
An Implementation and Analysis of SCPS-TP in ns-3

Truc Anh N. Nguyen∗ and James P.G. Sterbenz∗†§
∗Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science
�e University of Kansas, Lawrence, Kansas 66045

†School of Computing and Communications (SCC) and InfoLab21
Lancaster University, LA1 4WA, UK

§�e Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

annguyen@i�c.ku.edu,jpgs@i�c.ku.edu

ABSTRACT
Given the importance of TCP in transport-layer protocol studies
and the numerous TCP modi�cations, yet the limited TCP models
in ns-3, we extend the existing TCP framework in the network
simulator by implementing SCPS-TP, a transport-layer protocol for
space communications. �e TCP backward-compatible SCPS-TP is
constructed as a set of TCP enhancements through the utilization of
TCP options to address the unique characteristics of space networks
with error-prone, highly asymmetric, and bandwidth-constrained
channels. In this paper, we present our implementation together
with a set of simulations to validate our model against the origi-
nal SCPS-TP paper. �rough the veri�cation, we also analyze the
performance of SCPS-TP in comparison with the standard TCP.
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1 INTRODUCTION AND MOTIVATION
With its principal role in the Internet success and stability, the
Transmission Control Protocol (TCP) [16] that was designed with
a set of assumptions that are no longer valid in emerging network-
ing, has undergone numerous modi�cations and extensions. Many
of these changes improve TCP performance in environments that
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are characteristically di�erent from the wired network for which
TCP was originally tailored. �e Space Communications Protocol
Standards-Transport Protocol (SCPS-TP) [7] is such enhancement.
SCPS-TP is the transport component of the SCPS protocol suite
developed to address the challenges imposed by the space environ-
ment on reliable end-to-end (E2E) data communications. In addition
to SCPS-TP, the suite also consists of �le transfer, security, and net-
work protocols. Designed to be backward-compatible with TCP,
SCPS-TP utilizes TCP options to implement a set of mechanisms
that augment TCP shortcomings in bandwidth-constrained and
asymmetric space channels with high bit-error probability. Unlike
TCP that always assumes congestion as the only cause of a packet
loss, SCPS-TP realizes the di�erent sources of data loss in space
networks and designates distinct algorithms to cope with each loss
type. In addition, the protocol is equipped with a header compres-
sion mechanism and hybrid negative acknowledgement (ACK) to
cope with the limited bandwidth resource and uses a �xed ACK
frequency to reduce the load on the return link, which generally
has much lower capacity than the forward data link.

As we continue our e�ort to extend TCP models in the ns-3
network simulator [14], we implement SCPS-TP with the hope
that our contribution will be helpful to the research community
in studying transport-layer protocol behaviors using simulations.
Furthermore, we anticipate the implementation of other satellite
stack components following our SCPS-TP model that will enable
more sophisticated and realistic space communication studies in ns-
3. In this paper, we present our implementation together with a set
of simulations to validate the SCPS-TP model against the original
paper [7]. �rough the evaluation, we analyze the performance of
SCPS-TP in comparison with standard TCP.

�e remainder of the paper is organized as follows: Section 2
discusses the drawbacks of TCP in space communication and the
corresponding SCPS-TP enhancements followed by a brief survey
of other previous SCPS-TP studies. Section 3 explains our imple-
mentation of the protocol and how the new model interacts with
the existing TCP framework in ns-3. We verify the correctness of
our model in Section 4 and conclude our paper in Section 5 with
directions for future work.

2 BACKGROUND AND RELATEDWORK
We begin this section by summarizing the TCP drawbacks in the
space environment as highlighted in the SCPS-TP paper. We then



describe in more detail the set of TCP extensions incorporated into
SCPS-TP to address these limitations. �e section is concluded with
a brief survey of some previous studies on SCPS-TP.

