topologies, which could cause an overwhelmingly
high computation complexity hinging on the time step used
for sampling. The aggregation approach is a balance between
accuracy of identification of critical nodes and computational
efficiency [5]. With a higher number of nodes in the network,
MANET routing protocols need more time to update their
routing tables globally. The aggregation window size cannot be
arbitrarily small, since the failures or attacks against certain
nodes in the network rarely occur from the perspectives of
cost and practicality. Dynamic topologies that change at a high
rate are relatively resilient in that high velocity obscures the
relative criticality of each individual node; each node plays an
approximately equivalent role in the network over time. The
failure of any node during a certain period would result in the
same impact on the network.

A. Modeling dynamic networks

We introduced an approach to model the dynamics of
MANETS in our previous work [3]-[5]. The network topology
of each time step can be represented as a binary adjacency
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matrix in which a link is either up or down between any node
pair. The purpose of aggregation is to detect the most critical
nodes within a certain time window. However, depending on
the duration of the time step, the computation of centrality
metrics for each time step could be extremely expensive and
redundant. The size of the aggregated time window hinges
on how fast the topology changes. We consider the network
topology changed if the state of link existence between any
node pair changes. The selection of an appropriate window
size is the tradeoff between computation overhead and the
precision of measuring node significance as shown in our
previous work [3]. To achieve similar precision for different
network scenarios, the faster the entire network topologies
change, the smaller the aggregation window size needs to be.

In order to model real-time attacks, we assume attackers
only have the network topology information prior to the
current time instance. We use current network topology to
approximately predict significant nodes depending on the
duration of time after current time instance. Without perfect
topology information of the entire simulation, the identification
of significant nodes are less precise. Simulation results in
Section IV will show that network attacks based on current
topology have slightly lower impact on the network than
based on complete information of the next time window if
the window size is selected properly.

B. Identifying critical nodes

Centrality metrics have been used to identify significant
nodes in the network [25]. Degree centrality presents local
properties of network in that it is calculated completely based
on the relation between the node and its neighbors. In contrast,
betweenness and closeness centrality [25] of each individual
node are calculated based on the global topology information.
Eigenvector centrality is computed as the largest eigenvalue
of an adjacency matrix that represents the topology [26].
Centrality metrics for weighted graph have been proposed,
which take into account both the number of links and link
weights [12]. The weighted version of closeness centrality
metric for node n; is defined as:

—1

* (ny) = [Z e <m,nk)] (1
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where d““ (n;,ny) is the weighted version of the shortest
paths between two nodes and « is the tuning parameter to
favor link weight or the number of intermediate nodes. The
weighted betweenness for node ny is defined as:
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where ¢ < j and i # j # k, gwo‘ is the total number of paths
between node 7 and j, and g% (ny) is the number of shortest
paths that pass via ny [12].

The above mentioned centrality metrics can be applied
to MANET scenarios in which each node functions as
transceiver; whereas, for some network scenarios such as
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PANs, WSNs, and hybrid ad hoc networks, only a subset
of nodes in the network are traffic sinks. Hence, we propose
the corresponding betweenness and closeness for asymmetric
network scenarios based on the algorithms used for the com-
putation of betweenness and closeness in NetworkX [27]. We
modify them based on the actual source/sink traffic flow pairs.
The adjusted closeness of a node nj can be formulated as:
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and the adjusted betweenness for node nj can be formulated

as:
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where T' is the subset of nodes that function as the traffic
sinks, S is the subset of nodes that function as the traffic
sources, and g;* (ny) is the number of shortest paths between
source and sink nodes that pass via ny. We calculate centrality
metrics adaptively after the removal of the previous highest
centrality node, since node centrality would change whenever
some nodes are removed from the network. It has been shown
that attacks based on recalculated centrality could degrade
network more than based on initial centrally metrics [28].

IV. SIMULATION

In this section, we use the network simulator ns-3.17 [29] to
model and analyze dynamic network attacks. We have studied
the impact of window sizes and MANET routing protocols in
our previous work [4]. We have shown that a smaller window
size results in a more precise indication of node significance
based on centrality metrics. The relative impact of different
types of attacks on the network performance is similar in both
a reactive routing protocol ADOV [30] and a proactive routing
protocol DSDV [31]. We use AODV as the routing protocol
in the paper as it provides higher baseline network throughput
without node failures [4]. It has also been shown that Gauss-
Markov and Random Waypoint mobility model present similar
characteristics [32], and we select Gauss-Markov mobility
model for this paper as it provides more realistic node
movements in many scenarios [33]. All simulation results are
averaged over 10 runs with 95% confidence interval shown in
the plots.

