
Towards Resilient Networks Using

Programmable Networking Technologies�

Linlin Xie1, Paul Smith1, Mark Banfield3, Helmut Leopold3,
James P.G. Sterbenz1,2, and David Hutchison1

1 Computing Department
InfoLab21

Lancaster University
Lancaster, LA1 4WA, UK

{linlin.xie,p.smith,jpgs,dh}@comp.lancs.ac.uk
2 Information Technology and Telecommunications Research Center

Department of Electrical Engineering and Computer Science
University of Kansas

Lawrence, Kansas 66045-7621, USA
jpgs@ittc.ku.edu

3 Telekom Austria AG
Lassallestraße 9

A-1020, Vienna, Austria
{mark.banfield,helmut.leopold}@telekom.at

Abstract. Resilience is arguably the most important property of a net-
worked system, one of the three quality of service (QoS) characteristics
along with security and performance. Now that computer networks are
supporting many of the applications crucial to the success of the emerging
Information Society – including business, health care, education, science,
and government – it is particularly important to ensure that the under-
lying network infrastructure is resilient to events and attacks that will
inevitably occur. Included in these challenges are flash crowd events, in
which servers cannot cope with a very large onset of valid traffic, and
denial of service attacks which aim to damage networked system with
malicious traffic. In this paper, we outline the case for mechanisms to
deal with such events and attacks, and we propose programmable net-
working techniques as the best way ahead, illustrated by a flash crowd
example.

Keywords: Resilience, Survivability, Disruption Tolerance, Programm-
able and Active Networking, Flash Crowd and Distributed Denial of
Service (DDoS) Detection and Remediation, Quality of Service (QoS).

1 Introduction

Networks have become increasingly important in our daily lives, to the extent
that we depend on them for much of what we do, and we are significantly dis-
rupted when they cease to operate properly. Current networks in general, and
� http://www.comp.lancs.ac.uk/resilinets

D. Hutchison et al. (Eds.): IWAN 2005, LNCS 4388, pp. 83–95, 2009.
c© IFIP International Federation for Information Processing 2009

84 L. Xie et al.

the Internet in particular, do not provide the resilience that will be needed,
especially when more critical applications depend on proper network operation.

Resilience is the ability of the network to provide and maintain an accept-
able level of service in the face of various challenges to normal operation. These
challenges include natural faults of network components (fault-tolerance); fail-
ures due to mis-configuration or operational errors; large-scale natural disasters
(e.g., hurricanes, earthquakes, ice storms, tsunami, floods); attacks against the
network hardware, software, or protocol infrastructure (from recreational crack-
ers, industrial espionage, terrorism, or warfare); unpredictably long delay paths
either due to length (e.g., satellite) or as a result of episodic connectivity; weak,
asymmetric, and episodic connectivity of wireless channels; and high mobility
of nodes and subnetworks. Addressing these challenges are required for network
survivability [22]. We define resilience as survivability plus the ability to tolerate
unusual but legitimate traffic load.

Note, that while attack detection is an important endeavour, it is in some
sense futile, since a sufficiently sophisticated distributed denial of service (DDoS)
attack is indistinguishable from legitimate traffic. Thus traffic anomaly detection
that attempts to detect and resist DDoS attacks simply incrementally raises the
bar over which attackers must pass. Since both cases adversely affect servers and
cross traffic, as well as exhaust network resources, the goal is resilience regardless
of whether or not an attack is occurring.

Resilient networks aim to provide acceptable service to applications, including
the ability for users and applications to access information when needed (e.g.,
Web browsing and sensor monitoring), maintenance of end-to-end communica-
tion association (e.g., a video- or teleconference), and operation of distributed
processing and networked storage. Resilient network services must remain acces-
sible whenever possible, degrade gracefully when necessary, ensure correctness
of operation (even if performance is degraded), and rapidly and automatically
recover from degradation.

