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Abstract—Due to the tremendous potential of MANETs (mo-
bile ad hoc networks) for deployment in commercial and military
services, a thorough understanding of network behaviour when
exposed to challenges is essential for constructing a resilient and
survivable MANET. Therefore, it is vital to have a comprehensive
framework that can model it under various network attacks
and challenges. The MANET environment has a dynamic and
intermittent connectivity resulting from channel fading and
mobility of the nodes, which makes it difficult to model the
network as well as its challenges. We provide a model to simulate
malicious and area-based challenges to wireless networks. In
the modelling of malicious attacks, we treat MANETs as time-
varying graphs (TVGs) represented as a weighted adjacency
matrix, in which the weights refer to the link availability. We
evaluate the relations between node significance and weighted
centrality metrics. Area-based challenges representative of real-
world scenarios are also modelled. Our ultimate goal is to provide
a comprehensive network challenge model of MANETs and also
heterogeneous networks.

Index Terms—mobile wireless topology challenge modelling,
MANET, time-varying weighted graph, resilient survivable
disruption-tolerant network, ns-3 simulation

I. INTRODUCTION AND MOTIVATION

In a MANET (mobile ad hoc network) environment, nodes

communicate with each other without infrastructure. Networks

can be established quickly in a decentralised and self-organised

manner. Because of its independence and flexibility, MANETs

have been applied in various scenarios, such as wireless

sensor networks, military networks, vehicular ad hoc networks,

and integrated cellular and ad hoc networks. With the ever-

increasing deployment of MANETs, stable and resilient net-

work performance is essential to satisfy the requirements of the

various applications. In order to construct a resilient wireless

network, we need to understand network behaviour in the face

of various challenges [1].

In addition to the challenges that exist in traditional wired

networks, the MANET environment has dynamic and intermit-

tent connectivity resulting from channel fading and mobility

of the nodes. Furthermore, some MANET environments suffer

from the constraint of limited energy and unpredictable prop-

agation delays due to distance or episodic connectivity [2].

Hence, it is complex to model these networks as well as

the challenges against them. In this paper, we assume each

node has sufficient energy during the experiment and focus

on the challenges caused by dynamic network connectivity

with mobile nodes. Based on our previous work KU-CSM [3],

[4], we model attacks and challenges against MANETs in

two aspects, malicious and area-based. In the malicious attack

model, the challenges are exerted on a few specific nodes

based on their importance. In this paper, we model MANETs

as TVGs (time-varying graphs) and pairwise node interactions

are aggregated within a certain time window [5], [6]. The

network can be represented as a weighted adjacency matrix, in

which the weights refer to link availability. We utilise central-

ity metrics of weighted graphs to measure the significance of

a node. Attacks targeted toward nodes with high significance

could degrade network performance severely. Previous work

has exploited centrality metrics from social network analysis

as indicators for routing mechanisms of DTNs (delay tolerant

networks) [7], but our approach for malicious attacks is the

first to make use of TVGs and weighted graph centrality to

study network challenges from a topological perspective.

As opposed to node and link failures that affect single

or multiple elements, area-based challenges could affect nu-

merous network components. Natural phenomena that are

geographically correlated might impact quite large areas.

Hurricanes, earthquakes, and solar storms are examples of

natural disasters that can impact the network at large scale [4].

While previous studies mostly consider circular area-based

challenges in wireless networks, to best of our knowledge,

we are the first to model n-sided polygons for propagation

loss models, which are more realistic; this follows our work

in wired networks [3], [4].

