
Diverse Infrastructure and Architecture for
Datacenter and Cloud Resilience

James P.G. Sterbenz and Prasad Kulkarni
Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science

The University of Kansas, Lawrence, Kansas, 66045, USA

{jpgs, kulkarni}@ittc.ku.edu

www.ittc.ku.edu/resilinets

Abstract—Internet and web services have seen widespread
adoption in recent years and are now tightly integrated into
society’s daily activities. An important emerging part of the
Internet is clouds that provide low-cost configurable computing
resources, allowing businesses to reduce their hardware, software,
and personnel costs. Increasingly, enterprises now use such cloud
resources to host web applications. While clouds provide an
excellent business model, most existing public and private cloud
infrastructures are based on monocultures that allow attackers
to focus their efforts on a single hardware/software platform and
facilitates the rapid spreading of successful attacks.

In this invited paper, we describe a methodology and mech-
anisms that make clouds and hosted applications considerably
more resilient to attacks and correlated failures by introducing
diversity at every level of the cloud: physical interconnect, network
components, processor platforms, storage management, virtual
machine monitors, operating systems, and application processes.
Our goal is to defend against attacks by continuing to operate
correctly even when part of the infrastructure fails and to
substantially raise the difficulty of executing a successful attack
by requiring the attacker to simultaneously target different
hardware and software choices. Furthermore, by geographically
spreading applications among different datacenters using diverse
network connections (in service provider and access medium –
wired vs. wireless), the cloud will be resilient against physical
infrastructure attacks and large-scale disasters.

Index Terms—datacenter cloud network, resilient survivable
fault-tolerant, diverse agile, moving-target defence

I. INTRODUCTION AND MOTIVATION

With increasing dependence on Internet services to support

society’s daily activities, the consequences of disruption from

an attack or disaster are increasingly severe [1]. An important

emerging part of the Internet are clouds from which users

subscribe to shared configurable computing resources. While

convenient, private and public clouds are currently based on

commodity monocultures through which attacks can rapidly

spread. Furthermore, clouds and their access may not be

sufficiently distributed to survive infrastructure attacks.

The DefCloud architecture is intended to make clouds

considerably more resilient to attacks and correlated failures

by introducing diversity at every level of the cloud: physical

interconnect, network components, processor platforms, stor-

age management, virtual machine monitors, operating systems,

and application processes. The goal is to defend against

attacks by continuing to operate even when part of the

infrastructure fails and to substantially increase the difficulty

of executing a successful attack by requiring the attacker to

simultaneously target different hardware and software choices.

Furthermore, by geographically spreading applications among

different datacenters using diverse network connections (in

service provider and access medium – wired vs. wireless), the

cloud will be resilient against physical infrastructure attacks

and large-scale disasters, such as power failures, hurricanes,

earthquakes, CMEs (coronal mass ejections) and EMP (elec-

tromagnetic pulse) weapons. Finally, cloud applications are

made more resilient by spreading in both space and time

across the cloud and datacenter diversity.

The rest of the paper is arranged as follows. Section II

describes the DefCloud diverse datacenter and cloud infras-

tructure that is resilient and survivable to attacks and large-

scale disasters resulting in geographically-correlated failures.

Section III describes DefCloud program diversity in space and

time that increases defense against attacks on the software

running on the cloud. Section IV describes our approach to

measure the resilience delivered by the DefCloud approach.

Finally, Section V provides a brief summary of this paper and

suggests directions for further research.

II. INFRASTRUCTURE-LEVEL DIVERSITY

The first major aspect of diversity is in the datacenter and

cloud infrastructure, consisting of both physical hardware as

well as systems software. This section first describes Def-

Cloud datacenter diversity to resist attacks against particu-

lar hardware and software platforms. Then diversity in the

cloud deployment is described to provide resilience against

the geographically-correlated failures that result from large-

scale disasters such as hurricanes, coronal mass ejections,

EMP (electromagnetic-pulse) weapons, and large-scale power

blackouts.