We believe that to realise resilient services it is necessary to have programmable
networks – in particular, the ability of the network to dynamically adapt in re-
sponse to learnt context information – providing the motivation for this need is
the main contribution of this paper. In Section 2, we discuss in more detail the
programmable networking features that are necessary for resilience and why they
are necessary. We present in Section 3 an example resilient networking scenario
– a flash crowd event, and show how programmable networking can be used to
detect the onset of the ill-effects from such an event and how these effects can be
mitigated. Recently, a number of important initiatives have emerged that aim to
modify the Internet architecture, which could be used to realise resilient services;
the rest of this section will present an overview of these initiatives.

1.1 Resilient Networking Initiatives

A knowledge plane (KP) [19] has been proposed to supplement the Internet ar-
chitecture, which self-organises to discover and solves problems automatically.
The principle is that a knowledge plane could reason based on collected infor-

Towards Resilient Networks Using Programmable Networking Technologies 85

mation from all levels of the protocol stack to optimise applications, diagnose
and tolerate faults and attacks, and make the network reconfigurable.

The KP would use cognitive AI to work on incomplete, inconsistent, or even
misleading information, behave properly in the face of inconsistent high-level
goals, and proactively work with new technologies and services. The KP can be
considered a way of building resilient networks in the long-term future – the
development of cognitive technology is still in its early stages and the KP highly
depends on it. Furthermore, challenges need to be addressed in areas such as
knowledge sharing (trust issues) and reasoning on vast amounts of information
(scalability issues).

Work in the area of autonomic computing has largely focused on developing self-
configuring, self-managing, and self-healing networked server systems [15]. There
are now initiatives that considermaking communications systems autonomic (e.g.,
[18,17]). These communication systems aim to understand the context in which
they operate, such as user requirements and network status, and then automati-
cally adapt to meet service goals. Clearly, techniques for enabling autonomic com-
munication systems are relevant for building resilient network services.

The COPS (Checking, Observing, and Protecting Services) project [20] aims
to protect networks with devices called iBoxes, which perform observation and
action operations at the network edge. COPS proposes to extend checking into
the protocol domain, so that iBox functionality would migrate into future gen-
erations of routers. An annotation layer resides between the IP and transport
layers for network management, which will allow annotated traffic to be appro-
priately processed.

2 Programmable Networks

Resilient networks need to be engineered with emergent behaviour to resist
challenges to normal operation, recognise when challenges and attacks occur
to isolate their effects, ensure resilience in the face of dependence of other infras-
tructure such as the power grid, rapidly and autonomically recover to normal
operation, and refine future behaviour to better resist, recognise, and recover.
We believe that programmable networking technologies will be a key enabler of
the emergent and autonomic behaviour necessary for resilience.

The need for programmable networking technology [24,25,26] for building re-
silient networks stems from the nature of the challenges that will affect normal
operation. These challenges will rapidly change over time and space. In other
words, the moment in time when these challenges will threaten normal service
operation will rapidly and arbitrarily differ, and over time new challenges will
emerge, such as new application traffic loads, forms of DDoS attacks, deployment
environments, and networking technologies. Furthermore, the affected organisa-
tional entities and network services will change in an unpredictable manner.
These characteristics preclude the use of a set of prescribed solutions to re-
siliency and mandate the use of a dynamically extensible infrastructure that can
be aware of its environment.

86 L. Xie et al.

The following subsections further catalogue and motivate the need for the
programmable networking facilities that are required for resiliency.

2.1 Dynamic Extensibility and Self-organisation

Programmability allows the network to respond to challenges by dynamically
altering its behaviour and re-programming itself. This key ability of networks
to change means that nodes do not need to be hard-coded or pre-provisioned
with all the algorithms that may be needed to detect and respond to the chal-
lenges to normal operation. In fact, attempting to pre-program the complete set
of resilience solutions is a futile exercise because of the dynamic and adaptive
nature of the challenges to normal operation, as discussed earlier. Furthermore,
we believe the network must be able to alter its behaviour without the interven-
tion of network operators, because of the increasingly short timescales at which
traffic patterns change (e.g., flash crowd) and attacks spread. Thus, it is essential
that the network must be self-monitoring, self-diagnosing, self-reorganising, and
self-managing.

