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Abstract—In order to understand the role of critical nodes
in mobile ad hoc networks (MANETs), dynamic topologies are
modelled as time-varying graphs and network topologies within
a certain time window are aggregated as a weighted static
graph. Critical node behaviour has been previously studied by
evaluating how end-to-end throughput is impacted by the removal
of high centrality nodes. However, different routing and transport
protocols used between physical and application layers can also
affect end-to-end network performance. In this paper, instead
of analysing networks that span multiple layers, we focus on
the routing-topology level based on synthetic mobility traces. We
examine how attacks based on different centrality metrics impact
robustness, connectivity, and stability of the mobile networks
with different parameters. Our results demonstrate that the
betweenness centrality is a relatively accurate centrality metric
to indicate node significance in a well-connected multihop ad hoc
network.

Index Terms—mobile wireless dynamic topology, challenge
modelling, graph theory, centrality, MANET, time-varying
weighted graph, resilient survivable disruption-tolerant network

I. INTRODUCTION AND MOTIVATION

Mobile ad hoc networks (MANETs) are deployed in the
environments where the infrastructure-based Internet is not
accessible. Vehicular ad hoc networks, wireless sensor net-
works, and tactical military networks are the examples of
real-world MANET deployments. Ad hoc networks can also
be used in personal-area networks and embedded-computing
applications. For these applications, a well-connected ad hoc
network is critical to the normal functioning of the entire
network. However, the challenges caused by malicious attacks
or random network element failures are inevitable. Networks
should be designed and established to be survivable enough
so that network service can remain above a certain level
even under the circumstances of network element failures [1],
[2]. In order to construct resilient ad hoc networks, we need
to understand network behaviour in the presence of various
challenges [3], [4]. Previously, we modelled MANETs as
the aggregation of dynamic topologies within certain time
windows [5]–[7]. A weighted static graph in which the weight
represents link availability can be obtained. Simulations have

been conducted using ns-3 [8] and we have demonstrated that
the removal of nodes that have high centrality values impact
overall network performance more than random node failures
in term of end-to-end network throughput [5]. Nonetheless,
more remains to be understood about the impact of node
failures on network topology due to different behaviours of
the underlying routing and transport protocols.

In this paper, we analyse and compare the network robust-
ness, connectivity, and stability under random node failures
and centrality-based attacks based on synthetically generated
mobility traces. In addition to the traditional centrality metrics
(degree, betweenness, and closeness), we utilise eigenvector
centrality [9] to measure relative node criticality. For MANETs
with varying number of nodes, network density, and velocity,
different centrality metrics play different roles in the network.
For example, degree centrality does not account for the nodes
outside of its neighbours. In addition, we improve our previous
aggregation approach. Instead of using a uniform time window
size for all network scenarios, we provide a more accurate
window size to aggregate the mobile networks. Temporal
metrics such as link duration are used to examine network
stability, and atemporal metrics such as flow robustness [10]
are used to examine how well-connected the network is at
each snapshot of dynamic topologies. Our results show that
betweenness is a relatively precise metric to measure node
criticality in a well-connected network compared to other
centrality metrics and fails only when the network consists
of disconnected graph components of small orders.

The rest of the paper is arranged as follows. In Section II,
we introduce a list of graph theory terminology used in
this paper and some background information about dynamic
network modelling and centrality. In Section III, we evaluate
a set of synthetic mobility traces generated using different
combinations of network parameters. Network robustness,
connectivity, and stability are evaluated for networks with
different parameters. Finally, we summarise our work and
discuss the steps for future research in Section IV.
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II. BACKGROUND AND RELATED WORK

Dynamic behaviour is an integral part of the nature of
MANETs. Mobile networks can be treated as a sequence of
static graphs evolving over time [11]. Centrality metrics have
been employed as important structural attributes of social net-
works and recently extended to communication networks [12].
A collection of relevant graph-theoretical terms used in this
paper will be introduced as follows.