A. Datacenter Diversity

The first major aspect of diversity is in the datacenter

infrasructure, consisting of both physical hardware as well

as systems software, as shown in Figure 1. The upper layers

of the diagram are core (C), aggregation (A), and edge (E)

switches, typically using Gigabit Ethernet in the lower layers

and 10Gig Ethernet in the upper layers to the core switches

978-1-4673-2178-5/12/$31.00 c©2012 IEEE

E

C

E

A

E E

A

E

C

E

A

E E

A

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Host

VMM

OS

App

SAN

Fig. 1. Datacenter architecture

and external Internet access links. The network interconnection

shown is typical cross-connected trees to provide redundancy

and load balancing capabilities, in a fat-tree or Clos connec-

tion [2], [3]. Commodity switches from a single vendor are

typically used in existing clouds to achieve economies of scale

and reduce costs, including datacenter management costs.
At the lowest layer are the processors, consisting of a

computer platform (Host), with storage management (SAN),

running a virtual machine monitor or hypervisor (VMM),

running a guest operating system (OS), on which application

processes run (App). As with the network infrastructure, a

single set of choices is made to reduce costs for proces-

sor vendor, storage management solution, virtual machine

hypervisor, and operating system. Such an implementation

results in a monoculture through which malware can quickly

spread. A promising solution is to add diversity to eliminate

the monoculture over which application processes are spread,

with the understanding that this comes at the cost of ad-

ditional management overhead and redundant infrastructure.

The premise of DefCloud is that redundancy and diversity are

necessary for resilience, with flexible alternatives to balance

cost- and management-effective deployment alternatives, while

also letting applications specify the needed level of resilience

so that we can dynamically adapt the cloud datacenters in a

service-aware manner.
The most straightforward way to introduce diversity into the

datacenter is to divide it into k subtreees; Figure 1 shows a

case for k = 2 in which one subtree is denoted by shaded

boxes and solid line interconnects and the other uses white

boxes with dashed interconnects. The idea is to choose among

a set of choices at each level and assign a single choice

to each subtree such that any network-induced malware can

at most affect one subtree. For example, one subtree might

use Cisco switches for the network infrastructure and IBM

processors with QLogic storage management, running Xen

hypervisors with Linux operating systems. The other subtree

might use Juniper switches for the network infrastructure and

HP processors with LSI Logic storage management, running

VMware hypervisors with Windows operating systems. Thus

any attack against a platform’s BIOS, firmware, or software

exploits will be confined in damage. This will be true even

for zero-day attacks for which conventional security software

fails. This approach has two significant advantages:

1) the probability of malware attacks bringing down the

entire datacenter is significantly lowered

2) the bar has been significantly raised for attackers by

requiring simultaneous exploits across different architec-

tures (e.g. Linux and Windows)

B. Cloud Diversity

While spreading across k subtrees protects against software-

and firmware-based attacks, it does not protect against attacks

or disasters that destroy or disable the physical infrastructure.

While datacenters are typically fortified, guarded, and have

significant power backup, they are not immune from terrorist

attacks, EMP weapons, nor the results of natural disasters such

as hurricanes, earthquakes, tsunami, or infrastructure interde-

pendencies such as large-scale long-lived power blackouts. In

this case the solution is to distribute a datacenter [4] over n

geographically distributed locations, as shown in Figure 2.

In this case n datacenters are connected by multi-homing

the core switches to different ISPs, with maximum protection

obtained if there is diversity in the access link technology,

for example fiber to one ISP and a high bandwidth wireless

point-to-point link to the other. It is still possible that the links

within service providers share the fate of carrier hotel co-

location or physical fiber conduit (the latter happened in the

Baltimore tunnel fire [5], [6]); multilayer geographic diversity

E E

A

E E

A

E E

A

E E

A

H H H H H H H H H H H H H H H H

E

C

E

A

E E

A

E E

A

E E

A

H H H H H H H H H H H H H H H H

CCC

ISP Y

ISP X

Fig. 2. Cloude diversity and datacenter interconnectivity

for resilience [7], [8] is necessary to ensure that multiple paths

do not share geographic fate.