In light of this, programmable networking devices must expose interfaces that
allow their behaviour to be extended in a safe manner to appropriately privileged
entities. Furthermore, a service that can be used to rapidly determine the most
suitable programmable network locations to deploy resilience components must
be available. For example, it should be possible for a resilient networking service
to request the deployment of mitigation code in proximity to the source of a
DDoS attack, even when the location of the source may be mobile. Approaches
to this have been proposed in [28,29], but much further work is required.

By introducing dynamic extensibility and self-organisation into the network,
there is a risk of making the network unstable and potentially worsening the
effect of any disruption to normal service provisioning. Furthermore, exposing
interfaces that enable third-party services to understand and manipulate the
operation of the network introduces a new entry-point for misuse. With this in
mind, programmability and dynamic behaviour should be introduced carefully
and exposed interfaces must be stealthy (i.e., not expose more functionality than
strictly necessary). This is consistent with moderate active networking [16], in
which the ability to inject and transport dynamic programming extensions is
tightly controlled by the network service provider. Inter-providerAS relationships
will have to be based on authentication and trust mechanisms.

2.2 Context Awareness

Understanding the characteristics of traffic and the topology in a resilient net-
work is important. For example, when a DDoS attack occurs it is useful to learn
the source addresses of the perpetrators so that remediation services can be in-
voked in appropriate network locations, including toward the source. In other
words, it is important to understand the network context so that the correct
remediation services can be invoked with the correct parameters. To understand
network context it must be possible to inspect packets at line speed, as well as
be aware of topology state and network signalling messages.

Towards Resilient Networks Using Programmable Networking Technologies 87

However, understanding network context is only one part of the picture. A
resilient network should use context from a range of layers. Arguably, the deeper
one can look into a packet at higher-layer protocol headers and data, the greater
degree of information can be obtained, and more targeted any remediation ser-
vice can be. Edge network devices are commercially available that are capable
of application-level packet inspection at line speed (e.g., [13,14]).

So that applications and services operating at different layers can understand
one-another’s context and work in harmony, interfaces that enable cross-layer
interaction are necessary. Without understanding context across a range of lay-
ers, actions taken at one layer may not be complimentary at another. While it is
clear about the motivation for cross-layer interaction, and there has been work in
the context of specific parameters and protocols, there is no fundamental under-
standing of how this should be undertaken and what the benefits (performance
and functional improvements) and costs (complexity and stability) are. A basic
understanding of the nature of cross-layer interaction, resulting control loops,
and its effect on the network needs to be gained [23].

3 Programmable Flash Crowd Detection and Mitigation

As an example to demonstrate how programmable networks can be used to
build resilient services, in this section we describe an approach to detecting and
mitigating the effects of a flash crowd event. To detect the ill-effects of a flash
crowd event (e.g., a reduction in server response rate), we employ a mechanism
that uses application and network-level information at a programmable edge
device to detect a mismatch in anticipated and actual response rates from a
server. We also discuss a number of approaches to mitigating the effects of flash
crowd events by using the extensible nature of programmable networks.

3.1 Flash Crowd Detection

A flash crowd event [1], is characterised by a dramatic increase in requests for a
service over a relatively short period of time, e.g., the sharp increase in requests
for content on the CNN website immediately after the 9/11 attacks of 2001 [2].
These events can lead to a degradation or complete loss of service. It is important
to detect the onset of a flash crowd event so that techniques to mitigate its effect
can be invoked before a loss of service occurs.

A surge in service requests could cause a bottleneck to occur in the access net-
work to the service provider, the systems providing the service, or both. In any
case, one would expect to see a significant increase in request rate in a relatively
short period of time and an associated levelling off or reduction in the response
rate as the network queues or server resources become saturated with requests.
This behaviour is what we aim to detect and use to trigger programmable mech-
anisms to protect the network.

The mechanism we propose detects flash crowd events that are targeted at
Web servers. It makes use of application-level information, but performs the

88 L. Xie et al.

detection at the network level, and executes on a programmable edge router at-
tached to the network that is providing the service. The mechanism inspects the
volume of response traffic from a server, and based upon a difference between
the expected volume of response traffic and the actual traffic, suggests the pres-
ence of a flash crowd event. In other words, if there is less response traffic than
expected, we deduce the effects of a flash crowd event are beginning.

