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ABSTRACT
Transport protocols in highly-dynamic airborne networks call for adaptive error-control mechanisms

to provide efficient error detection and recovery. Due to the highly dynamic nature of these networks and
short contact durations between the nodes, the AeroTP protocol uses an adaptive multi-mode mechanism
to provide a varying degree of reliable services to the application data. The two fundamental error-control
mechanisms include an end-to-end ARQ mechanism to provide complete reliability in the AeroTP reliable
mode and an end-to-end FEC mechanism to provide statistical reliability in the AeroTP quasi-reliable
mode. In this paper, we present our implementation of the hybrid-ARQ mechanism in ns-3 to improve the
throughput and delay performance of the AeroTP protocol. We also compare and analyze the performance
of hybrid-ARQ against the different AeroTP modes, TCP, and UDP protocols.

I. INTRODUCTION AND MOTIVATION
The highly dynamic airborne telemetry environment is characterized by unique challenges that makes

it difficult for traditional TCP/IP protocols to perform well. The challenges that are unique to this envi-
ronment include constrained bandwidth caused by limited RF spectrum, limited transmission range due
to power and weight constraints of airborne TAs (test articles), high velocity of TAs resulting in short
contact durations between nodes, and mobility causing dynamic topology changes and intermittent con-
nectivity [1]. These constraints demand domain-specific protocols that can adapt to the rapidly changing
conditions. Hence, in the context of the iNET (Integrated Network Enhanced Telemetry) program, we
developed the ANTP (Airborne Network Telemetry Protocol) suite [2, 3]. The ANTP suite of protocols
are designed to address these challenges by employing cross-layering mechanisms between the transport,
network, and MAC layers to operate efficiently. Although, the protocols developed are domain-specific in
nature, they are also TCP/IP compatible as many of the iNET components and applications run on the cur-
rent TCP/IP architecture [4]. The suite includes AeroTP – a TCP-friendly transport protocol that supports
multiple reliability modes, AeroNP – an IP-compatible network protocol, and AeroRP – a routing protocol
that takes advantage of location information to mitigate the short contact durations between high-velocity
nodes.
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AeroTP is a domain-specific TCP-friendly transport protocol designed to meet the needs of highly-
dynamic airborne networks. AeroTP offers differentiated levels of precedence or QoS depending on the
type of data being communicated. There are five operational modes: reliable connection, near-reliable
connection, quasi-reliable connection, unreliable connection, and unreliable datagram [5]. Reliable con-
nection preserves end-to-end acknowledgements to ensure a full guaranteed delivery using TCP ACK
passthrough, near-reliable connection uses a custody transfer mechanism to provide high reliability but
does not fully guarantee delivery, quasi-reliable connection provides statistical reliability using open-loop
error recovery mechanism such as FEC (forward error correction) coding, unreliable connection relies on
the link-layer (FEC or ARQ – automatic repeat request) to preserve data integrity but does not perform any
error correction at the transport layer, and unreliable datagram passes UDP traffic with no AeroTP con-
nection management involved [3]. The transport layer functions that must be performed by the AeroTP
protocol include connection management, transmission control, and error control. Connection manage-
ment involves setting up connections, and terminating them by synchronizing the sender and receiver
using a defined state machine. Transmission control is rate-based with feedback from the network layer
(AeroNP). The protocol primarily uses ARQ and FEC for error control and it is fully decoupled from rate
control [2].

