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Abstract

With the motivation to develop a resilient and survivable Future Internet, we are constructing a configurable and adaptive
multipath transport-layer protocol called ResTP. While some other composite protocols mainly emphasize their flexibility
to provide services to multiple application classes operating on top of various network environments, our ResTP focuses
on increasing the resilience level of the protocol in particular and the network in which ResTP is deployed in general, by
following a set of design guidelines derived from the ResiliNets framework. In this framework, resilience has a broad
definition that subsumes multiple disciplines, including survivability, disruption tolerance, and dependability. The imple-
mentation of ResTP employs modular programming to decrease the complexity while increasing its extensibility. ResTP
uses a tunable header to minimize unnecessary overhead. In this paper, we present the design and implementation of
ResTP connection management, including its connection establishment, monitoring, and termination. Through simula-
tions in ns-3, we show that ResTP achieves a comparable performance to UDP in its connectionless mode with its ability
to optimize the header. We also compare ResTP opportunistic and TCP handshake schemes and show that the oppor-
tunistic outperforms the 3-way handshake, especially in the presence of long delay and SYN drop. When using the same
connection management scheme as TCP with ARQ for error control and bulk-send application, ResTP outperforms TCP,
especially in the presence of random loss.

1 Introduction and motivation

The Transmission Control Protocol (TCP) [1] and the
User Datagram Protocol (UDP) [2] have been the standard
transport-layer protocols in the Internet for decades. While
the lightweight UDP provides a connectionless and unre-
liable data transfer service, TCP provides a connection-
oriented, reliable service with flow control, congestion
control, and in-order data delivery. UDP is typically used
to carry network management traffic DNS name transla-
tion. On the other hand, TCP is typically used to carry
traffic from electronic mail, remote terminal access, file
transfer, and the killer application in the early 1990s, the
Web. However, the emergence of new application classes
together with the advancement in networking technolo-
gies and paradigms that introduce new network environ-
ments have challenged the fixed services provided by UDP
and TCP and violated their design assumptions. For ex-
ample, while some developers of multimedia applications
such as Internet telephony, real-time video conferencing,
and streaming of stored audio and video prefer to use UDP
instead of TCP since these applications can tolerate some
amount of data loss, other developers argue with this selec-
tion due to the lack of congestion control in UDP, which
has been proved to play a crucial role in sustaining Inter-
net stability. The TCP congestion control algorithm has its
own drawbacks when the protocol is deployed in wireless
networks. Wireless channels are known for their high er-
ror rate, and a packet loss is more likely corruption-based

than congestion-based [3]. Unfortunately, since TCP was
designed for wired environments, it invokes its congestion
control to reduce its sending rate on every occurrence of
data loss irrespective of its cause resulting in a significant
degradation in TCP throughput. In addition, the TCP as-
sumption of a stable end-to-end (E2E) path between com-
municating parties is violated by frequently partitioned net-
works such as in deep space environments partly due to
long delay and high node mobility but with limited power.
Over the years, numerous efforts have been made to ad-
dress TCP drawbacks and enhance its performance leading
to a plethora of TCP variants, but each variant is only a
temporary solution that targets a single issue for a particu-
lar type of network. TCP extensibility is very limited, due
in part to its rigid intertwined error, flow, and congestion
control [4]. Furthermore, there are services that are not
provided by the standard Internet transport protocols such
as throughput and timing guarantees. Last but not least, the
Internet with UDP and TCP is not a resilient system.
With the motivation to develop a resilient and survivable
network and to address the limitations of the standard pro-
tocols in face of the rapid growth of networking tech-
nologies, we are constructing a configurable and adaptable
resilient multipath transport-layer protocol called ResTP.
ResTP does not only emphasize its flexibility in pro-
viding alternative configurations based on different ser-
vice requirements and underlying environments similar to
some other composable protocols including TP++ [5] and
CTP [6], but also focuses on increasing the resilience