Proposals in [21] also compare estimated traffic volume to the actual volume
to detect the onset of traffic volume anomalies. We use a similar idea, but do
not aim to detect the presence of flash crowd events per se, but rather the
onset of any ill-effects they cause. In [11], it is shown that Web traffic has self-
similarity characteristics, in other words, the requested objects follow a power-
law distribution. We use this fact and the content-size distribution of requested
objects, learnt from sampling the content-length field in HTTP response headers,
to estimate the volume of response traffic.

Normally, the sum of the sizes of the requested objects would form the re-
sponse traffic volume, as shown in Equation 1, where v is volume of response
traffic, r is the number of requests, and Sı is the size of the object associated
with a request rı. We maintain the average incoming HTTP request rate for a
server and use this along with the learnt content-size distribution to estimate
the volume of response traffic expected. Equation 2 shows how we calculate the
Exponentially Weighted Moving Average (EWMA) incoming request rate (f),
where c is the request rate at a given point in time. Equation 3 describes how
we use the integer value of this average (f) to calculate the expected volume of
response traffic (e) at time t, where Gı is the estimated content-size for a request
fı. By selecting an appropriate values for α, we aim to obtain a close estimate
of the response traffic volume.

v =
r∑

ı=1

Sı (1)

f(t) = (1 − α) × f(t − 1) + α × c(t), with α > 0 (2)

e(t) =
�f(t)�∑

ı=1

Gı (3)

{a(t)
e(t)

| t = 1 . . . n} ∼ N(μ, σ2) (4)

The ratio of the observed response traffic volume (a) to the estimated traf-
fic volume (e) should follow a normal distribution: N(μ, σ2), see Equation 4.
The value of μ should be slightly greater than one, because we did not include
the TCP/IP header size in our calculations. We use the EWMA of the ratio
to smooth fluctuations caused by inaccuracies in the guessing mechanism. In
Section 3.2, we show how we test the ratio distribution and calculate the param-
eter for the distribution and gain confidence (95% in this case), from which we
can ascertain if the effects of a flash crowd are occurring. If continuous points
are observed to be beyond the confidence range, it suggests the occurrence of
abnormality.

Towards Resilient Networks Using Programmable Networking Technologies 89

3.2 Simulation of Flash Crowd Mechanism

To give an indication of the effectiveness of the flash crowd detection mechanism,
we simulated such an event using ns-2. HTTP traffic was generated using the
PagePool/WebTraf application in ns-2. Parameters used for generating HTTP
sessions follow the distributions presented in [9]. The request rate for background
traffic was modified to be approximately 150 requests/sec and flash traffic to 1200
requests/sec. The request rate of flash traffic was set to be almost eight times
greater than that of background traffic, which is modest for a flash crowd event
as the hit-rate for CNN just after 9/11 was twenty times its normal rate [2]. The
parameters used for the background and flash traffic are shown in Table 1.

Table 1. Simulation parameters

Traffic Type Number of
Sessions

Inter-
session
Time [s]

Number
of Pages

per
Session

Inter-
page

Time [s]

Number
of

Objects
per

Page

Inter-
object

Time [s]

Object
Size [KB]

Background 1000 1 15 1 10 0.01 Avg:12
Shape: 1.2

Flash Crowd 20000 0.025 10 1 10 0.01 Avg:12
Shape: 1.2

The simulations ran for 1200 seconds; flash traffic started at 500 seconds. We
used a simple network topology, this included twenty clients, an ingress edge
router, an egress edge router, and a server. The bandwidth of the links between
the clients and the ingress router were set to 10 Mb/sec, the two routers were
connected by a 50 Mb/sec link, and the egress router was connected to the
server by a 15 Mb/sec link. A detection interval (how often we checked the ratio
of actual (t) to expected (e) response traffic volumes) was set to 30 seconds and
the α value was set to 0.2. The simulation with the same configuration was run
three times and the mean values were used for generating the graphs.

The onset of the flash crowd event can be seen at 500 seconds into the sim-
ulation in Figure 1. At 1020 seconds, the request rate starts to drop due to the
sessions running out. Figure 2 shows how the normal response rate is around 1.6
Mb/sec and during the flash crowd event it reaches and stabilises at 1.8 Mb/sec.
The stabilisation of the response rate is caused by the buffers on the server’s
ingress link becoming saturated and subsequently dropping incoming requests.