2.1 TCP Limitations in Space Communications
�e space environment is characterized by error-prone, asymmet-
ric, capacity-constrained channels, and intermi�ent connectivity.
Due to the noisiness in space communication channels, bit errors
are common, resulting in a high number of corruption-induced
losses in addition to congestion-based. �e TCP congestion con-
trol algorithm, without modi�cations and enhancements, fails to
sustain the protocol throughput when operating over uncongested
and noisy links due to its assumption that all packet losses are the
consequence of network congestion. As a result of many engineer-
ing tradeo�s and the nature of scienti�c missions carried by space
networks, space communication channels are highly asymmetric
with substantially greater forward link capacity than the return link
bandwidth. Because a TCP receiver usually acknowledges every
other in-order segment, TCP overall throughput is constrained by
the limited capacity of the return link. Moreover, because space
networks comprise lower bandwidth links than wired networks, bit-
e�ciency becomes more important. TCP, with its 20-byte header
per segment, creates signi�cant overhead especially when small
segments are used to reduce bit-error probability. �e problem
is intensi�ed by the limited spacecra� power. Finally, connectiv-
ity within the space environment is usually intermi�ent with a
dynamic network topology. TCP was designed for a connection
with a stable E2E path and its ACK-clocking system will fail in the
absence of a steady �ow of acknowledgements. As a consequence,
TCP su�ers from poor throughput performance due to the high
number of retransmissions. In the worst-case scenario when TCP
exceeds its maximum retransmission threshold, the connection will
be aborted.

2.2 SCPS-TP Enhancements on TCP
Corresponding to each characteristic of the space environment
presented above is a set of enhancements employed by SCPS-TP.

SCPS-TP implements separate algorithms to deal with the three
sources of packet loss existed in a space network: congestion, cor-
ruption, and link outage. �e protocol employs two mechanisms
for identifying the source of loss: default assumption and explicit
signaling. �e sender’s default behavior is set by a network man-
ager or an application and can be altered by an explicit noti�cation
from the data receiver or intermediate nodes including routers and
ground stations. To cope with congestion-induced losses, SCPS-TP
uses the delay-based TCP Vegas congestion control algorithm [1, 5].
�e protocol employs the same Vegas slow-start algorithm to dou-
ble the congestion window every other round trip time (RTT) while
adding an additional congestion avoidance phase initiator. A SCPS-
TP sender can also enter congestion avoidance when the congestion
window reaches the network’s bandwidth-×-delay product (BDP),
which is a parameter with a supplied value. On the other hand,
when a corruption-induced loss occurs, the sender neither invokes
its congestion control algorithm nor backo�s its retransmission
timer. �e sender learns about corruption by the presence of a
corruption-experienced option a�ached to an acknowledgement

sent from the receiver, which in turn is noti�ed by a corruption-
experienced ICMP message from its ground station. To prevent
over�owing the network link capacity when the congestion control
algorithm is disabled, SCPS-TP uses a token-packet rate-control
mechanism [15]. Finally, in response to a link outage, the sender en-
ters persist mode during which it transmits periodic probe packets,
suspends its retransmission timer, and ceases all data transmissions.
�e sender learns about link outage by receiving a link-outage
ICMP message from its ground station.

To cope with asymmetric channels, SCPS-TP uses a �xed ACK
frequency based on its estimated RTT, even when an out-of-order
segment is received. �e open-loop, token-packet rate-control
mechanism is again used to clock out data transmission on the
sender’s side in the absence of a steady �ow of acknowledgements.
SCPS-TP also utilizes header compression to reduce the bandwidth
usage on the ACK channel.
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+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type = 21 |Length = varied| Hole1 Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Hole1 Size | Bit-Vector (variable length) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: SNACK option format [4]