Figure 3a shows an example of the area that might be

affected by an EMP (electromagnetic pule) weapon over New

York; in this case we would want a distributed cloud to also

have a datacenter in at least the midwest or southeast US.

Figure 3b shows an example of an area covered by increasingly

severe power blackouts in the midwest US. These examples

are intended to show our capability to model a wide range of

attacks and geographic threats; details and example simulation

runs are presented in [9].

III. PROCESS-LEVEL PROGRAM DIVERSITY

This section describes process-level diversity in space and

time. The user of a cloud computing environment often has the

most control over the configuration of the application program.

Nevertheless, existing software development and execution

models statically construct and ship a single program binary

for execution. This static model is convenient for software

developers, who now only need to build, optimise, debug,

and maintain one version of each program. Unfortunately, this

model also permits attackers sufficient time to carefully study

one static binary, and discover and exploit vulnerabilities in

the software. At the same time, a single attack vector for

a particular software program is able to uniformly affect all

program copies running on computers all over the world. Thus,

this software monoculture is, at least partially, responsible

for the prevalence of software attacks and the huge resulting

financial and privacy losses [10].

Process-level program diversity is an approach to signif-

icantly mitigate the issue of software monoculture. We are

designing and implementing new techniques to evaluate the

impact of process diversity along two complementary domains

– space and time. Process diversity in the space domain entails

initiating multiple distinct program configurations on different

cloud nodes. Discrepancies in the program state calculated

by the different program versions indicate the possibility of

attacks. In contrast, process diversity in the time domain

requires the runtime system to dynamically alter the process

configuration periodically or at certain enabling events. Frame-

works that provide such time-based diversity are also called

moving-target defense (MTD) systems. Our mechanisms are

designed to achieve better flexibility and diversity at lower

costs than existing schemes.

A. Process Diversity in Space

One approach to thwart attacks is to spawn multiple simul-

taneous executions of distinct variants of the same software

task and compare their results for consistence. The challenge

in this approach is to create program variants that are not

susceptible to the same attack without affecting code devel-

opment practices, software usability, execution efficiency, or

cloud system administration. Existing program diversification

techniques fail in this regard. Our approach achieves program

diversity by partitioning the program horizontally into multiple

independent code slices [11]. A program slice contains only

those program statements that are relevant to a particular

computation statement, called a slicing criterion.

We generate program slices such that each slice only

contains a subset of the original program instructions and

data structures necessary to compute different partial program

states. Consequently, attacks customised for any one program

layout fail (with a high probability) for the other program

slices. The output of each program slice is compared with

the corresponding program output to detect attacks. Slices are

automatically generated by the compiler. It is also possible

to customise the number and size of program slices based on

available computing resources.

Our compiler analyses the input program and produces

a program dependence graph (PDG) [12], to manifest both

the control and data dependences for each operation in the

program. For example, Figure 4 illustrates a sample program

along with its program dependence graph. Solid edges in the

figure mark data dependences, while the dotted edges show

the control dependence between pairs of program instructions.

The compiler uses the PDG to detect independent data flows

in different regions of the program.

Next, we employ different mechanisms to identify sets of

slice criteria to generate slices that achieve effective code

diversity. These mechanisms include conservative techniques

(a) EMP weapon (b) Power blackout

Fig. 3. Infrastructure challenge examples

for automatic partitioning of a PDG into parallel tasks [13]

as well as aggressive slicing and consolidation of slices for

all important program variables or live ranges. For example,

a slicing criteria consisting of important variables for the

program in Figure 4 will contain instructions S8, S9 and S10

corresponding to variables result, freqRenterPts, and

tAmount respectively.

The slicing criteria is used by the slicer to partition the

program into smaller executable slices. Figure 5 shows the

slices that are created for the program in Figure 4 given the

above slicing criteria (statements S8, S9, and S10).