To gain an estimate of μ and σ for the normal distribution of the ratio, we
ran ten thousand background traffic sessions using the parameters shown in
Table 1. The value of μ was set to the average of the samples: 1.10817, and
σ to the standard deviation of the samples: 0.227477. Figure 3 shows that the
sample distribution appears close to the normal distribution of N(μ, σ2). The
95% confidence range of this distribution is [0.662315, 1.554025], which means
that the possibility of the ratio value going beyond this range is 5%. We use more

90 L. Xie et al.

Fig. 1. Request rate during a flash crowd event starting at 500 seconds

Fig. 2. Response traffic rate during a flash crowd event starting at 500 seconds

than two continuous values outside the confidence range to detect the saturation
of the server side.

Figure 4 shows that the ratio drops shortly after the onset of the flash crowd
event and subsequently oscillates around 0.2 with a small amplitude. Recall that
two continuous ratio values outside the confidence range [0.662315, 1.554025] is
used to diagnose that the effects of a flash crowd are being felt. Given this, with
a detection interval of 30 seconds, saturation can be confirmed at 570 seconds.

3.3 Flash Crowd Mitigation Mechanism

To protect a Web server and the cross traffic in the network, we propose two
strategies. The first is to drop requests that the server side is not able to manage
at the ingress points of a provider’s network. The ingress points are discovered by
routers that perform a pushback mechanism, the basic concept and mechanism of
which are presented in [7][8]. In summary, with a slight variation, our mechanism
is invoked on the server’s edge router which identifies the incoming interfaces

Towards Resilient Networks Using Programmable Networking Technologies 91

Fig. 3. The distribution of sampled ratios in normal situation

Fig. 4. Ratio of actual response traffic amount over estimated traffic

of aggregates of high volume of requests to the server. The router then sends
messages to the immediate upstream routers (from which the high aggregate
request volumes came from) to recursively carry out this procedure and push
back requests until the provider’s ingress router is reached. The second strategy is
to re-route response traffic inside the network to improve the traffic distribution
and reduce the possibility of links becoming congested. The reason for the first
action is straightforward – to push request traffic that cannot be served outside
of the network to save network resources. The reason for the other action and
the mechanisms to do it are described below.

According to [12], an important metric for measuring how well traffic is dis-
tributed in a network is maximum utilisation. Larger maximum utilisation values
indicate that links are more sensitive to bursts. Large amounts of flash crowd
traffic would cause heavily skewed distribution in the network, which could re-
duce the quality of service for cross traffic. To have a better distribution we need

92 L. Xie et al.

to reduce the maximum utilisation. These strategies are the subject of future
work, as discussed in Section 4.

3.4 Related Flash Crowd Detection and Mitigation Work

The implications of flash crowd events and DoS attacks for Web sites and content
distribution networks (CDNs) are discussed in [3]. They propose enhancements
to CDNs that make them more adaptive and subsequently better at mitigating
the effects of flash crowd events.

Collaborative caching mechanisms that can be used to redirect requests to
appropriate caches in light of a flash crowd event are proposed in [4]. The chal-
lenge here is to make sure that the appropriate content is cached – this may be
difficult to predict.

The authors of [5] describe a mechanism that breaks content up into small
pieces and returns each request a piece. Clients need to talk to each other for
other pieces of the content. This mechanism requires servers to perform the
content manipulation, and requires modifications to Web browser applications
and HTTP protocol.

In [6] the problems associated with flash crowds are addressed by making
changes to the architecture of Web servers – approaches that allow dynamic
resource allocation across multiple servers are proposed. We address the flash
crowd problem from the point of a network service provider (and potentially also
a third-party application service provider), and make no assumption about the
Web server architecture in use.

An approach to dropping requests at the server’s ingress point to a network
is proposed in [9]. The rate at which requests are dropped is set dynamically. A
major drawback of this approach is that it requires the inspection of application
layer headers of each packet. We have shown here that you can do detection at
the network level while only sampling the application layer headers occasionally.