To cope with bandwidth-constrained channels, SCPS-TP imple-
ments two mechanisms: header compression and the selective
negative acknowledgement (SNACK) option. �e SCPS-TP E2E
header compression technique replaces the port numbers in the
regular header with a connection identi�er and omits any �elds
that are irrelevant to the segment being transmi�ed. �is header
compression mechanism is loss-tolerant since the decompression of
a packet is independent from the decompressions of the preceding
ones. SCPS-TP communicating entities negotiate their use of header
compression by appending an option to the initial SYN and SYN-
ACK signaling segments. SCPS-TP selective negative acknowledge-
ment SNACK is a hybrid version of the selective acknowledgement
SACK [12] and negative acknowledgement NAK [9] designed to
recover from multiple losses per sending window in a bit-e�cient
way. Since the receipt of a SNACK option is equivalent to an imme-
diate retransmission request, SCPS-TP eliminates the reliance on
the Fast Retransmit algorithm, which may never be triggered when
the ACK frequency is tuned to accommodate the limited return
link capacity. Figure 1 illustrates the format of a SNACK option
as de�ned in the CCSDS Recommended Standard for SCPS-TP [4].
�e Type and Length �elds are mandatory in all TCP options. �e
SNACK option has a type of 21 with variable length if the bit-vector
�eld is presented; otherwise the option length is 6 octets. �e
Hole1O�set �eld holds the o�set from the current ACK number
of the �rst hole being reported in the option, while the Hole1Size
�eld holds the size of the �rst hole in maximum-sized segment
(MSS) units. Finally, the Bit-Vector �eld is used to report additional
missing data in the receiver’s bu�er following the �rst hole.

Furthermore, SCPS-TP employs the Timestamps option [11] for a
more accurate RTT estimation and the Window Scaling option [11]
to allow new data transmissions on the sender side while it is trying
to recover from corruption-induced losses.



2.3 Related Work
�e performance of SCPS-TP has been studied extensively since
its inception. Analysis of the protocol using various network sce-
narios includes under the impact of long propagation delay [18],
over a long-delay, error-prone cislunar communication links [17],
and over NASA geostationary orbit (GEO) Advanced Communica-
tions Technology Satellite (ACTS) with the particular focus on the
e�ectiveness of those SCPS-TP mechanisms designed to cope with
space channel asymmetry [19].

3 SCPS-TP IMPLEMENTATION IN NS-3
Our implementation of SCPS-TP in ns-3 follows the CCSDS recom-
mended standard for SCPS transport protocol [4]. As a protocol
that is comprised of multiple extensions to TCP, the SCPS-TP model
also resides in the Internet module along with TCP models.

3.1 Data Loss Handling
�e SCPS-TP approach for dealing with di�erent sources of data
loss in space communications is implemented inside the ns3::
ScpsTpSocketBase class, which is an inheritance of ns3::
TcpSocketBase. �e sender’s default behavior is set to corruption
and can be changed to either congestion or link outage by tuning
the m lossType a�ribute. Our SCPS-TP model allows the use of
any TCP congestion control algorithm implemented in ns-3 when
m lossType is set to congestion. As the �rst milestone of our
SCPS-TP implementation project, we implemented TCP Vegas [13],
which is now part of the standard ns-3 release.

When the m lossType a�ribute is set to corruption, upon a re-
quirement for data retransmission, i.e. when the number of received
duplicate ACKs has reached its threshold de�ned inm retx�resh,
when the sender receives a SNACK, or upon the expiration of the
retransmission timer, SCPS-TP does not modify its congestion win-
dowm cWnd and slow-start thresholdm ss�resh values. �is
mechanism requires SCPS-TP to overwrite the
TcpSocketBase::ReTxTimeout() and TcpSocketBase::
EnterRecovery() functions.

3.2 Fixed ACK Frequency
Unlike TCP that transmits an ACK for every other segment received,
a SCPS-TP receiver acknowledges data on a �xed frequency. �is
mechanism is handled by the ScpsSocketBase::ReceivedData()
function. �e receiver is not allowed to ACK any received data,
including out-of-order sequences, before the delay ACK timer is
�red. �e duration of this timer is the value of the tunable parameter
m delAckTimeout used in the standard TCP.