A. Terminology
• Robustness: The ability of a system to maintain specified

features when subject to assemblages of perturbations
either internal or external [13].

• Path: Any complete set of nodes and links that form a
loop-free connection between a node-pair.

• Flow: A data association between a node-pair that may
be distributed over one or more paths.

• Graph components: The components of a graph are its
maximal connected subgraphs [14].

• Graph order: Number of nodes in the network.
• Graph size: Number of links in the network.
• Vertex cut: A set of vertices whose removal partitions the

graph [14].
• Connectivity: The connectivity of G, written (G), is

the minimum size of a vertex set S such that G � S

is disconnected or has only one vertex [14].
• Biconnectivity: A biconnected graph is a connected

graph, in which if any vertex were to be removed, the
graph still remains connected [14].

• Diameter: The maximum shortest-path between any
node-pair [14].

• Stability: The stability of a link is given by its probability
to persist for a certain time span [15].

• Degree centrality: The degree of a node is the count of
the number of other nodes that are adjacent [16].

• Closeness centrality: The closeness of a node is the
inverse of the sum of the shortest paths from the node to
all other nodes [16].

• Betweenness centrality: The frequency that a node falls
on the shortest paths between pairwise nodes [16].

• Eigenvector centrality: The eigenvector of the largest
eigenvalue of an adjacency matrix that represents the
topology [9].

B. Dynamic Network Modelling
In delay-tolerant and opportunistic mobile networks, tempo-

ral graph metrics based on a time-varying graph model have
been used to capture the temporal dynamics of information
diffusion [17]. Ideas that are similar to dynamic topology
modelling have been pursued in the sociology literature [18],
[19]. Weighted graphs represent social interactions between
people and the strength of weight describes the intensity
of the relationship between people. The longer duration of
time individuals commit to others or the more frequently
persons interact with each other, the stronger the ties or the
friendship between these persons tends to be. In MANETs,

mobility models such as Gauss-Markov or random waypoint
statistically describe how overall behaviour of all networked
devices move over time [20], however the behaviour of each
individual node cannot be accurately captured. Previously,
we proposed an aggregation model of time-varying graphs in
which weights associated with the edges represent link avail-
ability ranging from 0 to 1 [5], [6]. This aggregated network
can then be represented by an adjacency matrix. This model
is applicable to MANETs with stable end-to-end connectivity.
The aggregated weighted graph serves the purpose of detecting
nodes of high significance based on centrality measures. A
comparison of the impact of the window size confirms that
the smaller the window size is, the more accurately centrality
metrics indicate relative node significance [5]. The selection of
time window size is a tradeoff between aggregation precision
and computation overhead, however the window size set as
a small value is not always appropriate since it might be
the case that dynamic topology changes extremely slowly
and the calculation of centrality measures based on small
window sizes would be unnecessarily redundant. In this paper,
we refine the approach of aggregating topologies. Instead of
setting the time window size as a uniform value, we calculate
the expected time interval that a topology remains stable for
different network scenarios.

C. Centrality Metrics

Centrality metrics (degree, betweenness, closeness) were
originally used to identify relative significance of each indi-
vidual in social network analysis [16]. Centrality-based rout-
ing protocols have been proposed in delay-tolerant network
scenarios [12]. One of the major disadvantages of centrality-
based routing is the potential congestion on highly central
nodes. Centrality measures have been extended to weighted
networks, which take into account both the link weights and
the number of links [21]. The eigenvector centrality of a node
not only depends on the number of its neighbours but also
the value of the neighbours’ centrality [22]. According to the
way in which different centrality metrics are calculated, degree
and eigenvector account for local graph properties, while be-
tweenness and closeness consider the global properties of the
entire network. This distinction makes a difference when using
different centrality metrics to determine a node’s significance
in networks of different orders and sizes. Case studies will be
presented in Section III to illustrate different centrality metrics’
roles in different set network scenarios.