In order to maintain a desired level of communication
quality, the network density cannot be too low, while a high
node density would cause interference and high use of network
resources. Different density levels of the dynamic networks
can be selected by changing the neighbor count parameter.
This is equivalent to varying node transmission range while
fixing the number of nodes in the network and simulation
area. Nodes send CBR (constant bit rate) traffic to other
nodes. Each node is assumed to have a unique transmission
power with a fixed transmission range is 100 m. Two nodes
are considered adjacent if the distance between them is less
than transmission range (without interference). We assume
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Fig. 1. Average times of topology change per second

there is no obstruction in the simulation area. The rest of the
parameters for this paper is shown in Table 1.

TABLE I
SIMULATION PARAMETERS
number of iterations 10
traffic generation time 1000 s
transmission range 100 m
mobility model Gauss-Markov
number of nodes 20
neighbor count 2,4,6,8, 10
physical channel 802.11g (54 Mb/s)
routing protocol AODV
node velocity [0, 2], [5, 10], [10, 20] m/s
traffic model CBR (constant bit rate)
sink-source type symmetric, asymmetric
attack scenarios complete information, real-time

We use PDR (packet delivery ratio) to measure network
performance. Other performance measure such as energy con-
straint and delay are also important, but in this work we focus
on the evaluation of network resilience under challenges from
a topological perspective. With uniform transmission range,
the energy cost to send packets for each node would be the
same. High centrality nodes could cost more energy as more
data traffic is forwarded via them. Figure 1 describes the
number of times that dynamic topologies change per second
for a set of parameters. For 10, 20, and 30-node networks,
the topology change frequency increases with greater node
velocities as expected. With increased neighbor count, topol-
ogy changing frequency also increases due to the fact that
nodes with random mobility associate/dissociate with others
more frequently in a denser network. With the same velocity
and neighbor count, the network with a higher number of
nodes has more links, resulting in a higher probability of
topology change. The window size is determined according
to the topology change frequency of the network. We have
used the uniform distribution between [0, 2], [5, 10], and
[10, 20] m/s to simulate the speed of pedestrian, bicycle,
and automobile [5]. For the following simulation, we use the

average velocity of pedestrians, with 3 different node density
levels (2, 6, 10 neighbor count). The window size for each
neighbor count is calculated as the average time for network
topology changing 10 times based on the results in Figure 1.
Hence, for the 20-node network scenario, 31, 14, and 10 s
are set as the window sizes for 2, 6, and 10 neighbor count
respectively. The steps of modeling real-time centrality-based
attacks is as follows:

1) selecting a proper window size to apply attacks accord-

ing to average node velocity

2) calculating node centrality based on network topology

at current time instance

3) attacking nodes of high centrality values for the next

time window iteratively

4) measuring network PDR under malicious attacks
For asymmetric scenarios, we use the adjusted closeness and
betweenness to measure node significance. The failure of a
sink node in an asymmetric scenario could degrade network
performance more than a non-sink node, because all the traffic
directed to the sink node will be dropped if a sink nodes fails
and less traffic flows would be affected if a non-sink node fails.
Hence, we only rank the centrality values of non-sink nodes
to have a fair comparison. Simulation results of symmetric
source/sink network scenarios with complete chronological
topology information under centrality-based attacks have been
presented in our previous works [3], [4]. In this paper, we
concentrate on real-time network attack scenarios.

Two factors could result in network partition: i) high number
of node failures, ii) nodes sparsely-distributed in the network
(small neighbor count). Figure 2 presents PDRs under real-
time centrality-based attacks of symmetric source/sink scenar-
i0s. For the network with 2-neighbor count, the PDR without
attacks is less than 20%. PDRs under different centrality-
based attacks are close to each other except that betweenness-
based attacks have less impact on the network than other
centrality-based attacks with a high number of node failures
as shown in Figure 2a. This is because there are almost no
intermediate nodes between node pairs due to the small order
of each connected component. In a well-connected network
with 6- or 10-neighbor count, betweenness-based attacks de-
grade PDR the most of all centrality metrics. With 10 nodes