The AeroTP protocol was introduced and further developed previously as ns-3 simulation models [3, 6,
7, 5], evaluating and comparing the performance of AeroTP reliable and quasi-reliable modes against one
another and against the TCP and UDP protocols. Previously, we simulated the operation of fully-reliable
mode with single ACKs. In this paper, we show the fully-reliable mode operation while aggregating a
certain number of ACKs. We refer to this aggregated ACK packet as multiple-ACK (MACK pronounced
em-ack). In very low channel error conditions, aggregating ACKs can reduce overhead in the reverse
channel significantly and improve goodput. This is particularly beneficial in a network with assymetric
links. However, the advantage becomes more apparent in higher channel error conditions, in which the
overhead of retransmitting packets for the loss of single ACKs becomes significantly large. This paper
also presents the ns-3 simulation of hybrid error control mechanisms that make use of both ARQ and FEC
codes to correct errors and provide reliability. We present two different ways of implementing the AeroTP
hybrid mode. One of them provides an improved reliability over AeroTP-FEC with the use of NACKs
(negative acknowledgements) and the other provides full reliability by using both ACK and NACKs. We
compare these modes against the previously developed AeroTP reliable connection and quasi-reliable
connection modes.

The rest of this paper is organized as follows: Section II presents background and related work dis-
cussing drawbacks of TCP and UDP protocols and the error control mechanisms adopted. Section III gives
a detailed description of the AeroTP Hybrid-ARQ simulation model. This is followed by our simulation
results and analysis of the performance of the error control mechanisms in comparison to each other as
well as with TCP and UDP in Section IV. Finally, Section V concludes the paper with directions for future
work.

II. BACKGROUND AND RELATED WORK
End-to-end transport layer functions include providing reliability, flow control, error control, connec-

tion management, and congestion control, depending on application requirements. Transport protocol
design decisions are affected by the applications as well as the network environment in which they op-
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erate. Some of the examples of applications are client-server applications, peer-to-peer file sharing, and
multimedia streaming. However, regardless of the application a transport protocol is designed for or the
environment it is going to operate in, the goal is to achieve efficient communication. Efficiency in trans-
port protocols is often measured in terms of packet exchange overhead that affects the overall delay and
throughput, complexity of algorithms implemented, and the size of the state space [8].

Amongst the services provided by transport protocols, reliability guarantees the source correct delivery
of data to the destination. Ideally, it is desirable to transmit data end-to-end without any delay and with
no errors or losses. However, wireless channels are prone to errors due to their vulnerability to noise and
interference, as well as losses due to congestion and switching between multiple paths within the network.
Error control is adopted to ensure reliability: detecting and recovering from losses and corruption. Error
control schemes such as ARQ and FEC codes have been used to provide reliability. While these mecha-
nisms are simple to implement, achieving high system reliability is expensive because they involve state
retention, redundant information, data copying, buffer management, and packet exchange overhead [8, 9].

A. Drawbacks of Traditional Protocols

Two of the earliest and the most commonly used protocols are TCP (transmission control protocol) and
UDP (user datagram protocol) [10, 11]. Despite their popularity they are known to perform undesirably
in challenged wireless environments. A wireless channel is prone to bit-errors, interference, and channel
fading resulting in packet loss and corruption. TCP assumes every packet loss is caused by congestion
in the network and invokes a congestion control algorithm [12]. This decreases the congestion window
by a fraction each time causing inefficient use of bandwidth. TCP connection setup is performed through
a three-way handshake between the source and the destination pair of nodes. This takes one extra RTT
(round-trip time) causing significant performance degradation in a telemetry network because of the short
contact duration between nodes. By using a slow start algorithm, TCP takes multiple RTTs to exit slow
start before it can fully utilize the bandwidth. This causes a significant amount of overhead in an envi-
ronment that often has episodic connectivity. TCP does not efficiently perform flow control in a network
with asymmetric links, since it requires a highly reliable ACK stream for self-clocking. Because of the
dynamic topology, link outages are common and TCP’s congestion control algorithm is invoked during
short link outages causing an increase in the number of retransmissions; the connection is terminated in
case of longer link outages. This causes difficulty in restoring links and finding alternate paths to the
destination [2, 13]. Although UDP is a simpler protocol than TCP, it does not offer any reliability. Unlike
TCP, UDP does not have a connection set-up mechanism and does not provide error control, congestion
control, or flow control. Both TCP and UDP do not provide any QoS for prioritizing the type of data being
transmitted.