Finally, the primary program thread is instrumented with

additional instructions to compare its program state at appro-

priate intermediate points with the state computed by each

distinct program slice. The compiler generates the code to

communicate and compare program states, and take appro-

priate action based on the comparison outcome.

Providing an N-Version Execution Environment: The crit-

icality of the user task in combination with the cost and

availability of cloud resources guides the level and amount

of redundancy provided by the system. Thus, for a 2-level

redundancy scheme, the process diversity algorithm generates

program slices such that, in addition to the original unmodified

program, all process state is generated by at least one slice,

and at most one slice, whenever feasible. At the same time,

this approach is powerful enough to generate multiple distinct

program slices that actively attempt to (re)compute the same

program state for cases when a greater level of redundancy

may be necessary for more critical tasks.

In contrast to previous N-version programming tech-

niques [14], [15], the DefCloud approach requires no hardware

changes. Program slices only compute a subset of program

state, enabling them to generally run faster than the original

program. At the same time, since each generated program slice

has a largely different code and data layout, we expect our

technique to provide the same or better resilience than existing

software diversity schemes.

B. Process Diversity in Time – Moving Target Defense

Compile and load-time diversity forces attackers to tailor

attacks to each software variant, but do not prevent attacks on

a single process. Run-time diversity presents attackers with a

moving target, making it extremely difficult to compromise

the system based on knowledge of the program’s a priori vul-

nerabilities. DefCloud uses a virtualisation based solution to

periodically vary the executed code and data layout. Program

diversity is achieved by randomizing the code generation and

optimisation aspects of our just-in-time (JIT) compiler.

Native binary executables generally do not retain enough

high-level syntax and semantic information to allow the most

effective randomization schemes to be applied at runtime,

resulting in weak protection against attacks [16], [17]. There-

fore, our virtualisation-based runtime environment employs

a powerful binary decompiler to recover semantic program

information and enable high-level randomisation techniques.

The decompiler uses a combination of static and incremental

dynamic translation to convert the original binary executable

into our compiler’s higher-level intermediate representation at

runtime [18].

DefCloud utilises a staged model for applying code diver-

sification transformations to minimise startup overhead. Fast,

but lower-entropy, randomisation techniques are applied in the

first stage. The later stages employ deep static analysis to

discover high-level program information (including function

definitions, arguments, and variable types) and enable fine-

grained compiler transformations to diversify each code block.

We are developing a state search space evaluator to assist in

code re-randomisation decisions.

Figure 6 illustrates the architecture of the DefCloud MTD

framework. The original application binary is handed to the

virtual machine (VM), which mediates program execution

by periodically diversifying each program block before it is

run to provide a continuously varying surface to malicious

attackers. The DefCloud framework includes a decompiler to

read the input binary and translate it into the intermediate

code (IR) for our compiler. Decompilation is conducted in

multiple stages, so that the first stage only produces a naive

(fast) translation. Later stages discover and recover finer and

higher-level information about the program.

Several randomising transformations are activated at run-

time during the intermediate (IR) to binary code translation.

The activated transformations depend on the amount of high-

level program information made available to the compiler.

DefCloud also investigates schemes to characterise the pro-

S5

S0: public String statement() {

S1: double tAmount = 0;

S2: int freqRenterPts = 0;

S3: String result = "Record for " +

 getName() + "\n";

S4: Iterator rentals = _rent.iterator();

S5: while (rentals.hasNext()) {

S6: Rental each = rentals.next();

S7: result += "\t" + each.getTitle();

S8: result += "\t" + each.getCharge();

S9: freqRenterPts += each.getFRP();

S10: tAmount += each.getCharge();

 }

S1 S2 S3 S4

S6

S7

S8S9S10

S11

S12

 freqRenterPts;

S12: return final;

 }

S11: String final = result + tAmount +

Fig. 4. Sample program and corresponding program dependence graph

S3: String result = "Record for " +

 getName() + "\n";

S4: Iterator rentals = _rent.iterator();

S5: while (rentals.hasNext()) {

S6: Rental each = rentals.next();