level of the protocol and the network in which it is de-
ployed. The design of ResTP follows a set of principles
derived from the ResiliNets framework [7], and its im-
plementation employs modular programming to decrease
complexity while increasing its extensibility. As a com-
posable transport protocol, ResTP supports alternative al-
gorithms for each service that it provides. The mechanisms
across multiple services can be mixed and matched to meet
the requirements and characteristics of various application
and network types. ResTP is implementable at both end-
systems and gateways. At a gateway, the protocol performs
seamless splicing with the conventional TCP and UDP pro-
tocols, as well as splicing ResTP segments for Disruption-
tolerant networks (DTNs).
In this paper, we present the design and implementation of
the ResTP connection management service, including con-
nection establishment, monitoring, and termination. We
perform simulations of the three connection management
schemes supported by our protocol in ns-3 [8], includ-
ing connectionless, connection-oriented with TCP’s 3-way
handshake, and opportunistic establishment. We show that
in its connectionless mode, ResTP achieves a compara-
ble performance to UDP due to its ability to optimize the
header to reduce unnecessary overhead. We also com-
pare the ResTP opportunistic algorithm with TCP’s 3-way
handshake and see that the opportunistic approach outper-
forms TCP, especially in the presence of high latency and
SYN drop. The behavior of the opportunistic scheme is fa-
vorable to short traffic flows that impose a strict limit on
data transfer duration. For similar configuration as TCP
including the 3-way handshake, ARQ error control, and
with bulk-send application, ResTP outperforms TCP when
packet corruption occurs.
The rest of the paper is organized as follows: In Section 2,
we start with a brief survey of available mechanisms to im-
plement the connection management of a transport-layer
protocol. The survey is then followed by an overview of the
ResiliNets framework and our definition of resilience. We
also provide more details on ResTP functionality with the
emphasis on its header, five reliability modes, and connec-
tion management service. We conclude the section by ref-
erencing a few other composable transport protocols from
the literature. In Section 3, we explain our implementa-
tion of ResTP connection management schemes in ns-3.
In Section 4, we present our simulation setup, results, and
analysis of these algorithms. Finally, in Section 5, we con-
clude our paper and give directions for future work.

2 Background and related work

We begin this section with an explanation of transport-
layer connection management and a very brief survey of
some available mechanisms proposed for this service. We
then give an overview of the ResiliNets framework that
guides us through our development of ResTP to achieve re-
silience and survivability and highlight the particular prin-
ciples that we apply to design and implement ResTP con-
nection management, one of the many services provided
by the protocol that we study exclusively in this paper. We

follow with a discussion on ResTP header and its five re-
liability modes, and end the section by quickly reviewing
some other composable transport protocols.

2.1 Connection Management
Connection management refers to the mechanism em-
ployed by a transport protocol to allocate, synchronize, and
deallocate state variables between communicating hosts
while allowing each party to establish the necessary pa-
rameters of the ensuing data transfer [9]. In a reliable con-
nection management that can be achieved by combining
handshaking techniques with timers and unique connection
identifiers, a complete data transmission with no ambigu-
ity caused by duplicate data or acknowledgments from ei-
ther the current connection or the previous ones is guaran-
teed [10]. Connection management mechanisms are clas-
sified into two categories: connectionless and connection-
oriented.
In a connectionless transport such as UDP, the associating
hosts exchange individual datagrams and normally main-
tain no information regarding the flow, thus cannot pro-
tect the data from missequencing and duplication [11]. On
the other hand, in a connection-oriented transport such
as TCP and its variants, the end systems exchange their
data over a connection that is either explicitly or im-
plicitly initialized and torn-down with state information
maintained by both parties throughout the connection life-
time. Connection-oriented schemes are further divided
into two groups: handshake-based (or packet-exchanged
based) and timer-based. In handshake-based, the hosts are
required to explicitly exchange control messages (signal-
ing) to establish and terminate their connection. With this
approach, installed state is normally maintained until ex-
plicitly removed by control messages, which is also re-
ferred as pure end-to-end (E2E) hard state management.
APPN [12, 13, 14, 15] and Datakit [16, 17, 18] implement
this pure hard state scheme. Furthermore, at the transport
layer, signaling may be accomplished in-band or out-of-
band. In-band signaling is multiplexed with data packets
on the same connection while out-of-band signaling gets
transmitted over a separate flow. Finally, timer-based pro-
tocols such as Delta-t [19], VMTP [20], and TP++ [5]
implement the soft state management approach in which
timers are used to determine the connection-state reten-
tion intervals at the end hosts, and all installed state will
eventually time out unless they are refreshed. In fact, TCP
connection establishment is handshake-based while its ter-
mination is a hybrid approach that combines both explicit
control messages and timers.