III. SYNTHETIC TRACE ANALYSIS

We generate synthetic mobility traces using the Gauss-
Markov mobility model [20], [23] in ns-3. We provide a graph-
theoretical analysis of mobile topologies in this paper. A range
of number of nodes, velocities, and neighbour counts are set
for MANETs so that we can explore a range of scenarios.
Neighbour count is the average number of nodes within the
transmission range of each node given a finite simulation area.
We set neighbour count as a certain percentage of the total
number of nodes in the network, ranging from 10% (0.1)



to 50% (0.5). Two nodes are assumed to be adjacent if the
distance between them is less than the transmission range. The
simulation area can be calculated based on transmission range,
number of nodes, and neighbour count. Node velocities are set
as a uniform distribution between [0, 2], [5, 10], and [10, 20]
m/s, which corresponds to walking speed of pedestrians, the
speed of bicycles, and the city speed of automobiles respec-
tively. All the statistics are averaged over 10 runs and 95%
confidence intervals are shown as appropriate. We use Python
to parse the mobility traces and NetworkX [24] libraries to
compute various graph metrics. All simulation parameters are
listed in Table I. The performance measures that we use to
evaluate MANETs topology quality are as follows:

• Flow robustness can be computed as the number of
reliable flows divided by total number of flows in the
network. Flows are considered reliable if there exists
at least one path between node-pairs. It captures the
maximum possible paths for a given topology [10].

• Biconnectedness captures the survivability of the network
under single node failure. It also captures the potential of
providing an alternative path for high traffic load. Bicon-
nectedness differentiates graphs of different connectivity
levels that cannot be captured by flow robustness.

• Largest diameter of graph components is the largest
diameter of all connected components in the network.
This is relevant to the effectiveness of using local and
global centrality metrics as node significance indicators.

• Minimum node degree is the smallest value of degree
centrality among all the nodes in the network. The
relation between the probability of k-connectedness and
minimum node degree is [25]:

P (G is k-connected)  P (dmin � k) (1)

• Average link duration is the average time that links
remain up due to nodes remaining within the range of one
another. It captures the stability of a link over time [26].
The longer the links live, the more stable the network is.

TABLE I
SIMULATION PARAMETERS

Parameters Value
number of runs 10

transmit range [m] 100
mobility model Gauss-Markov

mobility trace generation time [s] 1000
mobility trace time step [s] 0.01

number of nodes 10, 20, 30
node velocity [m/s] [0, 2], [5, 10], [10, 20]

neighbour count 0.1, 0.2, 0.3, 0.4, 0.5

The simulation scenarios are assumed to be pre-programed
networks. Nodes are challenged based on random failures and
4 different centrality metrics (degree, eigenvector, closeness,
and betweenness). We assume that attacker has the complete
topology information at every time instance. Therefore, the
attacker can calculate centrality metrics for the entire topology
and determine target nodes continuously. We assume that

challenged nodes are completely down and so are the incident
links.

A. Determining the Window Size
We previously modelled dynamic topologies of MANETs

by aggregating time-varying graphs within certain time win-
dows into a static weighted graph [5]. The aggregation window
size is set as the same value for different network parameters.
However, based on differing number of nodes, neighbour
counts, and node velocities, the rate of topology changing
varies. For network topologies that change at different rates, a
uniform aggregation window size is inappropriate. Too small a
window size for a low mobility topology results in redundancy
and overhead of calculation, while too large a window size
for a high mobility topology leads to inaccuracy of node
significance measured by weighted centrality metrics.