B. Error Control Schemes: ARQ, FEC, and Hybrid

Early work on designing general-purpose protocols to provide end-to-end transport services was based
on assumptions that no loss or corruption of packets would occur during an end-to-end transmission be-
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tween hosts, and no missequenced packets or duplicate packets would arrive at the destination [8, 9].
However, in wireless networks these set of assumptions result in improper behavior. These networks are
frequently prone to losses caused by channel characteristics, network topology, and traffic conditions.

Error control involves two phases: error detection and error recovery. Error detection involves identi-
fying errors caused by corruption, loss, duplication, and missequencing of information. This is achieved
through the use of checksums, FEC codes, and acknowledgements. Error recovery involves using retrans-
missions, FEC codes, or both to recover from the error. These mechanisms often come with drawbacks
that affect the performance of the protocol. For example, while ARQ provides high reliability it results
in low throughput in high BER conditions. Moreover, while recovering losses using acknowledgements
and retransmissions, it is important to consider the overall delay caused due to retransmissions. Using a
purely-ARQ based error control scheme results in higher delay in high BER conditions. An alternative
to using ARQ is using FEC codes to correct transmission errors. FEC codes involve adding extra bits to
each data segment that are then used to correct errors at the receiver. Although FEC does not significantly
increase overall delay and maintains a fairly high throughput compared to ARQ in high BER conditions,
adding additional bits to every data segment increases the packet overhead [14, 15]. Furthermore, using
FEC codes alone provides only statistical reliability since it does not recover beyond the capability of the
code, nor recover from losses or missing data segments. When errors go undetected the data segment is
still delivered to the application and this makes employing a good FEC code expensive as it increases the
complexity of the decoding system. Taking into account the drawbacks of using an error control based
purely on ARQ or FEC, hybrid error control combines both ARQ and FEC to obtain better performance
in moderate error conditions [16, 17, 18].

Hybrid error control schemes, commonly referred as hybrid-ARQ, involve FEC within an ARQ scheme.
The idea is to use FEC error recovery capability to reduce the number of retransmissions. This addresses
the performance drawback of ARQ in high BER conditions. In the case that the FEC is unable to recover
any errors, the receiver requests retransmission using negative acknowledgements instead of delivering the
corrupted data segment to the receiver. This improves the reliability of the scheme compared to using only
using FEC codes [15]. There are two types of hybrid ARQ schemes: type-I and type-II [14, 16]. Type-I
hybrid-ARQ scheme is an approach that is designed for simultaneous error detection and correction. When
a received data segment is detected with errors, the redundant information within that segment attempts
to correct them. Upon successfully correcting the errors the segment is delivered to the application. In
case the correcting code is unable to correct the errors, the receiver discards the segment and requests a
retransmission. The received retransmitted segment undergoes the same error check and decoding process.
When unsuccessful, retransmission is requested and this repeats until the destination receives a segment
that can be successfully decoded. Type-I schemes are suited for channels with a relatively constant error
rate. When an efficient error correcting code is chosen, this approach can reduce the number of retransmis-
sions significantly and improve the overall delay and performance. This scheme comes with drawbacks
especially at the extremes of channel error conditions. During fairly low error rate the addition of extra bits
increases the overhead, while during high error conditions the error code word used may not be sufficient
to correct all the errors, thereby increasing the numbers of retransmissions and reducing the through-
put [14]. Type-II hybrid-ARQ schemes are suited for channels with varying error rates. These schemes
often use adaptive hybrid-ARQ approach in which the extra bits are added depending on the channel con-
ditions. The retransmission strategy involved in using this approach has varied from only retransmitting
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the extra bits to correct the corrupted original segment to retransmitting the entire segment [17, 19]. In
this implementation we use type-I hybrid-ARQ scheme.