The rest of the paper is arranged as follows. In Section II,

we introduce background and related work about wireless

networks and challenge modelling. In Section III, we pro-

vide graph-theoretical metrics that are fundamental to our

model. By utilising these metrics, we illustrate how to model

malicious attacks and then describe how we simulate area-

based challenges in Section IV. In Section V, we analyse

our models by giving several examples with plots showing

network performance under challenges. Finally, we summarise

our work and mention the next steps for future research in

Section VI.
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II. BACKGROUND AND RELATED WORK

Graph theory has been applied in various areas of the com-

puting, networking, social, and natural sciences. Using node

centrality metrics for DTN routing criteria in opportunistic

scenarios has been proposed [7]. However, because routing

algorithms are greedy and node centrality values are averaged

among all node pairs globally, centrality-based routing is inef-

fective [8]. Due to the topological multi-hop diversity and re-

routing in MANETs, the attack of a random node might have

only a trivial impact on the overall network performance. The

novel aspect of our work is to model malicious network attacks

based on node significance associated with centrality metrics.

We consider local graph metrics that describe individual node

properties more accurately than global metrics.

A number of approaches have been taken to study topolog-

ical properties of MANETs. An algorithm for finding critical

points in MANETs and improving the network resilience has

been proposed [9]. Geographic vulnerabilities in networks are

evaluated by using 2-terminal and all-terminal methods [10].

However, all these approaches do not take node mobility

into account. A combinatorial model has been developed

to capture characteristics of TVGs [11]. A comprehensive

analytical framework for the calculation of several stochastic

topology properties has been proposed [12]. A MANET has

been modelled as an undirected geometric random graph and

network connectivity has been studied using realistic radio

channel models [13].

A comprehensive framework to simulate network attacks

and challenges was developed in our previous work [3], [4],

in which we mainly simulate challenges against wired net-

works. For wireless networks, a toolkit to represent obstacle

presence and disaster scenarios has been introduced in the

ns-2 simulator [14], [15]. When modelling a wireless network

environment, the understanding of various propagation models

aids in channel modelling and characterisation [16]. Natural

phenomena such as weather disruptions due to rainstorms

have been taken into consideration when analysing rout-

ing protocols in wireless-mesh networks [17]. This work is

distinct in that we provide an integrated model of attacks

and challenges against MANETs from graph-theoretical and

topological perspectives.

III. GRAPH-THEORETIC METRICS

Certain models are required to address the dynamics of

MANETs. Malicious attacks targeting the most influential

nodes in the network could severely impact a network. In this

section, we review two key graph-theoretic concepts that can

address these two issues: TVGs and centrality for weighted

graphs.

A. Time-varying Graphs

A TVG is defined as G = (V,E, T , ρ, ζ), where the

definitions of V and E is the same as in static graphs

except that V (G) and E(G) vary over time [18]. Since it

is used to describe dynamic systems, the relation between

nodes change with time; T ⊆ T is called the lifetime of

the system; ρ : E × T → {0, 1}, is the presence function

that indicates the availability of a specified edge at a given

time; ζ : E × T → T, is the latency function that indicates

the time needed to traverse a certain edge E. We add an

additional parameter ν : V × T → {0, 1} used to denote

the availability of a specified node; our new TVG model

is G = (V,E, T , ρ, ζ, ν). Since information propagates at a

speed that is close to velocity of light and is far higher than

the speed of mobile nodes, latency function ζ is negligible

in our cases. The footprint of a TVG G from t1 to t2 can

be represented as a static graph G[t1,t2) =
(
V,E[t1,t2)

)
such

that ∀e ∈ E, e ∈ E[t1,t2) ⇔ ∃t ∈ [t1, t2) , ρ (e, t) = 1 [18].

Fundamentally, the footprint denotes an aggregation of node

interactions within a certain time window [t1, t2). Thus, we

can have a static graph for each time interval. The time

interval between two instants ti and tj can be denoted as

τi,j = [ti, tj) ⊆ T . The link availability during interval τi,j

between pairwise nodes can be represented as the ratio of

τup ⊆ τi,j to the time window length τi,j , where τup is the time

two nodes are within the transmission range of each other and

able to communicate. Then we can have availability matrices

of all time windows, in which each element denotes the link

availability of certain pair of nodes with a value ranging from 0

to 1. Based on different ranges of time windows, we can obtain

the availability matrix of different granularities. Atemporal

metrics of the static graph are applied on the availability

matrix. Since the matrix is aggregated over time, the atemporal

metrics become less accurate as the time window increases.