Instead of using a uniform window size to aggregate, we
compute the average time interval during which the dynamic
topologies stay relatively stable. The maximum number of
links for a graph of order n is n(n� 1)/2. We define global
link stability as the ratio of the number of changed links to the
maximum number of links. We consider the link is changed
if it only exists in one of the two different topologies. Two
levels of stability are measured here: less than 10% or 20%
of the maximum number of links in the network changing.
Figure 1 shows the average time interval that a topology
can stay relatively stable. Generally, the average time that
the network stays relatively stable for [0, 2] m/s velocity is
much longer than [10, 20] m/s velocity, as shown in Figure 1a
and 1b respectively. This is expected since the higher the
average velocity, the faster the network topologies change.
When neighbour count is only 10%, there is a relatively large
variance between 10% and 20% link change. This is because
when the network density is relatively low, the number of
existing links is small and the time interval that it takes for
20% of total links to change would be much longer.
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Fig. 1. Window size for different network parameters

Obviously, the smaller the fraction of links changes, the
more accurately the centrality metrics could be based on
the aggregated graph. We exploit the time intervals of 10%
link change as the aggregation window sizes for all different
combinations of network parameters for the rest of the paper.

B. Atemporal Properties of the Network
Before we compare how dynamic networks behave under

attacks based on different centrality metrics, we first present



characteristics of different networks without node failures, as
shown in Figure 2. The x-axis is the fraction of total number
of nodes as the average neighbour count.
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Fig. 2. Base scenarios without node failures

For the 30-node network, largest network diameter of graph
components peaks when neighbour count is 20%. This is
because when the network is about 1-connected, the largest
diameter of graph components is at its highest value as
shown in Figure 2a. If the network is more connected, nodes
can reach each other in fewer hops within a highly-meshed
network; if the network is more disconnected, the largest
diameter of graph components is constrained by shrinking
component size. Flow robustness has a lower requirement
on graph connectivity than biconnectedness, as long as the
topology is 1-connected, the flow robustness will have a value
of 1. As shown in Figure 2b, network flow robustness increases
with a larger neighbour count. As suggested in Equation 1,
the probability of a topology being 2-connected is less than
the probability of minimum node degree being more than 2
as shown in Figures 2c and 2d. When the node count is 10,
the average minimum node degrees are all below 1 even with
the neighbour count of 5. As expected, the probability of a
biconnected graph for 10-node networks is much lower than
20- and 30-node networks in Figure 2c.

As mentioned earlier, for different network order and size,
centrality metrics play different roles as the indicators of
node significance. Next, we categorise our synthetic mobile
networks into 4 types and study how different network per-
formance measures are affected by centrality-based attacks in
each individual scenario. The four types are:

1) Dense network with large number of nodes: 30 nodes
with 15 neighbour count (0.5)

2) Sparse network with large number of nodes: 30 nodes
with 3 neighbour count (0.1)

3) Dense network with small number of nodes: 10 nodes
with 5 neighbour count (0.5)

4) Sparse network with small number of nodes: 10 nodes
with 1 neighbour count (0.1)

1) Dense network with large number of nodes
In this scenario, we consider 30 nodes with an average of 15

neighbour count as dense network with relatively large number
of node as shown in Figure 3. Note that this figure is a single
snapshot of mobile networks, whereas the plots are averaged
over 1000 s trace time with 10 runs. We also provide the
snapshots of topologies for next three scenarios.

Fig. 3. Topology snapshot of 30 nodes, 50% neighbour count

Network diameter increases with a higher percentage of
node failures for attacks based on degree and eigenvector cen-
trality as shown in Figure 4a, since network is still connected
after the removal of certain number of nodes and the removal
of a non-vertex-cut high degree nodes could increase the length
of shortest paths and result in the increase of network diameter.
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Fig. 4. 30 nodes, 50% neighbour count