III. AeroTP HYBRID-ARQ OPERATION
In this section we describe the ns-3 simulation model of the AeroTP hybrid mode. The purpose of this

model is to understand the operation of hybrid-ARQ mechanisms and compare its performance with other
AeroTP modes to discuss the trade-offs.
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Figure 1: AeroTP connection management
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Figure 2: AeroTP state transition diagram

The AeroTP hybrid-ARQ operates in connection-oriented mode and thus shares the same state machine
as that of the AeroTP reliable mode. Figure 1 shows the AeroTP reliable-mode packet flow-diagram, in
which S is the source, D is the destination, and TmNS represents the telemetry network. Figure 2 shows
the state transition diagram, which represents the sender and receiver states along with events that trigger
the transition between them. Table 1 explains the function of all the states and events used to maintain a
synchronized communication session between the source-destination pair.

While using either ARQ or FEC as the only error control mechanism is common, hybrid error con-
trol mechanisms can yield high end-to-end reliability [14, 15]. We implement two different hybrid error
control mechanisms: AeroTP-NACK and AeroTP-NACK+MACK. The first mechanism AeroTP-NACK
involves using NACKs to request retransmission from the sender when FEC fails to correct errors in the
received TPDU (transport protocol data unit). This improves reliability when compared to the AeroTP
quasi-reliable mode but does not offer full reliability as in the AeroTP reliable-connection mode. This
is because NACKs are only sent for those TPDUs that are received but were unable to get corrected by
the FEC code. TPDUs that may be lost during transmission are not recovered. The second mechanism
AeroTP-NACK+MACK involves using both ACKs and NACKs. This approach uses ACKs to inform
that data has been received correctly and NACKs to request retransmission of the original TPDU. This
improves reliability over the first approach and is comparable in terms of reliability with the AeroTP
reliable-connection mode because of the use of ACKs. Although this increases overhead when error rates
and losses are low, it becomes advantageous in lossy conditions. It improves delay characteristics by re-
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Table 1: State transition definitions
State Description
CLOSED State in which no connection exists and no TPDU is transferred
LISTEN State in which a destination is ready to listen to any incoming TPDU
ASYN SENT ASYN message sent by the host initiating connection
ESTABLISHED A steady state in which data transfer takes places
AFIN SENT AFIN message sent to indicate no new TPDU being sent
AFIN RECEIVED AFIN message received and AFINACK is sent as an acknowledgement
Event Description
APP CONN Request issued by the application to initiate connection by sending ASYN
APP LISTEN Request issued to the destination to move to the LISTEN state
APP CLOSE Request to intiate closing a connection by sending AFIN
ASYN RX ASYN received, indicating a connection has been requested
ASYNACK RX ASYNACK received, indicating connection request has been granted
ACK RX Single ACK received
MACK RX Multiple ACKs received
NACK RX NACK received indicating corrupted TPDU and requesting retransmission
AFIN RX AFIN received, indicating end of any new TPDU, initiating connection close
AFINNACK RX AFINACK received, indicating connection termination has been notified
CLOSE TO A timeout allowing outstanding retransmissions before going to CLOSED state
LISTEN TO A timeout to go to LISTEN state so that the receiver can receive all TPDUs

ducing the number of overall retransmissions and requesting them only when an FEC code is unable to
correct all the errors.

Figure 3 shows packet flow diagrams for AeroTP in reliable connection mode using only single ACKs,
AeroTP in the hybrid-ARQ mode with only NACKs, and AeroTP in the hybrid-ARQ mode with both
ACKs and NACKs. We can see that AeroTP in the reliable mode sends ACKs for every successfully
received packet. The AeroTP operation in the other two modes is discussed in the following section.