Next, we introduce several atemporal indicators built on the

footprint, which are degree centrality, betweenness centrality,

and closeness centrality.

B. Weighted Centrality Metrics

Centrality metrics have been used for network analysis [19].

Each of these three metrics plays a different role in the

network. Degree centrality is a measure of communication

ability of a node in the network. Both betweenness and

closeness centrality are related to the shortest path between

a pair of nodes. Betweenness is defined as the frequency that

a node falls on the shortest paths between pairwise nodes [19].

A node’s betweenness is a measure of the degree to which it

enables communication between other nodes. The closeness

of a node is the inverse of the sum of the shortest paths from

that node. A node’s closeness is a measure of the extent to

which its communication capabilities are independent of the

functioning (or malfunctioning) of other nodes [19].

The unweighted centrality metrics represent the relationship

between nodes as a binary measure. Recently, generalised

centrality definitions for weighted graphs have been proposed

to describe node relationship in a more general way [20]. In

these definitions, a tuning factor α is introduced to express

the relative significance of link weights as compared to link

number. Degree centrality for weighted graphs is formally

defined as Cwα
D (i) = k

(1−α)
i ×

(∑N
k wik

)α

, where α is a

non-negative tuning factor that can be set based on network
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scenarios, ki is the number of neighbours and wik represents

the weight of link between ni and nk [20].

The calculation of betweenness and closeness is relevant to

the identification and the length of the shortest paths. Similar

to the adaptation for weighted degree centrality, both the

number of internal nodes on the shortest paths and the weight

of these links are important to identify a weighted shortest

path. The weights are inverted to represent link cost instead of

link strength [21]. Hence, the shortest paths between two nodes

is defined as dwα (ni, nk) = min
(

1
(wih)α + · · · + 1

(whk)α

)
,

where h represents the internal nodes between ni and nk

and α is the tuning factor that controls the tendency to-

wards link weights or the number of internal nodes [20].

A weighted version of closeness is defined as Cwα
C (nk) =

[
∑n

i=1 dwα (ni, nk)]−1
. Similarly, by applying adapted short-

est path algorithm, the measure of weighted betweenness can

be obtained as: Cwα
B (nk) =

∑
i

∑
j

gwα
ij (nk)

gwα
ij

, where i < j and

i 	= j 	= k, and gwα
ij (nk) is the number of shortest paths that

include nk [20].

IV. MODELLING ATTACKS AND CHALLENGES

We model three types of network challenges: non-malicious

random, malicious, and area-based. Non-malicious challenges

can simply be modelled as failures of randomly selected

nodes. For malicious attacks, the purpose is to model at-

tacking specific nodes with certain characteristics to max-

imise overall network performance degradation. For area-

based challenges, we exploit moving impairments of varying

size to model certain large-scale disasters that impact a wide

area. We use ns-3 version 3.13 as our simulation tool [22].

MovingPropagationLossModel is utilised to shut down

nodes under malicious attack and simulate moving and scaling

challenges in area-based attacks.

A. Moving Propagation Loss Model

We have developed a new propagation loss model,

MovingPropagationLossModel in ns-3, which includes

a mobility model parameter and range of influence [3], [4]. Us-

ing these two parameters, we can specify where the loss takes

place and how it moves over time. A realistic challenge can

be modelled based upon a specific set of channel impairments

that have locality rather than relying solely upon statistical

methods.

Center radius 
Edge radius 

Node A (Tx) Node B (Rx) 

R1 
R2 

Fig. 1. Moving propagation loss model

Channel loss occurs based upon the closest distance from

the center of the impairment to the line segment between two

wireless nodes as illustrated in Figure 1. The path loss incurred

is based upon two radii, the center and the edge radius. Any

path within the center radius suffers the full path loss value

of the impairment. Any path outside the edge radius suffers

no path loss. A path that falls between the center radius and

the edge radius suffers a signal loss between zero and the

full impairment loss value as the loss tapers linearly from the

center radius to the edge radius. The center radius may be

set to zero to model any situation where the path loss should

be directly proportional to the path distance affected by the

impairment.