4 Future Work

Because our flash crowd detection mechanism uses hints to determine the onset of
the ill-effects of a flash crowd event – it guesses the expected volume of response
traffic – there is a possibility it could give false positives. Further investigation is
necessary to determine under what conditions this could occur and what effects
a false positive may have. In our simulations, we set the detection interval to 30
seconds; investigating whether we could effectively reduce this interval to enable
faster detection is something we plan to investigate through further simulation.

As part of future work into mitigating the effects of flash crowd events, we
propose to improve the distribution of response traffic by instigating multi-path
routing for traffic that is tolerant to packet mis-ordering. A way to approach this
is by a server’s edge router building a multi-route database, in which all possible
routes between the server’s edge router to all the other edge routers along with
the available bandwidths are held. The database is built by deploying active

Towards Resilient Networks Using Programmable Networking Technologies 93

code to collect routing information and available bandwidth information from
programmable routers. When the server’s edge router observes or is informed
that the response traffic is consuming too much bandwidth on one of the links,
it could distribute the traffic over a number of routes. An approach such as
this removes the need to change existing routing protocols, as in [12], which
manipulates the link weights in the OSPF routing database.

Investigating aspects of resilience in the context of computer networks is an
emerging research topic. In the recently funded Autonomic Networking Architec-
ture (ANA) EU research project [18], we will investigate the the use of resilience
techniques and mechanisms to support autonomic networks.

5 Conclusions

In this paper, we have presented work in progress in the important area of the
resilience of networked systems. In addition to presenting the basic argument
that resilience is really needed in the modern networked world, we argue for
programmable networking techniques as an appropriate way ahead to build re-
silience mechanisms.

By means of a modest flash crowd example, we outline simulation results that
aim to show the promise of programmable networking in this crucial area. Fur-
thermore, the mechanism demonstrates that multi-layer cooperation is a useful
tool to enable resilient networks. The simulation results indicate that our detec-
tion mechanism for flash crowd events has potential.

Future work will focus on the mitigation of flash crowd events and also DDoS
detection and repair. By focusing on a particular application scenario we aim
to develop and prove a resilient network architecture that uses programmable
networking technologies.

Acknowledgements

Linlin Xie and Paul Smith are supported by Telekom Austria. We are grateful
to Steven Simpson for his help and contributions with the simulations. We also
appreciate the comments from the anonymous reviewers.

References

1. Niven, L.: Flash Crowd. In: Flight of the Horse. Ballantine Books (September 1973)
2. LeFebvre, W.: CNN.com: Facing A World Crisis (2001),

http://www.tcsa.org/lisa2001/cnn.txt2001

3. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash Crowds and Denial of Ser-
vice Attacks: Characterization and Implications for CDNs and Web Sites. In: Pro-
ceedings of The Eleventh International ACM World Wide Web Conference (ACM
WWW 2002), Hawaii, USA (May 2002)

4. Stading, T., Maniatis, P., Baker, M.: Peer-to-peer caching schemes to address flash
crowds. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS,
vol. 2429, p. 203. Springer, Heidelberg (2002)

http://www.tcsa.org/lisa2001/cnn.txt2001

94 L. Xie et al.

5. Patel, J.A., Gupta, I.: Overhaul: Extending HTTP to Combat Flash Crowds. In:
Proceedings of the 9th International Workshop on Web Caching and Content Dis-
tribution (WCW 2004), Beijing, China (October 2004)

6. Chandra, A., Shenoy, P.: Effectiveness of Dynamic Resource Allocation for Han-
dling Internet Flash Crowds, University of Massachusetts Technical Report, TR03-
37 (2003)

7. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.:
Controlling High Bandwidth Aggregates in the Network. In: ACM SIGCOMM
Computer Communication Review, vol. 32(3), pp. 62–73 (July 2002)

8. Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-Based Defense
Against DDoS Attacks, AT&T Technical Report (December 2001)

9. Chen, X., Heidemann, J.: Flash Crowd Mitigation via Adaptive Admission Con-
trol Based on Application-Level Observation, USC/ISI Technical Report, ISI-TR-
2002 557 (revised version) (March 2003)