2.2 ResiliNets Framework
In the ResiliNets framework, resilience is defined as the
ability of the network to provide and maintain an accept-
able level of service in the face of various faults and chal-
lenges to normal operation [7]. This broad definition of
resilience subsumes multiple disciplines, including those
relating to challenge tolerance such as fault tolerance, sur-
vivability, disruption tolerance, and traffic tolerance, those
relating to trustworthiness such as dependability with re-
liability and availability as the two major aspects, secu-



rity, and performability, and the two disciplines that con-
nect challenge tolerance and trustworthiness: robustness
and complexity. To direct the development of a resilient
network, the framework establishes a set of design princi-
ples, and these guidelines are followed closely during our
ResTP creation and implementation process.
Specifically, the first principle that we practice when de-
signing each of ResTP services, including its connec-
tion management that is studied in this paper is diver-
sity. While redundancy allows us to achieve fault toler-
ance, diversity prevents fate sharing and enables surviv-
ability. Each ResTP function implements different algo-
rithms. The selection of these algorithms is carefully con-
sidered and their resource tradeoffs are examined through
many simulation analysis since the complexity of a sys-
tem can be increased due to the resilience mechanisms that
are employed. The implementation of ResTP as a whole
exploits modular programming techniques to reduce com-
plexity and increase the protocol’s adaptability and evolv-
ability. Each service is a pluggable component that can
be invoked when needed. The evovability of ResTP helps
it cope with the evolution of network architecture and the
emerging of new applications and allows any additions of
new algorithms with very minimal modifications to the ex-
isting code.

2.3 An Overview of ResTP
ResTP is the general-purpose version of the Aeronautical
Transport Protocol (AeroTP) [21, 22], a domain-specific
transport protocol for a highly-dynamic airborne telemetry
network environment. ResTP was originally proposed, and
its design was discussed in our previous publications [23,
24]. To provide the background for our study of ResTP
connection management in this paper, in this section we
give an overview of the protocol, focusing on its header,
connection management, and reliability modes.
2.3.1 Header
Figure 1 displays the format of a full ResTP transport pro-
tocol data unit (TPDU). While a detailed explanation of
each of the header fields can be found in our previous
publications, we want to emphasize here that the header
is tunable. Except for the first eight bytes present in ev-
ery ResTP configuration, the other fields are only included
when needed for a particular setting. The first four bytes
are necessary since ResTP is a composite protocol with
many attributes and algorithms to be negotiated between
communicating endpoints. The source and destination port
numbers are essential for multiplexing and demultiplex-
ing. When operating in its connectionless and unreliable
mode, the ResTP header only includes the addition of
the header CRC, which is the sixth word in the complete
header shown in Figure 1. This optimization reduces un-
necessary overhead as we will see shortly in the simulation
and analysis section below.
2.3.2 Connection Management
The implementation of ResTP connection management
supports both connectionless and connection-oriented ap-
proaches. The connectionless mode with none of the flags
in the flow header field set is similar to what is used for

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| HL | Flags | Flow | Error |

| | |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |C|E|U|A|P|R|S|F| |C|O|C| |A|C|F|A|M|N|S|

| | |W|C|R|C|S|S|Y|I| |O|P|X| |R|R|E|C|A|A|N|

| | |R|E|G|K|H|T|N|N| |N|T|F| |Q|C|C|K|K|K|K|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port Number | Destination Port Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowlegement Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Flow ID | Multipath |

| |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |M|M| k | E2E |

| | |P|P|# path | code |

| | |?|M|sflowid| scheme|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

/ Composable fields /

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Resv. | HEC CRC-16 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