3.3 SNACK Implementation
Similar to other existing TCP options in ns-3, the SNACK option
is de�ned inside the ns3::ScpsTpOptionSnack as a child class of
the ns3::TcpOption. In addition to the ScpsTpOptionSnack::
Serialize() and ScpsTpOptionSnack::Deserialize() function
that writes the option to and extracts (and reconstructs) it from the
byte bu�er of the packet to which the option is appended, respec-
tively, the class also de�nes a SNACK hole as a pair of sequence
numbers. A hole is a block of one or more contiguous missing
segments in the receiver’s bu�er. �e �rst sequence number is

used to represent the le� edge while the second sequence number
is used to represent the right edge of the hole. Here, we borrow
the representation of a SACK block from RFC 2018 [12] in our im-
plementation of a SNACK hole except that the sequence number
pair in SNACK represents missing instead of queued data because
SNACK is a negative acknowledgement. All existing holes in the
receiver’s bu�er at a given time is stored in a SNACK list. �is list
allows the transmissions of multiple SNACK options in a single
ACK packet. �e goal is to ensure that our SNACK implementation
is compatible with the SACK code that has been recently pushed
into the ns-3 development tree and will be part of the next ns-3.27
standard release.
TcpOpt ionSack : : S a c k L i s t : : i t e r a t o r i t =m sa ckL i s t . beg in ( ) ;
TcpOpt ionSack : : SackB lock beg in = ∗ i t ;
ScpsTpOpt ionSnack : : SnackHole ho l e ;
++ i t ;
/ / We i t e r a t e through the c u r r e n t l y updated sack l i s t t o
/ / c o n s t r u c t snack l i s t
wh i l e ( i t != m sa ckL i s t . end ( ) ) {
TcpOpt ionSack : : SackB lock nex t = ∗ i t ;
ho l e = ScpsTpOpt ionSnack : : SnackHole ( nex t . second , beg in .

f i r s t ) ;
m snackL i s t . p u s h f r on t ( ho l e ) ;
beg in = ∗ i t ;
++ i t ;
}
/ ∗ Now we need to push one more ho l e to the f r o n t o f
∗ snack l i s t . Th i s i s the ho l e t h a t has o f f s e t 0 from
∗ the c u r r e n t ACK number ∗ /
ho l e = ScpsTpOpt ionSnack : : SnackHole ( m nextRxSeq . Get ( ) ,

beg in . f i r s t ) ;
m snackL i s t . p u s h f r on t ( ho l e ) ;

Listing 1: TcpRxBuffer::UpdateSnackList()

Similar to SACK, the SNACK list generation is performed inside
ns3::TcpRxBuffer. Since a SNACK list is viewed as a complement
of a SACK list, the former can be constructed directly from the
la�er. A�er the SACK list is generated or updated through the
TcpRxBuffer::UpdateSackList() private function when an out-
of-order segment arrives at the receiving bu�er, the SNACK list is
also generated or updated through the function TcpRxBuffer::
UpdateSnackList() as shown in Listing 1. Upon the arrival of a
new segment that advancesm nextRxSeq, holes that have already
been �xed should be removed from the SNACK list through the
TcpRxBuffer::ClearSnackList() private function as presented
in Listing 2, similar to the way old data blocks are removed from
the SACK list through TcpRxBuffer::ClearSackList(). Objects
from other classes can obtain the current SNACK list using the pub-
lic function TcpRxBuffer::GetSnackList(). When the receiver
transmits anACKusing ScpsTpSocketBase::SendEmptyPacket(),
if the SNACK list is not empty, the receiver will call the
ScpsTpSocketBase::AddOptionSnack() function repeatedly to
construct multiple SNACK options until either there are no items
le� in the list or the maximum allowed number of TCP option octets
has been reached. A code snippet of the SendEmptyPacket() func-
tion that demonstrates how SNACK options are appended to an
ACK header is shown in Listing 3.
ScpsTpOpt ionSnack : : SnackHole ho l e = ∗ i t ;
i f ( ho l e . second <= seq ) {

i t = m snackL i s t . e r a s e ( i t ) ;
}



e l s e i f ( ( ho l e . f i r s t < seq ) && ( seq < ho l e . second ) ) {
ho l e . f i r s t = seq ;

}

Listing 2: TcpRxBuffer::ClearSnackList()

i f ( m snackEnabled && m rxBuf fe r−>Ge t S n a c k L i s t S i z e ( ) >

0 )
{

ScpsTpOpt ionSnack : : S n a c kL i s t s n a c k L i s t = m rxBuf fe r−>
Ge t Sna ckL i s t ( ) ;