10. Mirkovic, J., Reiher, P.: A Taxonomy of DDoS Attack and DDoS Defense Mech-
anisms. In: ACM SIGCOMM Computer Communications Review, vol. 34(2), pp.
39–53 (April 2004)

11. Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)

12. Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF Weights.
In: Proceedings of the 19th Conference on Computer Communications (INFOCOM
2000), Tel-Aviv, Israel (March 2000)

13. Bivio Networks, http://www.bivio.net/
14. IBM BladeCenter, http://www-03.ibm.com/servers/eserver/bladecenter/
15. IBM Autonomic Computing, White Paper: An architectural blueprint for au-

tonomic computing, 3rd edn. (June 2005), http://www-03.ibm.com/autonomic/

pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
16. Jackson, A.W., Sterbenz, J.P.G., Condell, M.N., Hain, R.R.: Active Network Mon-

itoring and Control: The SENCOMM Architecture and Implementation. In: 2002
DARPA Active Networks Conference and Exposition (DANCE 2002), p. 379 (2002)

17. The Autonomic Communications Forum,
http://www.autonomic-communication-forum.org/

18. The Autonomic Networking Architecture (ANA) research consortium,
http://www.ana-project.org/

19. Clark, D., Partridge, C., Ramming, J., Wroclawksi, J.: A Knowledge Plane for the
Internet. In: Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM 2003), Karlsruhe, Germany (August
2003)

20. Katz, R., Porter, G., Shenker, S., Stoica, I., Tsai, M.: COPS: Quality of service vs.
Any service at all. In: de Meer, H., Bhatti, N. (eds.) IWQoS 2005. LNCS, vol. 3552,
pp. 3–15. Springer, Heidelberg (2005)

21. Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-wide Traffic anomalies.
In: Proceedings of the Annual Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM 2004), Portland, Oregon, USA (August 2004)

22. Sterbenz, J.P.G., Krishnan, R., Hain, R.R., Jackson, A.W., Levin, D., Ra-
manathan, R., Zao, J.: Survivable Mobile Wireless Networks: Issues, Challenges,
and Research Directions. In: Proceedings of the ACM Wireless Security Workshop
(WiSE) 2002 at MobiCom, Atlanta, GA, September 2002, pp. 31–40 (2002)

23. Sterbenz, J.P.G., Hutchison, D.: Towards a Framework for Cross-Layer Optimi-
sation in Support of Survivable and Resilient Autonomic Networking, Dagstuhl
Seminar 06011 (January 2006)

http://www.bivio.net/
http://www-03.ibm.com/servers/eserver/bladecenter/
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www.autonomic-communication-forum.org/
http://www.ana-project.org/

Towards Resilient Networks Using Programmable Networking Technologies 95

24. Calvert, K., Bhatacharjee, S., Zegura, E., Sterbenz, J.P.G.: Directions in Active
Networks. IEEE Communications 36(10), 72–78 (1998)

25. Tennenhouse, D.L., Wetherall, D.J.: Towards an Active Network Architecture.
ACM Computer Communication Review 26(2), 5–17 (1996)

26. Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.:
A Survey of Active Network Research. IEEE Communications Magazine 35(1),
80–86 (1997)

27. Schmid, S.: A Component-based Active Router Architecture, PhD Thesis, Lan-
caster University (November 2002)

28. Smith, P.: Programmable Service Deployment with Peer-to-Peer Networks, PhD
Thesis, Lancaster University (September 2003)

29. Spence, D., Crowcroft, J., Hand, S., Harris, T.: Location Based Placement of Whole
Distributed Systems. In: Proceedings of ACM Conference on Emerging Network
Experiment and Technology (CoNEXT 2005), Toulouse, France, pp. 124–134 (Oc-
tober 2005)

	Towards Resilient Networks Using Programmable Networking Technologies
	Introduction
	Resilient Networking Initiatives

	Programmable Networks
	Dynamic Extensibility and Self-organisation
	Context Awareness

	Programmable Flash Crowd Detection and Mitigation
	Flash Crowd Detection
	Simulation of Flash Crowd Mechanism
	Flash Crowd Mitigation Mechanism
	Related Flash Crowd Detection and Mitigation Work

	Future Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