In Figure 3, the node set used for degree-based attack is
tagged with grey colours. As we can observe, even after
removal of 30% of total nodes, the rest of the network is



still connected and network diameter increases from 4 to
8. The flow robustness of betweenness-based attacks stays
the lowest of all as shown in Figure 4b. This indicates
that the removal of high betweenness nodes partitions the
network with a higher probability than other metrics. For
node failures less or equal than 30% of all nodes, node
attacks based on eigenvector and degree is almost no different
from random failures. This can be explained as in a highly-
connected network, the removal of any nodes that are not
vertex cut would have the same impact on the flow robustness
since the network stays connected. In Figure 4c, network
biconnectedness is degraded most heavily by the betweenness-
based attacks. The removal of high betweenness nodes results
in the lowest average minimum node degree of all metrics,
which indicates that high betweenness nodes tend to be the
neighbours of the lower degree nodes. While being locally
high centrality nodes, nodes of high eigenvector values tend
to be the neighbours of other high eigenvector centrality nodes.
Hence, the removal has less impact on the whole network in
terms of minimum node degree as shown in Figure 4d.

2) Sparse network with large number of nodes
In this scenario, nodes are relatively sparsely-connected

with an average of 3 neighbour count. An example snapshot
of this topology is shown in Figure 5. Results for the average
minimum node degree and the percentage of biconnected
topologies are not provided here since these two measures
are almost equal to 0 for all levels of node failures. As the
network is at most 1-connected, the removal of many nodes in
the network would increase the number of graph components.
Hence, the average largest diameter will decrease as more
nodes get removed. Node removal based on betweenness still
has the highest impact on the average largest diameter of
graph components. Network diameter in each component gets
smaller as shown in Figure 6a.

Fig. 5. Topology snapshot of 30 nodes, 10% neighbour count

Grey nodes in Figure 5 are the node list in this example
to be removed for 30% node failures based on degree. As
we can observe, the topology gets partitioned into multiple
components as we remove the links adjacent to the grey nodes.
Moreover, the flow robustness degrades heavily as shown in
Figure 6b.
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Fig. 6. 30 nodes, 10% neighbour count

3) Dense network with small number of nodes
In this scenario, we consider 10 nodes with 5 neighbour

count as the case of a dense network with relatively small
network order. A snapshot of this mobile topology is shown
in Figure 7.

Fig. 7. Topology snapshot of 10 nodes, 50% neighbour count

When only 10% of nodes are removed under degree-
and eigenvector-based attacks, the network diameter does not
change much since the network is still connected after node
removal as shown in Figure 8a.
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By removing some fraction of nodes, networks become
partitioned faster in a 10-node network than a 30-node net-
work. Furthermore, with a smaller network order (number of
nodes), the graph displays more local properties. Even though
the removal of high betweenness nodes still has the greatest
impact on the network, the difference between betweenness-
based attacks and other centrality-based attacks becomes trivial
as can be observed in Figure 8b. The average minimum
node degree stays below 0.8 as shown in Figure 8d, which
means that there is a high probability of the network being
disconnected. Accordingly, the percentage of time that the
network stay biconnected is almost zero as shown in Figure 8c.
In Figure 7, nodes 0 and 2 will be removed if attacked based
on degree while nodes 2 and 3 will be removed if based on
betweenness. The removal of node 2 and 3 will partition the
network resulting in a lower flow robustness.

4) Sparse network with small number of nodes
Node connectivity is the lowest for this network case. The

network is disconnected most of the time. The minimum node
degree and percentage of the time network being biconnected
are both almost 0. Nodes that are in a connected component
can generally reach each other in less than 2 hops as can be
seen in Figure 10a. Hence, node attacks based on betweenness
have less impact on the network than node attacks based on
other metrics as shown in Figure 10b. In a sparsely-connected
network with each graph component being a smaller order,
there are almost no intermediate nodes between any pair of
nodes. In Figure 9, after removing nodes 2 and 4, all nodes
within the same components can reach each other in 1 hop
and the betweenness for rest of the nodes are equally 0.