S7: result += "\t" + each.getTitle();

S8: result += "\t" + each.getCharge();

 }

 }

S0: public String statement_slice2() {

S2: int freqRenterPts = 0;

S4: Iterator rentals = _rent.iterator();

S5: while (rentals.hasNext()) {

S6: Rental each = rentals.next();

S9: freqRenterPts += each.getFRP();

 }

 }

S1: double tAmount = 0;

S4: Iterator rentals = _rent.iterator();

S5: while (rentals.hasNext()) {

S6: Rental each = rentals.next();

S10: tAmount += each.getCharge();

 }

 }

S0: public String statement_slice1() { S0: public String statement_slice3() {

Fig. 5. Program slices corresponding to the statements S8, S9, and S10 respectively of the example program in Figure 4

Fig. 6. Virtual Machine Framework to Provide MTD for Binary Applications

gram state search space to understand the effect of each

randomisation technique on program entropy. This is used to

guide the timing of re-randomisation for each code block, as

well as the selection and intensity of future program transfor-

mations for software diversity. To achieve high performance,

DefCloud initiates several compiler threads to translate code

speculatively and in parallel before it is demanded by the

application thread(s).

Program diversity in existing systems has been accom-

plished by several techniques, including popular randomisa-

tion schemes such as address space layout randomisation

(ASLR) [19] and instruction set randomisation (ISR) [20].

However, existing techniques are plagued by their susceptibil-

ity to brute-force attacks, low randomisation entropy, and poor

performance.

The DefCloud framework for an MTD system is unique

in its approach, capabilities, implementation, and resulting

efficiency. First, reconstructing higher-level program infor-

mation allows our framework to apply a range of low-level

diversity transformations that are off-limits to many existing

run-time randomisation tools. Second, DefCloud does not

require any changes to the static binary executable, but relys

solely on runtime transformations to achieve code diversity.

Third, we are experimenting with techniques to automatically

determine the timing of future re-randomisations for each code

block. Finally, DefCloud is be designed to employ a staged

compilation model and exploit multi-core processors to ensure

high system performance.

IV. RESILIENCE EVALUATION

The previous sections describe how to create and deploy

diversity in hardware and systems-software infrastructure and

cloud applications. Such diversity in the execution environ-

ment leads to the problem of ideally assigning processes to

this infrastructure, routing information between them, and

cross-layering service awareness between the infrastructure

and cloud applications. This section describes the planned

application of our ResiliNets evaluation methodology to Def-

Cloud.

The DefCloud (n, k) infrastructure diversity provides n

datacenters containing k subtrees. The maximum resilience

comes at the greatest cost: completely replicating application

processes across subtrees spread across datacenters. While 2-

redundancy is almost certainly sufficient for an order of mag-

nitude improvement in resiliency, 3-redundancy is required for

triple-modular redundant (TMR) voting schemes [21]. In this

case, assuming that malware can spread across the Internet

between the interconnected datacenters, we need k = 3 subtree

architectural alternatives with each in a different datacenter for

n = 3. This permits high resiliency of service- and time-

critical applications that cannot afford to stop running. A

spectrum of options exists including monitoring application

progress and reallocating processes to alternative architecture

trees at the cost of the migration delay. The process-level

space- and time-spreading techniques described in Section III

are used to duplicate process state computation by diverse

processes on multiple nodes, and to continually randomise the

process code and data layout on each node. Furthermore, we

need to understand the best way of routing within and across

subtrees and data centers, and the APIs and cross-layer mech-

anisms to allow applications to express their resilience needs

to affect process allocation and datacenter logical topology,

and for the infrastructure to express its state to the process

spreading algorithms.

A. Analysis Methodology

A key part of the DefCloud approach is to try alternative

diversity, redundancy, and spreading strategies, with respect

to both the network infrastructure and process allocation, to

understand their resilience. This must be done given a variety

of threat models, and we put particular emphasis on: (1) zero-

day malware attacks that will cause all instances of a particular

type of hardware or systems software components to fail, and

(2) physical attacks or large-scale disasters that will cause an

entire datacenter to fail or its interconnection with the Internet

and other datacenters to fail.