\ \

/ Payload (variable length) /

\ \

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Payload CRC-32 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1 ResTP TPDU format
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UDP. The connection-oriented mode utilizes TCP’s 3-way
handshake connection establishment and its hybrid con-
nection termination to ensure complete data transfer with-
out missequencing and duplication (the CON Flow flag bit
set). However, one of the drawbacks of TCP is the cost of
one RTT to set up a connection, which is especially inef-
ficient for short flows in a long-delay environment such as
satellite or the interplanetary network. Hence, ResTP also
provides an alternative opportunistic connection establish-
ment algorithm in which data are allowed to be overlapped
with signaling messages (the OPT Flow flag bit set). We
will show in Section 4 that this overlapping assists ResTP
in sustaining its performance when operating over high-
latency channels and incurring SYN drop. Figure 2 illus-
trates the difference between the TCP’s 3-way handshake
(left side) and the opportunistic (right side) connection es-
tablishment techniques. In the opportunistic approach, im-
mediately after a SYN segment is transmitted, a data seg-
ment is piggybacked with the SYN flag set. This SYN flag
allows the connection to be initialized even when the ini-
tial SYN message is lost without the need to wait for SYN
retransmission. In other words, the receiving side is able
to accept the connection request and respond with a SYN-
ACK when it receives either the initial SYN or the sub-
sequent data segment. When being implemented at gate-
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Figure 3 ResTP transfer mode flow diagrams

ways, ResTP supports custody transfer similar to what is
used in the Bundle Protocol for Delay-Tolerant Networks
(DTNs) [25] with the CXF Flow flag bit set.
2.3.3 Reliability Modes
Similar to connection management, for error control,
ResTP also implements multiple alternative error correc-
tion algorithms, including automatic repeat request (ARQ),
forward error correction (FEC), and the combined hybrid
ARQ (HARQ). By coupling the connection management
and error control techniques, ResTP defines five transfer
modes to satisfy service requirements from different appli-
cation types:

Fully-reliable connection mode: This mode guaran-
tees correct data delivery by preserving the E2E ACK se-
mantics as illustrated in Figure 3a.

Nearly-reliable connection mode: In this mode,
since the gateway uses custody transfer and immediately
returns ACKs back to the sender with the assumption that
data will be eventually delivered to the destination using
the ARQ system (Figure 3b). This mode provides reliabil-
ity, but does not guarantee correct data delivery.

Quasi-reliable connection mode: This mode uses
some level of statistical reliability by using FEC instead
of ARQ and ACKs as shown in Figure 3c.

Unreliable connection mode: This mode imple-
ments the connection-oriented or opportunistic connec-
tion management methods but provides no error control as
shown in Figure 3d.

Unreliable datagram mode: This mode provides no
reliability with connectionless flow management technique
as shown in Figure 3e.
Although the figures only demonstrate the use of the 3-way
handshake connection management scheme, all of the con-
nection modes are also compatible with the opportunistic
technique. In this paper, together with the three connec-
tion management techniques, we study the performance of
the fully-reliable and unreliable datagram modes. As high-
lighted previously, the ResTP header is optimized for each
mode. Figure 4 illustrates the 12-byte unreliable datagram
header, and Figure 5 illustrates the 24-byte fully-reliable
header. Note that we only study the single-path mode
of ResTP in this paper. The unreliable and fully-reliable
header are 4 bytes larger than the UDP and TCP header,
respectively, due to the first word.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| HL | Flags | Flow | Error |

| | |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |C|E|U|A|P|R|S|F| |C|O|C| |A|C|F|A|M|N|S|

| | |W|C|R|C|S|S|Y|I| |O|P|X| |R|R|E|C|A|A|N|

| | |R|E|G|K|H|T|N|N| |N|T|F| |Q|C|C|K|K|K|K|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port Number | Destination Port Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Resv. | HEC CRC-16 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4 Optimized header for unreliable datagram mode

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version| HL | Flags | Flow | Error |

| | |-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |C|E|U|A|P|R|S|F| |C|O|C| |A|C|F|A|M|N|S|

| | |W|C|R|C|S|S|Y|I| |O|P|X| |R|R|E|C|A|A|N|

| | |R|E|G|K|H|T|N|N| |N|T|F| |Q|C|C|K|K|K|K|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port Number | Destination Port Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Acknowledgement Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Timestamp |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Resv. | HEC CRC-16 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5 Optimized header for fully reliable mode

2.3.4 Related Work
There have been other composable transport-layer pro-
tocols proposed in the research community. Similar to
ResTP, TP++ [5] is designed to carry multiple applica-
tion classes, including transactions, bulk data transfer, and
delay-sensitive services. However, TP++ is a single-path
only protocol and only provides a mixture of mechanisms
for its error control while utilizing a timer-based con-
nection management scheme and assuming that conges-
tion control is implemented by the underlying network.
CTP [6] is a configurable and extensible transport proto-
col that is implemented using the Cactus microprotocol
composition framework [26]. It provides various transport-
layer services and functionalities, including reliability, or-
dering, security, jitter control, congestion control, flow
control, data and header compression, MTU discovery,
message fragmentation and collation, and connection man-
agement, where each function is implemented by multiple
algorithms. CTP is also a single-path only protocol. More-
over, both TP++ and CTP do not target achieving resilience
and survivability as our ResTP does.