C. AeroTP NACK Operation

As in AeroTP-reliable connection mode, the hybrid error control mechanism starts off with both the
source and the destination in the CLOSED state. After receiving a connect message from the application,
the source sends an ASYN message to the receiver, while moving to the ASYN SENT state. Depending
on the availability of the application data in the send buffer, the connection setup message is either an
explicit ASYN message or an ASYN message piggybacked with the first TPDU. FEC words are added
to the payload depending on the FEC strength chosen. The destination receives a listen request from the
application and moves to the LISTEN state. Upon receiving the ASYN message or AeroTP TPDU it
moves to the ESTABLISHED state. The destination performs an FEC check on the ASYN message. If
the FEC code is able to correct errors in the TPDU then it is delivered to the application, otherwise the
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Figure 3: AeroTP packet flow diagram

destination sends a NACK to request retransmission of the original TPDU. The destination acknowledges
the ASYN message from the sender and then it moves to the ESTABLISHED state. The source moves to
the ESTABLISHED state when an ASYNACK is received. While in the ESTABLISHED state, the source
and the destination exchange AeroTP TPDUs and NACKs. After the source finishes sending all the data,
an AFIN message is sent to the destination while moving to the AFIN SENT state. The destination moves
to an AFIN RCVD state and acknowledges the AFIN. To make sure that the destination has received all
the TPDUs including retransmissions, the destination begins a timer in AFIN RCVD state to go to the
LISTEN state. The source maintains a close-timer, that expires after a certain time interval long enough to
receive any request for retransmission with high probability. Furthermore, Figure 3 shows that lost TPDUs
cannot be recovered in this mode.

D. AeroTP NACK+MACK Operation

The operation of the AeroTP NACK+MACK mode is similar to the AeroTP NACK mode. The dif-
ference lies with receiving ACKs or MACKs along with NACKs. For example, in the LISTEN and ES-
TABLISHED states upon receiving the ASYN message or AeroTP TPDU, the receiver performs an FEC
check on the segment. If any errors are detected, the FEC attempts to correct them. When the receiver
successfully corrects the errors, it sends an ACK or MACK. When the receiver fails to correct the errors,
the receiver sends a NACK requesting retransmission. As shown in Figure 3, when a segment is lost during
transmission, the RTO (retransmission timeout) on the segment expires and the sender retransmits the data
segment. Therefore all the data is delivered to the destination.
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IV. SIMULATION RESULTS
We have discussed the operation of AeroTP hybrid-ARQ in Section III. This section presents the

simulation results from running these models. We compare the performance of AeroTP hybrid-ARQ
modes with AeroTP reliable connection and quasi-reliable modes, and with TCP and UDP protocols using
the ns-3 open-source simulator [20]. AeroTP uses the selective-repeat ARQ algorithm to provide reliable
edge-to-edge connection between nodes for the reliable mode, FEC for the quasi-reliable mode of the
AeroTP protocol, and both in the hybrid modes. The network in this simulation setup consists of two
nodes communicating via a lossy link. One node is configured as a traffic generator, sending data at a
constant data rate of 4.416 Mb/s (3000 packets/s with an MTU of 1500 B), and the other as a traffic sink.
The path consists of a 10 Gb/s link representing the LAN on the TA, a 5 Mb/s capacity link with a latency
of 10 s representing the mobile airborne network, and a second 10 Gb/s link representing the LAN at the
ground station. Bit errors are introduced in the middle link with a fixed probability for each run, and the
performance for each probability of bit-errors is shown in the plots described in the next section. A total
of 1 MB of data is transmitted during one single simulation between the two nodes. The link is made
unreliable by introducing losses using an error model varying bit-error probabilities ranging from 0 to
10−4 for each of the protocols. Each simulation case is run 25 times and the results averaged to obtain the
data needed for transport layer comparisons with 95 percent confidence-interval bars plotted.

E. Fully-reliable Mode Performance

In the fully-reliable mode, AeroTP uses ARQ as its reliability mechanism. This trades additional
latency (in the case of lost or corrupted packets) and overhead of the reverse channel, against reliability.
The advantage of this mechanism is that given enough time, every lost packet can be correctly delivered to
the application. The AeroTP reliable mode provides an option to aggregate multiple ACKs. With an MTU
size of 1500 bytes we can aggregate up to 365 ACKs, in which each additional ACK add up to 4 bytes to
the 20-byte AeroTP header.