174



0.25 | 1.0 | 1. |
random —&— random —+— random —&—
eigenvector --e - eigenvector —-e - eigenvector --e -«
B.ZOI degree — m-+7 0.8 degree — &7 0. degree —m-+7
\ loseness -+ - N\ closeness -+ - loseness -+ -
0.151 .\ betweenness - - %- -1 | 0.6 A betweenness - - %- -1 | 0. betweenness - - %- -1 |
@ A\ @ RS o
o "\ o [a)
Qo.10 R S BRI Q.
Y 3
0.05 S —_— 0.2 . 0.
i SR T 3
5\'\11-__;;’ *
0.00 —8 0.0 0.0
0 2 4 6 8 10 ] 2 4 6 10 2 2 4 6 8 10
# of node failures # of node failures # of node failures
(a) 2 neighbor count (b) 6 neighbor count (c) 10 neighbor count
Fig. 2. Symmetric network with real-time information
0.25 | 1.0 | 1.0 |
random —+— random —+— i random —&—
closeness, ~-o -« closeness, --e - \ closeness, --& -
0.20 betweenness, — m---1 0.8 betweenness, — =+ 0.8 T betweenness, — &
\ i N AR
N N <
\ N N
0.15 0.6 > 0.6 o>

N

PDR
7

PDR
/

/
Vv

e
[a) AN :
Bo.10 [~ 0.4 .o

0.4 RN l\

N AN R N
- S OGN \

T~ S \ . "-\\\\1

.05 - - 0.2
\\0\;‘ 1 -\‘qf
- __
0.00 ) 0.0
[ 2 8 10 0 2

4 6
# of node failures

(a) 2 neighbor count

4 6
# of node failures

(b) 6 neighbor count

8 10 2] 2 8 10

4 6
# of node failures

(c) 10 neighbor count

Fig. 3. Asymmetric network with real-time information

1.0 .
random —a—
RT degree —-e—
0.8 CI degree — -
‘\‘ RT betweenness~-¢ -+
0.6 N CI betweenness - -%-+ |
o
a
o
0.4
0.2
0.0
2} 2 8 10

4 6
# of node failures

(a) 6 neighbor count, symmetric

1.0 .
random —a—
RT closeness, -~
0.8 CI-closeness, — &
i RT betweenness,~-¢ -+
0.6 \\\ CI betweenness,~-%-+ |
o N
[a)
[a
0.4
0.2
0.0
0 2 8 10

4 6
# of node failures

(b) 6 neighbor count, asymmetric

Fig. 4. Real-time vs. complete information

being attacked, network becomes so disconnected that there
is almost no difference among network performance under
different attacks. Generally, the relationship of the impact of
different attack types on the PDR is: random < eigenvector <
degree < closeness < betweenness, as shown in Figures 2b
and 2c. Betweenness and closeness indicate node significance
better in that they can identify the key mediators of traffic
flows across the entire network. Figure 3 presents PDRs of
asymmetric source/sink scenarios under real-time centrality-
based attacks with 4 nodes being traffic sinks and the rest being

traffic sources. Both asymmetric closeness- and betweenness-
based attacks degrade PDRs more than random node failures.
Similar to the symmetric scenarios, adjusted betweenness-
based attacks have less impact on the network than asymmetric
closeness when the network is poorly connected. With decent
network connectivity, PDRs under adjusted betweenness-based
attacks stay the lowest of all.

Figure 4 presents the comparison of PDRs between real-
time (RT) attacks and complete information (CI) attacks.
For real-time attacks, the priority of nodes to be attacked is
determined according to the centrality metrics of the initial
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Fig. 5. Simulation PDR vs. analytical flow robustness for symmetric source/sink scenarios

topology of each time window, and for attacks with complete
information, the attack priority is based on the aggregated
weighted graph of the entire time window. We select degree
and betweenness centrality metrics for the cross comparison
of symmetric scenarios to display each curve clearly in one
plot. As shown in Figure 4a, PDRs under complete informa-
tion centrality-based attacks are slightly lower than real-time
attacks as expected, since attacks with complete information
can identify significant nodes more precisely by taking into
account all the topological information within the time win-
dow. It is the same for asymmetric scenarios using adjusted
closeness and betweenness, and networks under attacks based
on complete information asymmetric betweenness have lowest
PDRs of all as shown in Figure 4b.