3 Implementation

This section presents our implementation of the ResTP
connection management schemes. Similar to TCP, a ResTP



association with connection-oriented connection manage-
ment also cycles through a series of states during its
lifetime, including LISTEN, SYN-SENT, SYN-RECEIVED,
ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT,
CLOSING, LAST-ACK, TIME-WAIT, and CLOSED. In addi-
tion, ResTP does not modify the meanings of these states.
The only difference between the TCP 3-way handshake
and ResTP opportunistic connection establishment is the
actions taken by the communicating entities in response to
events that cause state changes. Listings 1 and 2 are used
to implement the 3-way handshake and the opportunistic
establishment on both sides of a connection, respectively.
Although both TCP and ResTP are full-duplex, for sim-
plicity, we only illustrate a unidirectional association.

s w i t c h ( m _ s t a t e ) {
c a s e CLOSED:

Se tup TCB;
Send SYN;
m _ s t a t e = SYN_SENT ;
b r e a k ;

c a s e SYN_SENT :
i f ( r e c e i v e SYN−ACK) {

m _ s t a t e = ESTABLSIHED ;
Send ACK message ;
i f ( m _ p e n d i n g D a t a A v a i l a b l e )

Send pend ing d a t a ;
N o t i f y c o n n e c t i o n s u c c e s s t o a p p l i c a t i o n ;

}
b r e a k ;

c a s e LISTEN :
i f ( r e c e i v e SYN) {

N o t i f y c o n n e c t i o n r e q u e s t t o a p p l i c a t i o n ;
Send SYN−ACK;
m _ s t a t e = SYN_RCVD}

b r e a k ;
c a s e SYN_RCVD:

i f ( r e c e i v e ACK | | r e c e i v e d a t a ) {
N o t i f y c o n n e c t i o n c r e a t i o n t o a p p l i c a t i o n ;
m _ s t a t e = ESTABLISHED ;
i f ( r e c e i v e d a t a )

Send ACK f o r t h e d a t a ; }
b r e a k ; }

Listing 1 3-way handshake

s w i t c h ( m _ s t a t e ) {
c a s e CLOSED:

Se tup TCB;
Send SYN;
i f ( m _ p e n d i n g D a t a A v a i l a b l e )

Send pend ing d a t a wi th SYN f l a g ;
m _ s t a t e = SYN_SENT ;
b r e a k ;

c a s e SYN_SENT :
i f ( r e c e i v e SYN−ACK | | ACK of s e n t d a t a ) {

m _ s t a t e = ESTABLSIHED ;
Send ACK message ;
i f ( m _ p e n d i n g D a t a A v a i l a b l e )

Send pend ing d a t a ;
N o t i f y c o n n e c t i o n s u c c e s s t o a p p l i c a t i o n ;

}
b r e a k ;

c a s e LISTEN :
i f ( r e c e i v e SYN | | r e c e i v e d a t a wi th SYN
f l a g ) {

N o t i f y c o n n e c t i o n r e q u e s t t o a p p l i c a t i o n ;
Send SYN−ACK;
i f ( r e c e i v e d a t a )

Send ACK f o r t h e d a t a ;
m _ s t a t e = SYN_RCVD; }

b r e a k ;

c a s e SYN_RCVD:
i f ( r e c e i v e ACK | | r e c e i v e d a t a ) {

N o t i f y c o n n e c t i o n c r e a t i o n t o a p p l i c a t i o n ;
m _ s t a t e = ESTABLISHED ;
i f ( r e c e i v e d a t a )

Send ACK f o r t h e d a t a ; }
b r e a k ; }

Listing 2 opportunistic

4 Simulation Results and Analysis

In this section, we present our simulation and analysis of
two ResTP reliability modes: fully-reliable and unreliable
datagram in comparison with TCP and UDP, respectively.
The fully-reliable mode is configured with either the 3-way
handshake or opportunistic connection establishment tech-
nique, while the unreliable datagram mode implements the
connectionless flow management scheme.