/ / C a l c u l a t e the number o f SNACK op t i on s can be
appended to t h i s ACK

u i n t 8 t op t i onLenAva i l = header . GetMaxOptionLength ( ) −
header . GetOpt ionLength ( ) ;

u i n t 8 t a l l owedSnackOpt ions = op t i onLenAva i l / 6 ;

ScpsTpOpt ionSnack : : S n a c kL i s t : : i t e r a t o r i ;
u i n t 1 6 t h o l e 1O f f s e t , h o l e 1 S i z e ;

/ ∗ Now we i t e r a t e through the SNACK l i s t ,
∗ c a l c u l a t e the o f f s e t and s i z e o f each hole ,
∗ and c o n s t r u c t a SNACK op t i on f o r t h a t ho l e ∗ /

f o r ( i = s n a c k L i s t . beg in ( ) ; a l l owedSnackOpt ions > 0 &&
i != s n a c k L i s t . end ( ) ; ++ i )

{
h o l e 1O f f s e t = ( ( ∗ i ) . f i r s t − m rxBuf fe r−>
NextRxSequence ( ) ) / m tcb−>m segmentS ize ;
h o l e 1 S i z e = ( ( ∗ i ) . second − ( ∗ i ) . f i r s t ) / m tcb−>
m segmentS ize ;
AddOptionSnack ( header , h o l e 1O f f s e t , h o l e 1 S i z e ) ;
a l l owedSnackOpt ions −−;

}
}
}

Listing 3: ScpsTpSocketBase::SendEmptyPacket()

SNACK options, when arriving at the data transmi�er, are pro-
cessed by the ScpsTpSocketBase::ProcessOptionSnack() func-
tion where all the reported holes (one hole per option when Bit-
Vector is not used and an ACK can carry multiple SNACK options)
are placed in a received SNACK list. �is list is then passed as an
argument to the UpdateSnackedData() function inside the ns3::
TcpTxBuffer class. �e function is responsible for iterating through
the transmit bu�er and marking those sequence numbers reported
as missing in the recently received SNACK for immediate retrans-
missions.

4 VERIFICATION AND ANALYSIS
�e lack of an available implementation of SCPS-TP in the Linux
kernel prevents us from using DCE [6] to verify the correctness of
our model. �us, we have decided to validate our code by following
the testing scenarios presented in the original paper [7]. Speci�cally,
we reproduce the asymmetry and corruption tests conducted in
the laboratory with the understanding that some di�erences in
the results obtained from our simulations and their emulations are
inevitable. In addition, we also evaluate the performance of SCPS-
TP under the impact of long propagation delay and small segment
size.

client serverrouter

Figure 2: Topology for SCPS-TP vs. TCP comparison

4.1 Simulation Topology
�e topology that we use is illustrated in Figure 2, in which a
data-transmi�ing client communicates with a data-receiving server
through a router. �is router serves the same purpose as the Span-
ner program that the SCPS-TP emulation used to simulate a satellite
channel. �e link between the router and the server is con�g-
ured to characterize a satellite link with di�erent data rates, prop-
agation delays, and bit error rates based on a speci�c testing sce-
nario. �e router implements a drop-tail queue with capacity of one
bandwidth-×-delay product (BDP). We use BulkSendApplication
to transmit 5 MB of data from the client to the server in each simula-
tion. While SCPS-TP experiment used the SunOS 4.1.3 Unix kernel’s
TCP implementation in their comparison with SCPS-TP, we use
TCP NewReno since it is the standard baseline TCP implementation
available in the current ns-3 release.