Fig. 9. Topology snapshot of 10 nodes, 10% neighbour count

av
g.

 la
rg

es
t d

ia
m

et
er

percentage of node failures

random
degree

eigenvector
closeness

betweenness

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5

(a) max. diameter vs. # node failures

av
g.

 fl
ow

 ro
bu

st
ne

ss

percentage of node failures

random
degree

eigenvector
closeness

betweenness

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.1 0.2 0.3 0.4 0.5

(b) flow robustness vs. # node failures

Fig. 10. 10 nodes, 10% neighbour count

C. Temporal Properties of the Network
In addition to graph connectivity at each time instance

that affects the service level of the network, the global link
stability is also critical as frequent routing changes can cause

unpredictably long delay and data loss. Figure 11 presents base
scenarios of average link durations and shows node velocity
plays a dominant role in determining the average link duration.
Since the number of nodes has trivial impact on the average
link duration, we set the graph order as 30 and neighbour count
as 0.5 (15 nodes) and 0.1 (3 nodes) and compare how average
link duration is impacted differently for networks under attacks
based on different metrics.
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Fig. 11. Average link duration of network without node failures
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Fig. 12. Average link durations comparison

In Figures 12a and 12c, networks under random node
failures have the lowest average link duration; this is be-
cause in consecutive time windows, random node failures
are independently selected, while for centrality-based attacks,
even though topology changes as time evolves there is still
a certain level of correlation between high centrality nodes
in two consecutive time windows. In addition, relatively high
node density makes random node changing a dominant factor
that affects average link duration. In contrast, in the network
with a 3 neighbour count, since the total number of links is
much less than the network of 15 neighbour count, degree-
based and eigenvector-based attacks result in shortest average



link duration, since it affects the greatest number of links in
each window size around its neighbours. High betweenness
and closeness nodes are connected to fewer nodes as compared
to high degree and eigenvector centrality nodes. Random node
attacks have negligible impact on the average link duration if
few links are adjacent to the randomly selected nodes. As
illustrated in Figures 12b and 12d, eigenvector- and degree-
based attacks impact average link duration most heavily.

IV. CONCLUSIONS AND FUTURE WORK

We analysed robustness, connectivity, and link stabilities of
MANETs under various centrality-based attacks. The relation
between maximum diameter of the graph component, flow
robustness, minimum node degree, and biconnectedness is
revealed for different network scenarios. A more precise
window size is utilised to aggregate the dynamic networks. We
demonstrated that degree and eigenvector centrality represent
local properties in term of the impact of removing high degree
and eigenvector nodes. In contrast, closeness and betweenness
show global characteristics in measuring the significance of a
node. In a well-connected network that nodes can communi-
cate with each other in real-time, betweenness is a relatively
accurate metric to indicate node significance. Betweenness
fails only in poorly-connected networks consisting of sparsely-
distributed graph components of small sizes. At the same time,
node attacks based on degree and eigenvector centrality affect
network stability in sparsely-connected network.

For future work, the theoretical lower bound of flow robust-
ness for different number of node attacks will be calculated to
show how accurate centrality-based attack could be compared
to the theoretical lower bound. A cross comparison between
topological level flow robustness and network throughput in
the application layer will also be performed. We will also
extend this analysis to disruption-tolerant networks in which
network is partitioned for a great fraction of time. Temporal
graph metrics will be evaluated to study the robustness of
sparsely-connected networks.
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Sterbenz, “Modelling Attacks and Challenges to Wireless Networks,” in
Proceedings of the 4th IEEE/IFIP International Workshop on Reliable
Networks Design and Modeling (RNDM), (St. Petersburg), pp. 806–812,
October 2012.

[6] D. Zhang and J. P. G. Sterbenz, “Modelling critical node attacks in
manets,” in Proceedings of IWSOS: Third International IFIP/IEEE
Workshop on Self-Organizing Systems, Lecture Notes in Computer
Science, Springer, 2013.

[7] D. Zhang, S. A. Gogi, D. S. Broyles, E. K. Çetinkaya, and J. P. Sterbenz,
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