B. Malicious Attacks

In real-time MANET communications, it is critical that

nodes are available as transceivers or relay nodes for others.

A set of fixed nodes can be modelled as a static graph. Two

nodes are adjacent if they are within the transmission range

of each other (with no interference) and are connected if

they can be reached via multi-hop links. We assume node

pair communication is symmetric to simplify the graph model

for malicious attacks, and therefore undirected graphs are

sufficient to model our network.
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Fig. 2. Topology of a MANET at four consecutive time steps
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Fig. 3. Pairwise link availability in a matrix

In a MANET environment, all the nodes are mobile and

the pairwise node connectivity is dynamic. The evolution of

the network can be described as a sequence of static graphs.

We aggregate all the interactions between nodes given a

time range into a static weighted graph, in which the link

weights represent link availability between node pairs. Next,

we calculate three atemporal metrics of the weighted graphs:
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Fig. 4. Selective baseline scenarios

degree, betweenness, and closeness centrality. We employ

them as the node significance indicators and model attacks

adaptively toward the most critical nodes. Aggregation of node

activities of different time window sizes impact the accuracy of

using centrality metrics as significance indicators, since time

range affects granularities of the aggregation.

We use the mobility trace file output from the ns-3 sim-

ulation. A Python script is used to parse the mobility trace

and extract node position information at each time step. For

each time step, an adjacency matrix representing the transient

topology can then be obtained. We sum up the matrices

for each time step within the time window and the link

availability of any pair of nodes can be calculated as the

number of 1s divided by the total number of time steps during

that time window. Therefore, node interactions for each time

window are aggregated into a static graph, based on which

centrality metrics can be calculated. Figure 2 presents MANET

topologies at four consecutive time steps and Figure 3 shows

the aggregation of MANETs over time and its representation

as an adjacency matrix. By feeding centrality information into

ns-3, we can obtain simulation results of attacks according to

different metrics.

C. Area-based Challenges

The challenge specification for area-based challenges is a

polygon with user-specified behaviour and a circle centered

at a user-specified coördinates with radius r as in [3]. The

former uses the Computational Geometry Algorithms Library

(CGAL) [23], which is an open source library with efficient

geometric algorithms implemented in C++. Both of these

propagation loss models determine the wireless channels that

are encompassed by the defined shape and do not allow

transmission over that channel during the challenge interval.

These models can behave dynamically by moving or scaling

(expanding or contracting) over time.

V. SIMULATION ANALYSIS

The simulation consists of two major parts. In the malicious

attack model, we assume the channel depends only on distance

so as to better concentrate on pure topological properties. In

the area-based challenge scenario, a couple of realistic models

are introduced to simulate large-area radio channel failures.

PDR (packet delivery ratio) is used to measure the network

performance under attacks and challenges.
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Fig. 5. Impact of time windows size on accuracy of node centrality indicators

TABLE I
SIMULATION PARAMETERS

number of iterations 20
simulation time 1200 s

routing warm-up time 100 s
traffic generation time 1000 s

transmission range 100 m
mobility model Gauss-Markov

number of nodes 10, 20, 30
neighbour count 1, 2, 3, 4, 5, 6
physical channel 802.11g (54 Mb/s)
routing protocol AODV, DSDV, DSR, OLSR

node velocity [0, 2], [5, 10], [10, 20] m/s
traffic model CBR (constant bit rate)

time window size 10, 20, 40, 80, 160, 320 s

A. Malicious Attacks

We set up simulation parameters as follows. Data traffic is

generated during the steady-state and different seeds are set

for each iteration of the simulation. Every node sends traffic

to every other node to ensure the fairness between all the

nodes. Node velocities are given in three different ranges of

uniform distribution, [0, 2], [5, 10], and [10, 20] m/s, and they
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Fig. 6. Random and malicious attacks on MANETs using different routing protocols

correspond to walking speed, cycling speed, and downtown

vehicle speed respectively. We use the Gauss-Markov mobility

model to describe node mobility [24]. Neighbour count is

the average number of neighbour nodes and the simulation

area can be calculated according to the number of nodes,

transmission range, and neighbour count [25]. The main sim-

ulation parameters for malicious attack models are displayed

in Table I.