V. ANALYTICAL VERIFICATION AND DISCUSSION

The simulation results present PDRs of networks under
different centrality-based attacks. Many factors could lead
to the variation of end-to-end throughput, such as AODV
routing table updates, hidden terminals, and network conges-
tion, even though we try to minimize the impact of these
factors in our simulation. In this section, we examine the
network topological properties that provide the underlying
theoretically highest network performance under attacks. The
mobility traces generated from simulations are parsed to obtain
dynamic topologies in each time step. Flow robustness is
used to measure topological connectivity of each snapshot
of topology, which is computed as the number of reliable
flows divided by total number of flows in the network [34].
Flows are considered reliable if there exists at least one path
between source/sink pairs. For asymmetric scenarios, only
flows that are directed to sink nodes are counted. We present
the comparison between simulation PDRs and analytical flow
robustness for real-time symmetric and asymmetric scenarios.

In order to display each curve in the plots clearly, we only
select random, degree, and betweenness centrality out of five
metrics for symmetric scenarios. As shown in Figure 5, for
all different neighbor counts, the analytical flow robustness
is always slightly higher than the PDR as expected, since
flow robustness is a theoretical upper limit for PDR if all
packets can be delivered with no delay whenever there is

an available path. For both PDR and flow robustness, the
relationship for network performance under attacks always
follows as: random > degree > betweenness. For networks
with high density, the difference between application PDRs
and topological flow robustness increases as shown in Fig-
ure 6b and 6c. This is because in a relatively dense network,
the probability of wireless interference and network collision
is higher than in a relatively sparse network, which results
in a higher degradation of network performance. Figure 6
presents the relationship between PDR and flow robustness
for asymmetric scenarios. For a given network under the same
type of attacks, analytical flow robustness remains higher than
PDR.

We present the comparison between real-time and complete
information centrality-based attacks with average velocity in
[0, 2] m/s and the window size being the average time for
topology varying 10 times. We do not provide the simulation
results for the networks with higher average velocities. On
the one hand, dynamic networks with extremely high veloc-
ity are resilient enough since relative node significance is
obscured by the fast changing topology; on the other hand,
the relative impact of different centrality-based attacks on
the PDR would be the same for network scenarios with
slightly higher average velocity if appropriate window sizes
are used. It is apparent that centrality metrics based on either
aggregated graph or instant topology become less precise
if we increase the window size. The difference of PDRs
under real-time and complete information attacks is slight,
which means that historical mobility trace information can
be exploited by malicious attackers to understand network
topological structures and then determine the most vital nodes
to be attacked. Even though nodes are moving constantly
within the certain simulation area, the global structure of the
entire network remains relatively stable in that nodes with
the highest centrality do not vary much within each time
window. Flow robustness of underlying topologies is essential
to the quality of service in the application layer. Ideally,
if all the packets can be delivered across different layers
instantly, PDR under the same types of attacks should be
almost equal to flow robustness. In theory, flow robustness
provides the best network performance under certain types
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Fig. 6. Simulation PDR vs. analytical flow robustness for asymmetric source/sink scenarios

of attacks. As network density increases, wireless channel
effects and packet loss/drop during transmission could degrade
network performance more heavily in the application layer.

For asymmetric scenarios, the adjusted closeness and be-
tweenness centrality fit the scenarios by considering the actual
sink/source traffic models. This adjustment makes the compu-
tation of these two metrics less complex since only some of
the node-pairs needs to be accounted for. The proposal of the
adjusted metrics solve the problem of identifying important
nodes in the networks consisting of nodes of different roles.
Node attacks according to the adjusted closeness and between-
ness metrics degrade overall network throughput faster than
random nodes failures.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we modeled real-time network attacks based
on different centrality metrics. Our simulation results showed
that PDR under real-time betweenness-based attacks stays the
lowest of all metrics in a well connected network. We proposed
adjusted closeness and betweenness metrics to identify nodes
in networks with asymmetric sink/source models. The adjusted
betweenness identifies the significant node more precisely
than adjusted closeness. We compute the flow robustness
of underlying network topologies as the theoretical bound
for the actual simulation results. Our method identifies the
critical network elements within dynamic network and network
resilience could be improved by strengthening critical node.
An ideal situation is all the nodes within the network are of
equal significance. For the future work, we will model network
challenges in DTNs (delay-tolerant networks) by employing
temporal centrality metrics. Real-world mobility traces will
be used to verify our attack model.
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