One of our goals is to understand the optimal strategy to use

given these challenges and the service-oriented resilience re-

quirements, with the understanding that there are diminishing

returns to increasing diversity and redundancy beyond a certain

level. Our earlier research studies a wide range of network

topologies and shows that the greatest benefit is obtained with

a small number of diverse options (two or three) [8].

It is important to have a measure for resilience, but a

single resilience metric is not obvious given the number of

parameters and variables involved. We have developed a novel

resilience metric computed as the area under the trajectory

through a two dimensional state space [22]–[25]. The hori-

zontal axis is a functional combination of several parameters

that indicates the operational state of the network; in the case

of DefCloud, it reflects to what degree datacenters or parts

thereof within the distributed cloud have failed. The vertical

axis reflects the service provided, in our case the ability of the

application processes to continue to execute as required. As the

infrastructure is challenged, the trajectory moves from normal

operation through partially degraded to severely degraded. We

dimension DefCloud diversity and redundancy such that the

infrastructure is at most partially degraded. As the network

degrades, we need to understand how resilient the applications

are in the face of that degradation. Thus a more resilient

application will show a shallower slope in the trajectory, and

we dimension DefCloud application spreading to be no worse

than normal or partially degraded operation, depending on the

user requirements for application resilience.

We need a way to simulate and emulate (for various

challenges to the cloud, in particular zero-day and physical

infrastructure attacks. We have developed a novel simulation

methodology that allows us to apply various challenges to a

variety of network scenarios [9], [26]. Our methodology allows

the specification of component failures, either random, or

based on some criteria such as type (which we would apply to

datacenter components subject to a zero-day attack) or graph-

theoretic criticality (applied to an attacker who understands the

structure of the network to destroy key components). We can

also specify area-based challenges using a circle or arbitrary

polygon overlaid on the network geography; these can evolve

and move over time.

Both space-domain and time-domain process-level diver-

sity techniques will be implemented and integrated with this

simulation methodology to evaluate their impact individually

and in combination with the other diversity mechanisms at

the network, hardware, hypervisor, and OS levels. We will

build process-level models to analyse and understand the costs,

benefits and diminishing returns to process resilience as we

intensify the application of our process-level diversity tech-

niques. The traffic generated by each deployed process will

be modeled, and handed to the remaining analysis framework

to study process performance under various attack scenarios

to determine the optimal diversification strategy to adopt given

resilience requirements.

Finally, we will deploy prototype DefCloud code in a

testbed environment. For this we will use the existing GpENI

global programmable testbed [27], [28] enhanced with Pro-

toGENI/Emulab clusters. GpENI provides a programmable

testbed on which various topologies can be instantiated and

components taken down to emulate failures. GpENI allows us

to emulate geographic distribution of datacenters. ProtoGENI

clusters are GENI-version of Emulab that are local machine

clusters with multiple network interfaces that can be config-

ured in a variety of ways; ideal for emulating datacenters.

Our challenge framework will be extended to process-level

failures [9], [26], and will be used to emulate various attacks

to the cloud and understand requirements for meeting the

goals for process-level diversity. Software attacks on the space-

domain techniques will also be emulated by randomly halting

or altering the output of some task processes. Benchmark

programs will be statically updated to introduce vulnerabilities,

and memory attacks will be introduced during run-time tasks

to explore and evaluate the effectiveness of our techniques.

Such vulnerable processes build and executed on run-time

systems configured with DefCloud diversity techniques will be

deployed in a data center using ProroGENI/Emulab cluster in a

GpENI based testbed. Observed effects of software attacks on

the cost and achieved resilience properties of processes under

different configurations of alternative diversity techniques will

be measured. The time-domain diversity schemes will also

be measured based on the state space of randomisation that

we will be able to generate with our set of diversification

techniques [17].