4.1 Simulation Topology
Figure 6 depicts our simulation topology. At each edge of
the topology is a node representing the data sender on one
end and the receiver on the other end. The two endpoints
communicate through a single bottleneck link where we
introduce bit errors and extra latency. The bottleneck con-
nects two network routers with drop-tail queues installed.
Each of the access link that connects an endsystem to one
of the routers has a negligible delay of 0.01 ms. Each link
in the topology has a bandwidth of 5 Mb/s. Every data
packet has an MTU size of 1446 bytes. Table 1 summa-
rizes the parameters used in our simulations.

sender receiverrouter router

access link access linkbottleneck link

Figure 6 Simulation topology

Parameter Values
Link bandwidth 5 Mb/s

Access link propagation delay 0.01 ms
Bottleneck link propagation delay 10 ms – 300 ms

Packet MTU size 1446 B
Error model Rate Error Model

Error rate 10−7 – 10−4 BER
Application type Bulk send and CBR
Simulation time 100 s

Queue size BDP
Queue type Drop-tail

ResTP connection timeout (fully-reliable) 3 s
TCP variant NewReno

Table 1 Simulation parameters

4.2 ResTP Unreliable Datagram and UDP
For the first set of simulations, we compare the ResTP
unreliable datagram mode that implements connectionless
connection management with UDP. In this scenario, the
bottleneck link has a delay of 10 ms. The sender gen-
erates traffic at a constant rate of 4 Mb/s. We introduce
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Figure 7 ResTP unreliable datagram mode vs. UDP

bit errors into the bottleneck channel with the probability
ranging from 0 to 10−4. Each simulation has a duration
of 100 seconds and is replicated 20 times. We plot the
average throughput, average delay, average overhead, and
packet delivery ratio (PDR) of the two protocols as the er-
ror rate increases. As shown in Figure 7, this configura-
tion of ResTP performs comparable to UDP. When there
are no errors, both ResTP and UDP are able to deliver all
generated traffic successfully to the other end (Figure 7d)
and achieve a throughput close to 4 Mb/s. However, as
the number of packet corruptions increases, the number of
packets arrived at the receiver side decreases, causing the
throughput to drop, since both ResTP unreliable datagram
mode and UDP have no mechanisms to recover from er-
rors. ResTP has a slightly larger overhead than UDP (Fig-
ure 7c). This is due to the extra first four bytes in the ResTP
header that cover the version, header length, and all the
flags for connection management, flow, and error control.
As we explained in the previous section, these fields are
needed for the ResTP entities to communicate their oper-
ating modes because ResTP provides multiple sets of ser-
vices. However, this difference in the overhead between
the two protocols is very small, given that ResTP header is
already optimized for this configuration to exclude unnec-
essary fields.

4.3 ResTP Fully Reliable and TCP
For the second set of simulations, we compare the
ResTP fully-reliable connection mode that implements
the TCP 3-way handshake connection management with
TCP NewReno. This configuration of ResTP imple-

ments ARQ error correction with positive ACKs to
be comparable with TCP. The traffic generator uses
ns3::BulkSendApplication to place a large amount of
traffic into the network, trying to fill up the channel band-
width. We set the buffer size at each router to be the
bandwidth-×-delay product (BDP). With our setting, the
only source of packet losses is corruption when errors are
introduced into the bottleneck link.