Due to space constraints, we only provide a selective set

of base scenario results for functional verification. We model

malicious attacks based on centrality metrics representative of

scenarios in which attackers understand network topologies.

High centrality nodes are attacked prior to others. Figure 4

shows the PDR results for three sets of variables, routing

protocols, node numbers, and node velocities. Figure 4a shows

that the AODV (ad hoc on-demand distance vector) routing

protocol achieves PDR higher than the other three with 20

nodes at the same speed range. Figure 4b gives PDRs for

different number of nodes at the same speed range using

the OLSR (optimised link state routing) protocol. Figure 4c

presents PDRs using the OLSR routing protocol with 20 nodes

at three different speed ranges. Generally, PDR increases with

the growing number of average number of neighbour count.

With a fixed neighbour count, the increased node number or

node speed will result in PDR degradation.

As mentioned earlier, centrality-based attacks are effec-

tive within relatively short time windows in that the link

availabilities between pairwise nodes become increasingly

homogeneous to each other as the time window increases,

resulting in a small standard deviation between the values of

centrality metrics for each node. Figure 5 shows the impact

of the time window on the PDR difference between random

and centrality-based attacks with simulation parameters set as

OLSR routing protocol, 20 nodes, [5, 10] m/s, 4 simultaneous

node failures, and 6 neighbour count. When the window size

is 10 s, the PDR difference between random and centrality-

based attacks is approximately 0.04. When the window size

increases to 320 s, the PDR difference is only about 0.02.

Placement of network resources must be balanced to the

optimised resilience and cost in real-world deployment [1].

We select a scenario with a node number of 20 and node

speeds given by a uniform random variable in the interval

of [5, 10] m/s for our studies of network behaviour under

malicious attacks.

The difference between random attacks and centrality-based

attacks with window sizes of 10 s are presented in Figure 6.
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The overall PDR degrades with the increased number of

simultaneous node attacks. The maximum difference between

random and centrality-based attacks are approximately 0.1

for the AODV routing protocol and 0.05 for the OLSR

routing protocol, which account for about 14% of the baseline

PDR without node failures. DSR (dynamic source routing)

and DSDV (destination sequenced distance-vector) routing

protocols exhibit a completely different behaviour from AODV

and OLSR. Almost no difference can be observed between

random and centrality-based attacks. Although both AODV

and DSR are on-demand routing protocols and have similar

route discovery mechanisms, DSR exploits route caching more

aggressively than AODV. For each source–destination pair,

DSR maintains multiple routes while AODV occupies only one

entry. Therefore, when a node with high centrality value fails,

DSR can discover an alternative path and perform re-routing

more quickly than AODV that makes attacks toward high-

centrality and random node almost indistinguishable. Futher-

more, AODV uses a timer in its routing table maintenance

which might make it slow to update a number of broken

links caused by high-centrality node teardown. The OLSR

routing protocol starts route rediscovery from the neighbouring

nodes. Due to its optimised forwarding mechanism using MPR

(multipoint relays), it takes a long time to fix the broken paths

caused by high-centrality nodes. In the DSDV routing pro-

tocol, since up-to-date routes between all source-destination

pairs are available at all times, the routing algorithm is

greedy enough to overwhelm the impact of the attacks on a

high-centrality node. Another explanation is that since both

DSDV and DSR routing buffer the packets when no route to

destination is available, less packet drop occurs due to broken

links [26].