4.2 Asymmetry Test

Table 1: SCPS-TP con�gurations for asymmetry tests

Parameter Setting
Send bu�er size 300 kB

Receive bu�er size 300 kB
Congestion control on
ACK frequency 0.1 s
Rate control 1.5 Mb/s

SNACK option on, no bit-vector
Window Scaling option on
TCP Timestamps option o�

SCPS-TP Header Compression o�

�e asymmetry test demonstrates the performance of SCPS-TP
in comparison with TCP when operating over asymmetric space
communication channels. �e channel connecting the sender and
the router has a bandwidth of 1.5 Mb/s and a negligible delay of 0.01
ms. Each packet transmi�ed from the sender to the receiver has an
MTU size of 512 bytes. �e simulated space link between the router
and the server is con�gured with a 50-ms propagation delay and a
1.5-Mb/s data rate in the forward direction. �e return direction
takes on each bandwidth value in the set [1.5 Mb/s, 15 kb/s, 5 kb/s,
3 kb/s, 2 kb/s, 1.5 kb/s]. �is is equivalent to data channel and
ACK channel bandwidth ratios ranging from 1:1 to 1000:1. �e
SCPS-TP con�guration is summarized in Table 1, which is almost
identical to Table 1 in the original paper, except the ACK frequency.
In these simulations, SCPS-TP utilizes the Vegas congestion control
algorithm. We disable the Timestamps and SACK options when
simulating the standard TCP.

Figure 3 plots the average throughput of SCPS-TP in compari-
son with TCP NewReno over a range of ACK channel capacities,
while Figure 4 shows transmi�ed sequence numbers as a function
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of simulation time at the 5 kb/s ACK-link capacity for the protocols.
We also simulate Vegas in this scenario to clearly demonstrate the
e�ectiveness of the �xed and reduced ACK frequency approach
employed by SCPS-TP in coping with asymmetric channels. �e
con�guration of SCPS-TP shown in Table 1 is basically a combina-
tion of Vegas, �xed ACK, and SNACK.

Overall, we see that the higher the data-channel to ACK-channel
bandwidth ratio, the lower the throughput achieved by the proto-
cols. �e throughput performance of the two TCP variants and the
TCP-inherited SCPS-TP are all constrained by the limited reverse
link capacity. TCP relies on ACK reception to utilize the network
bandwidth. �e low ACK-channel capacity limits the congestion
window growth, resulting in a throughput degradation. Moreover,
when the forward to return link bandwidth ratio is high, the reverse
channel is saturated before the forward link causing some ACKs to
be dropped at the queue. However, the throughputs of NewReno
and Vegas drop much faster than the SCPS-TP throughput. At the
300:1 ratio (at the 5 kb/s ACK channel bandwidth), the throughput

achieved by SCPS-TP is approximately 800 kb/s, which is about 5
times higher than the throughput achieved by NewReno and almost
10 times higher than the throughput achieved by Vegas. �e be�er
performance of SCPS-TP owes to its reduced ACK frequency mech-
anism. As highlighted in the SCPS-TP paper, the ACK frequency
needs to be properly tuned and merits further study. When we use
the ACK frequency to be approximately 50% of the available ACK
channel capacity as suggested for this scenario, we see signi�cant
�uctuations in the SCPS-TP throughput. Many simulations with
di�erent ACK frequency values lead us to our use of 0.1 s delayed
ACK in these asymmetry tests.
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We extend our study of the reduced ACK frequency bene�t in
coping with bandwidth asymmetry by simulating SCPS-TP with
other congestion control algorithms and comparing these SCPS-TP
variants with the corresponding TCP variants. We choose West-
wood [3, 10], HighSpeed [8], and Hybla [2] for our evaluation. As
shown in Figure 5, while the performance of both Westwood and
HighSpeed are improved with the employment of the �xed ACK
approach, the performance of Hybla is not.

4.3 Impact of Delay Test
In the second set of simulations, we study the impact of long prop-
agation delay on the performance of SCPS-TP and NewReno. �e
simulated space link between the router and the receiver has a delay
varied from 50 ms to 300 ms. �e SCPS-TP and TCP con�gurations
as well as the other simulation parameters are the same as in the
previous asymmetry test.

Figure 6 plots the average throughput of SCPS-TP and NewReno
at the 1:1 and 500:1 forward to return link bandwidth ratios as a
function of the space channel delay. Overall, as the delay increases,
the throughput performance decreases. �e longer it takes for the
data and their ACKs to traverse through the links, the slower the
congestion window grows. When the ACK and data channels have
the same capacity, i.e. when the ratio is 1:1, NewReno achieves
be�er performance than SCPS-TP. At the 100 ms delay, the through-
put achieved by NewReno is about 1.1 Mb/s, twice the throughput
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achieved by SCPS-TP. However, when the ratio increases to 500:1,
SCPS-TP outperforms NewReno. At the 100 ms delay, SCPS-TP
obtains a throughput of 354 kb/s while NewReno can only acquire
a throughput of 82 kb/s.