The performance for different ACK aggregation values is measured in terms of average goodput, av-
erage delay, cumulative goodput, and cumulative overhead incurred as BER increases from 0 to 10−4.
Figure 4 shows decreasing goodput as BER increases due to fewer data packets delivered per unit time.
Figure 5 shows that the average delay in general increases across the range of BER due to an increased
number of retransmissions. However, there is no significant difference in the goodput or delay perfor-
mance amongst different MACK values. We attribute this behavior to the amount of data transmitted
being too small to see any significant difference in the performance. Figure 6 shows that all 1 MB of the
data is delivered as expected, thus achieving full reliability. Figure 7 shows increased overhead for ACKs
aggregated above 200 due to increased amount of retransmissions for every MACK lost.

F. Mode Comparison over Lossy Links

In this section, we discuss the effect of increasing BER on transport layer performance metrics using
different AeroTP modes, on UDP, and on TCP NewReno. The results show tradeoffs between the modes
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as a result of deteriorating channel conditions. Figure 8 shows that the AeroTP quasi-reliable mode is
able to achieve better performance than AeroTP reliable mode, which drops off significantly as the BER
increases. Both the AeroTP hyrbid-ARQ modes perform better than AeroTP reliable mode as expected. In
comparison to the AeroTP protocol, TCP backs off significantly as the BER increases due to its congestion
control mechanism. The UDP protocol is able to achieve better goodput compared to AeroTP reliable
mode and hybrid-ARQ modes but it drops off as BER increases due to corrupted data. The AeroTP reliable
mode end-to-end delay increases significantly in comparison with AeroTP hybrid-ARQ modes with a BER
of 10−4 as shown in Figure 9. This can be attributed to the decrease in number of retransmissions due to
the use of FEC codes. On the other hand, AeroTP-FEC and UDP incur no delay as they do not retransmit
any data. The TCP’s end-to-end delay increases nearly double than that of the AeroTP fully-reliable mode
at BER of 10−4 due to higher number of retransmissions. Over the course of the simulation, the AeroTP
fully reliable mode and AeroTP hybrid mode with both NACKs and MACKs enabled are able to deliver
the full 1 MB of data transmitted for all BERs, but the AeroTP hyrbid mode with only NACKs enabled
starts losing data for BER > 2.5 × 10−5, as shown in Figure 10. The plot also shows that FEC looses a
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higher percentage of the data due to corruption as the BER increases compared to AeroTP NACK, because
the hybrid mode requests retransmissions and recovers up to a certain percentage. The UDP protocol does
not employ any error detection or recovery, hence loses a percentage of data at higher BERs. Furthermore,
the plot shows that the TCP is unable to deliver the full 1MB of data due to decrease in the congestion
window each time a data segment is lost, after which eventually TCP connection times out. Figure 11
shows that both the AeroTP hybrid modes have larger overhead compared to a purely FEC-based quasi-
reliable mode and purely-ARQ based fully-reliable mode because they have both additional FEC bits
sent and data retransmitted. All the AeroTP modes incur much less overhead compared to that of TCP
NewReno.

V. CONCLUSIONS AND FUTURE WORK
In this paper we presented the ns-3 simulation model of AeroTP hybrid-ARQ modes, and obtained

results showing their advantages in a lossy environment. We show the tradeoffs between using AeroTP
reliable mode, quasi-reliable, and the hybrid modes in terms of achieving reliability, incurring overhead,
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and comprimising delay and goodput. We are in the process of implementing this protocol to run in a Linux
environment along with the rest of the ANTP suite [21, 22]. This will enable testing on mobile platforms
as well as in real-world traffic conditions. In the future we will also be simulating and implementing
gateways to allow translation between the traditional Internet protocol stand and the ANTP suite.
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