Network performance is about the same when perturbed as a

result of attacks based on three centrality metrics, even though

these metrics indicate different measures in the network. The

minor differences between attacks based on different centrality

metrics can be examined by studying special cases in the

future. One point to note is that in a highly-connected network

environment, when each node has numerous neighbours as

relay nodes to the destinations, the difference between network

behaviour under random attack and centrality-based attacks is

negligible due to the greedy routing algorithm. However, high

network connectivity usually comes with high cost and might

not be a representative of most network deployments.

B. Area-based Challenges

To model area-based challenges, we use polygons and

circles representative of large-scale disasters as discussed

previously. Instantaneous PDR is used to measure the steady

state performance of wireless networks under challenges.

1) Moving Polygon: We simulate the attenuation effect of a

rainstorm in a fixed wireless backbone network. The topology

consists of 16 stationary nodes in a square mesh structure with

link distance between each pair of nodes being 1000 m. Each

node is both the CBR traffic source and sink. We measure

the network performance during a simulated rainstorm [17],

1000 m 

Fig. 7. Moving polygon with simulation topology

which is modelled as an 8-sided polygon shown in Figure 7.

At 60 s, the challenge starts moving across the topology at

100 m/s horizontally.

P
D

R

simulation time [s]

AODV

DSR

DSDV

OLSR
0.0

0.2

0.4

0.6

0.8

1.0

40 60 80 100 120 140 160 180

Fig. 8. PDR for moving polygon

As the challenge moves across the network, it experiences

loss due to the effect of the storm as shown in Figure 8.

During the challenge scenario, well-known MANET routing

protocols behave similarly, with the AODV routing protocol

performing slightly better. The severe degradation due to the

large-scale effect of weather disruption can be observed from

82 to 86 s as the network is partitioned. The mesh network ex-

periences maximum degradation of service by approximately

75% during this period. As the rainstorm moves away from

the topology, routing reconverges back to normal operation.
2) Scaling Circle: We place an impairment at the center of

the simulation area to model a scaling circle form of area-

based challenge. The scenario is illustrative of an electro-

magnetic pulse (EMP) attack [27]. The challenge is applied

starting at 110 sec, with initial radius of the circle being 10 m.

The circle is scaling linearly by 10 m every 5 seconds. The

topology consists of 20 mobile nodes with a 5 neighbour count

moving according to the Gauss-Markov mobility model with

each node’s speed given by a uniform random variable range

[10, 20] m/s. All the nodes are sources of CBR traffic as well

as sinks. As expected, the PDR decreases as the area covered

by the impairment increases. The AODV routing protocol

achieves significantly higher PDR since it has a higher baseline
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PDR. As the challenge itself grows, so does its impact on the

performance of the network.
P

D
R

simulation time [s]

AODV

OLSR

DSDV

DSR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 120 140 160 180 200 220

Fig. 9. PDR for scaling circle challenge

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented comprehensive modelling of at-

tacks and challenges on MANETs. We modelled time-varying

MANETs as a link availability matrix by aggregating evolving

graphs into a static graph. We demonstrated that routing

protocols behave differently under malicious attacks and DSR

and DSDV routing protocols in the ns-3 implementation are

more resilient under centrality-based attacks. Three centrality

metrics exploited as node significance indicators are more

accurate within a relatively short time window. For large-

scale challenges, we simulated a rainstorm using moving

polygon and network performance severely degrades due to

multiple channel failures. Future work includes a detailed

analysis of cached and uncached routing protocols’ behaviour

under malicious attacks and determining MANET scenarios

for which malicious attacks are significantly more disruptive

than random failures. Directed graphs could be used to model

asymmetric networks. Energy constraints for each mobile

node and other mobility models will be considered when

modelling the network. Combined centrality metrics might

provide a more precise indication of node significance than

single metric. Other graph metrics might be used to measure

and study MANETs properties. Furthermore, we intend to

provide a comprehensive model of challenges and attacks in

heterogeneous (wired and mobile ad hoc) networks.
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