V. CONCLUSIONS AND FUTURE WORK

This paper has described the DefCloud approach to make

clouds and hosted applications considerably more resilient

to attacks and correlated failures by introducing diversity

at every level of the cloud: physical interconnect, network

components, processor platforms, storage management, vir-

tual machine monitors, operating systems, and application

processes. In particular, DefCloud provides geographically

diverse infrastructure the resists attacks against a monoculture

and area-based challenges resulting from large-scale disasters.

Furthermore, by providing process-level diversity in space

and time, an attacker would have to simultaneously target

different hardware and software choices, and constantly adapt

the attack.

We intend to simulate and emulate the DefCloud archi-

tecture to evaluate its effectiveness and understand the cost-

benefit tradeoffs to achieve desired levels of resilience.

REFERENCES

[1] J. P. G. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P.
Rohrer, M. Schöller, and P. Smith, “Resilience and survivability in com-
munication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, Commodity Data
Center Network Architecture,” in Proceedings of the ACM SIGCOMM

Conference on Data Communication, (Seattle, WA, USA), pp. 63–74,
2008.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proceedings of the ACM SIGCOMM Confer-

ence on Data Communication, (Barcelona, Spain), pp. 51–62, 2009.
[4] R. Cocchiara, H. Davis, and D. Kinnaird, “Data center topologies for

mission-critical business systems,” IBM Syst. J., vol. 47, pp. 695–706,
October 2008.

[5] M. R. Carter, M. P. Howard, N. Owens, D. Register, J. Kennedy,
K. Pecheux, and A. Newton, “Effects of catastrophic events on trans-
portation system management and operations, Howard Street tunnel fire,
Baltimore City, Maryland – July 18, 2001,” tech. rep., U.S. Department
of Transportation, ITS Joint Program Office, Washington DC, 2002.

[6] H. C. Styron, “CSX tunnel fire: Baltimore, MD,” US Fire Administra-
tion Technical Report USFA-TR-140, Federal Emergency Management
Administration, Emmitsburg, MD, 2001.

[7] J. P. Rohrer, A. Jabbar, and J. P. G. Sterbenz, “Path diversification:
A multipath resilience mechanism,” in Proceedings of the IEEE 7th

International Workshop on the Design of Reliable Communication

Networks (DRCN), (Washington, DC), pp. 343–351, October 2009.
[8] J. P. Rohrer and J. P. G. Sterbenz, “Predicting topology survivability

using path diversity,” in Proceedings of the IEEE/IFIP International

Workshop on Reliable Networks Design and Modeling (RNDM), (Bu-
dapest), pp. 95–101, October 2011.

[9] E. K. Çetinkaya, D. Broyles, A. Dandekar, S. Srinivasan, and J. P. G.
Sterbenz, “Modelling Communication Network Challenges for Fu-
ture Internet Resilience, Survivability, and Disruption Tolerance: A
Simulation-Based Approach,” Springer Telecommunication Systems,
pp. 1–16, 2011. Published online: 21 September 2011.

[10] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer sys-
tems,” in Proceedings of the 6th Workshop on Hot Topics in Operating

Systems (HotOS-VI), (Washington, DC, USA), pp. 67–, IEEE Computer
Society, 1997.

[11] M. Weiser, “Program slicing,” in ICSE ’81: Proceedings of the 5th

international conference on Software engineering, (Piscataway, NJ,
USA), pp. 439–449, IEEE Press, 1981.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, pp. 319–349, July 1987.

[13] V. Sarkar, “Automatic partitioning of a program dependence graph into
parallel tasks,” IBM J. Res. Dev., vol. 35, pp. 779–804, September 1991.

[14] A. A. Avizienis and M. R. L. (Editor), Chapter-2: The Methodology

of N-version Programming in Software Fault Tolerance. John Wiley &
Sons Inc; 1 edition, 1995.

[15] A. Singh, N. Sinha, and N. Agrawal, “Avatars for pennies: Cheap
n-version programming for replication,” in Short paper in the 6th

Workshop on Hot Topics in System Dependability (HotDep ’10), pp. 1–3,
October 2010.