4.4 Impact of Segment Size Test
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In the third set of simulations, we study the impact of segment
size on the performance of SCPS-TP and NewReno. Again, we
use the same se�ing as in the previous tests, except that we �x
the reverse link capacity at 3 kb/s (equivalent to 500:1 ratio) while
varying the MTU size from 100 bytes to 1500 bytes.

Figure 7 plots the average throughput of the two protocols as
a function of MTU size. We see that segment size has a strong
e�ect on the performance since both protocols achieve much be�er
throughput with large MTU size. Small-sized packets prevent the
protocols from fully utilizing the network available bandwidth.
SCPS-TP again outperforms NewReno.

4.5 Corruption Test
�e corruption test demonstrates the performance of SCPS-TP in
comparison with TCP when operating over lossy space commu-
nication channels. �e simulated space link between the router
and the server is con�gured with a 10−5 bit-error rate (BER) using
ns3::RateErrorModel. �is link has a symmetric bandwidth of
1.5 Mb/s in both directions. Two independent simulations are per-
formed; one with a 50 ms and the other with a 100 ms propagation
delay for the satellite channel. �e SCPS-TP con�guration for these
corruption tests is summarized in Table 2, which is reproduced
from Table 2 in the original paper.

:
Table 2: SCPS-TP con�gurations for corruption tests

Parameter Setting
Send bu�er size 300 kB

Receive bu�er size 300 kB
Congestion control o�
ACK frequency 1 ACK every 69 ms
Rate control 1.425 Mb/s

SNACK option on, no bit-vector
Window Scaling option on
TCP Timestamps option o�

SCPS-TP Header Compression o�
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Figure 8: Corruption: Tx sequences vs. time at 50ms delay

Figure 8 and Figure 9 show transmi�ed sequence numbers by
both protocols as a function of simulation time at the 50 ms and
100 ms delay, respectively. We can see that SCPS-TP is able to
transmit more data faster than NewReno because when corruption
is enabled, while NewReno blindly halves its congestion window,
SCPS-TP does not reduce its sending rate upon a packet loss event.
Moreover, while NewReno throughput drops from 110 kb/s to 58
kb/s when the propagation delay increases from 50 ms to 100 ms,
SCPS-TP throughput stays the same at about 300 kb/s.
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Figure 9: Corruption: Tx sequences vs. time at 100ms delay

5 CONCLUSIONS
In this paper, we present our ns-3 model of SCPS-TP, which is
comprised of a set of TCP extensions to address the unique charac-
teristics of the space environment. While verifying the correctness
of our implementation by reproducing the experiments presented
in the original SCPS-TP paper by Durst et al., we study the perfor-
mance of the protocol under various network conditions. In the
asymmetry test, we prove the e�ectiveness of the �xed and reduced
ACK frequency mechanism employed by SCPS-TP in coping with
high forward and return channel bandwidth ratios, which is also
highlighted in the original SCPS-TP paper. In addition, we see
that in order to achieve the bene�t from this mechanism, the ACK
frequency needs to be properly tuned for each scenario. �e poten-
tial of the SCPS-TP’s ACK technique is also valid when SCPS-TP
employs some congestion control algorithms di�erent from Vegas.
Furthermore, when the ACK frequency is reduced, SCPS-TP is able
to achieve be�er throughput than NewReno when the asymme-
try couples with long delay and/or small segment MTU size. Last
but not least, we show the e�ectiveness of SCPS-TP corruption
handling mechanism in the corruption test.

For future work, we plan to implement the link outage algorithm
since it is the only missing component in the current SCPS-TP
model. In addition, we plan to extend our study of the protocol
under additional network scenarios. We are also interested in com-
paring the performance of SNACK and SACK under error-prone
channels.
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