BER ResTP Throughput (Mb/s) TCP Throughput (Mb/s)
10−7 4.927±0.003 4.817±0.025
10−6 4.520±0.017 2.153±0.044
10−5 1.515±0.052 0.352±0.012
10−4 0.069±0.022 0.008±0.002

Table 2 Average throughput of ResTP and TCP vs. BER

av
er

ag
e 

th
ro

ug
hp

ut
 [M

b/
s]

delay [ms]

ResTP
Tcp

0

1

2

3

4

5

0 50 100 150 200 250 300

Figure 8 Average throughput of ResTP & TCP vs. delay
Table 2 presents the average throughput of ResTP and TCP



when the bit error rate (BER) varies from 10−7 to 10−4. To
increase the accuracy of our results, we repeat each simu-
lation 20 times and calculate the 95% confidence interval.
As shown in the table, the higher the error rate, the lower
the throughput achieved by ResTP and TCP due to the in-
crease in number of retransmissions. However, TCP, with
its rigid intertwined error, flow, and congestion control to-
gether with the inability to distinguish between corruption
and congestion-based data loss, suffers more drastically
than ResTP. The congestion control algorithm in TCP gets
invoked whenever a loss occurs, which unnecessarily re-
duces its sending rate. On the other hand, ResTP, as a con-
figurable protocol that has each of its services implemented
as a pluggable component, is able to disable its congestion
control when operating in a lossy but uncongested channel.
In this scenario, ResTP maintains its sending rate while try-
ing to recover lost packets. At 10−6 BER, ResTP achieves
twice the average throughput of TCP, and when the BER
reaches 10−4, ResTP throughput is more than eight times
higher than TCP.
In the second scenario (Figure 8), we introduce extra la-
tency into the bottleneck channel instead of BER. The de-
lay is varied from 10 ms to 300 ms to cover different delays
for various network environments. The average through-
puts of both ResTP and TCP degrade with the increasing
latency, and the two protocols perform similar in this case.

4.4 Opportunistic and 3-Way Handshake
In the last set of simulations, we compare the opportunistic
and conventional 3-way handshake connection establish-
ment mechanisms that can be implemented in the ResTP
fully-reliable mode, particularly when encountering SYN
loss. Figure 9 plots the average throughput of both algo-
rithms when the bottleneck delay increases from 10 ms to
300 ms. Overall, the opportunistic approach performs bet-
ter than the 3-way handshake.
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Figure 9 Average throughput of OPT and 3WH vs. delay

We examine the instantaneous throughputs when the de-
lay is 100 ms to take a closer look at the reason behind the
greater performance of the opportunistic mechanism. As
shown in Figure 10, due to the SYN drop, ResTP with the
3-way handshake is only able to complete its connection
initialization when the SYN message is retransmitted more
than 3 seconds after the start of the simulation. On the
other hand, with the opportunistic algorithm, the protocol
can finish its initial setup upon the arrival of the data packet
that is piggybacked with the SYN. Since this data segment
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Figure 10 Inst. throughput of OPT and 3WH (SYN drop)

also carries a SYN flag, the receiving end views the mes-
sage as a regular SYN and immediately responds with a
SYN-ACK, which allows additional data to be transmitted
during the first 3 seconds of the simulation. This behav-
ior is especially beneficial to short flows that may have a
strict bound in their completion time. The benefit is even
more significant when these flows must traverse through
long-delay channels.

5 Conclusion

In this paper, we discuss the design and implementation
of alternative connection management schemes for our re-
silient transport-layer protocol, ResTP. We study the per-
formance of these algorithms together with the two re-
liability modes defined in ResTP under various network
scenarios through multiple simulations in ns-3. Our re-
sults show that ResTP unreliable datagram mode with the
connectionless flow management technique performs com-
parably to UDP. The optimized header is one of the key
factors that constitute to this achievement. ResTP fully-
reliable mode that implements the 3-way handshake con-
nection establishment and ARQ error control with positive
ACK outperforms TCP, particularly in the presence of seg-
ment loss. The high configurability allows ResTP to only
select those mechanisms that are necessary for a particu-
lar scenario. To efficiently handle corruption-based losses,
ResTP can disable its congestion control module and allow
the data sender to maintain its sending rate while recov-
ering from losses. Finally, we show that the opportunis-
tic flow establishment outperforms the 3-way handshake
when facing SYN loss and high latency. This approach is
more favorable for short traffic flows that have a strict delay
bound.
As we continue our design, implementation, and optimiza-
tion of ResTP, we will extend our study of the protocol
under different application and network types. We plan
to analyze the performance of the other three reliability
modes of ResTP, including its nearly-reliable mode with
custody transfer, quasi-reliable with FEC, and unreliable
connection mode. We will also study the multipath mode
of ResTP, which is designed to enhance the survivability of
a network.
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