[16] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings

of the 11th ACM conference on Computer and communications security,
pp. 298–307, 2004.

[17] A. Nguyen-Tuong, A. Wang, J. D. Hiser, J. C. Knight, and J. W. David-
son, “On the effectiveness of the metamorphic shield,” in Proceedings of

the Fourth European Conference on Software Architecture: Companion

Volume, pp. 170–174, 2010.
[18] S. Nanda, W. Li, L.-C. Lam, and T.-c. Chiueh, “Bird: Binary interpre-

tation using runtime disassembly,” in Proceedings of the International

Symposium on Code Generation and Optimization, CGO ’06, pp. 358–
370, IEEE Computer Society, 2006.

[19] P. Team, “Address space layout ramdomization.”
pax.grsecurity.net/docs/aslr.txt, 2001.

[20] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D.
Zovi, “Randomized instruction set emulation to disrupt binary code
injection attacks,” in Proceedings of the 10th ACM conference on

Computer and communications security, pp. 281–289, 2003.
[21] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to

improve computer reliability,” IBM Journal of Research and Develop-

ment, vol. 6, no. 2, pp. 200–209, 1962.
[22] A. J. Mohammad, D. Hutchison, and J. P. G. Sterbenz, “Towards quan-

tifying metrics for resilient and survivable networks,” in Proceedings of

the 14th IEEE International Conference on Network Protocols (ICNP),
pp. 17–18, November 2006.

[23] J. P. Sterbenz, E. K. Çetinkaya, M. A. Hameed, A. Jabbar, and J. P.
Rohrer, “Modelling and analysis of network resilience (invited paper),”
in Proceedings of the Third IEEE International Conference on Commu-

nication Systems and Networks (COMSNETS), (Bangalore), pp. 1–10,
January 2011.

[24] J. P. Sterbenz, E. K. Çetinkaya, M. A. Hameed, A. Jabbar, Q. Shi,
and J. P. Rohrer, “Evaluation of Network Resilience, Survivability, and
Disruption Tolerance: Analysis, Topology Generation, Simulation, and
Experimentation (invited paper),” Springer Telecommunication Systems,
pp. 1–32, 2011. Published online: 7 December 2011.

[25] A. Jabbar, H. Narra, and J. P. G. Sterbenz, “An approach to quantifying
resilience in mobile ad hoc networks,” in Proceedings of the 8th

IEEE International Workshop on the Design of Reliable Communication

Networks (DRCN), (Krakow, Poland), pp. 140–147, October 2011.
[26] E. K. Çetinkaya, D. Broyles, A. Dandekar, S. Srinivasan, and J. P. G.

Sterbenz, “A comprehensive framework to simulate network attacks and
challenges,” in Proceedings of the 2nd IEEE/IFIP International Work-

shop on Reliable Networks Design and Modeling (RNDM), (Moscow),
pp. 538–544, October 2010.

[27] J. P. G. Sterbenz, D. Medhi, B. Ramamurthy, C. Scoglio, D. Hutchison,
B. Plattner, T. Anjali, A. Scott, C. Buffington, G. E. Monaco, D. Gru-
enbacher, R. McMullen, J. P. Rohrer, J. Sherrell, P. Angu, R. Cherukuri,
H. Qian, and N. Tare, “The Great plains Environment for Network
Innovation (GpENI): A programmable testbed for future internet archi-
tecture research,” in Proceedings of the 6th International Conference on

Testbeds and Research Infrastructures for the Development of Networks

& Communities (TridentCom), (Berlin, Germany), pp. 428–441, May
2010.

[28] J. P. G. Sterbenz, D. Medhi, G. Monaco, B. Ramamurthy, C. Scoglio,
B.-Y. Choi, J. B. Evans, D. Gruenbacher, R. Hui, W. Kaplow, G. Minden,
and J. Verrant, “Gpeni: Great plains environment for network innova-
tion.” http://wiki.ittc.ku.edu/gpeni, November 2009.

