
Performance Evaluation of TCP Congestion Control
Algorithms in Data Center Networks

Truc Anh N. Nguyen∗, Siddharth Gangadhar∗, and James P.G. Sterbenz∗†‡
∗Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science
The University of Kansas, Lawrence, KS 66045, USA

†School of Computing and Communications (SCC) and InfoLab21
Lancaster University, LA1 4WA, UK

‡Department of Computing
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

{annguyen|siddharth|jpgs}@ittc.ku.edu www.ittc.ku.edu/resilinets

ABSTRACT
TCP congestion control has been known for its crucial role in
stabilizing the Internet and preventing congestion collapses.
However, with the rapid advancement in networking tech-
nologies, resulting in the emergence of challenging network
environments such as data center networks (DCNs), the tra-
ditional TCP algorithm leads to several impairments. The
shortcomings of TCP when deployed in DCNs have moti-
vated the development of multiple new variants, including
DCTCP, ICTCP, IA-TCP, and D2TCP, but all of these al-
gorithms exhibit their advantages at the cost of a number of
drawbacks in the Global Internet. Motivated by the belief
that new innovations need to be established on top of a solid
foundation with a thorough understanding of the existing,
well-established algorithms, we have been working towards
a comprehensive analysis of various conventional TCP al-
gorithms in DCNs and other modern networks. This pa-
per presents our first milestone towards the completion of
our comparative study in which we present the results ob-
tained by simulating multiple TCP variants: NewReno, Ve-
gas, HighSpeed, Scalable, Westwood+, BIC, CUBIC, and
YeAH using a fat tree architecture. Each protocol is evalu-
ated in terms of queue length, number of dropped packets,
average packet delay, and aggregate bandwidth as a percent-
age of the channel bandwidth.

CCS Concepts
•Networks → Transport protocols; Network simula-
tions; Network performance analysis;

Keywords
TCP, dekay-based, loss-based, hybrid congestion control,
data center, NewReno, HighSpeed, STCP, YeAH, BIC, CU-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CFI’16, June 15-17, 2016, Nanjing, China
c© 2016 ACM. ISBN 978-1-4503-4181-3/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2935663.2935669

BIC, Westwood+, Vegas, fat tree, ns-3, performance evalua-
tion, queue buildup, incast, outcast, buffer pressure, Future
Internet

1. INTRODUCTION
The scalability and robustness of the Transmission Con-

trol Protocol (TCP) have been proven through its dominant
role in the Internet, with its congestion control algorithm
contributing to the stability of this global network. However,
the evolution of networking technologies with the emerging
of modern network environments such as satellite channels
and data center networks (DCNs), each with distinct charac-
teristics have been challenging the well-established TCP. For
DCNs, even the newest TCP variants designed to balance
among various constraints of a state-of-the-art congestion
control algorithm can suffer from performance in general,
since what is considered as an ideal design goal in one envi-
ronment may not suit the others.

Measurements have shown that the majority of traffic
within data centers is TCP flows that comprise of a mix-
ture of 3 different types: mice, cat, and elephant traffic [9,
32]. Query traffic or mice flows are small in size (less than
100 KB) and come from those applications that require fast
response time such as Google search and Facebook updates.
These flows tend to experience TCP incast impairment in
which the flows collide at an upper-level switch, exhausting
the switch memory or its buffer capacity and resulting in
packet losses due to the simultaneous transfer from multi-
ple hosts/workers. The second type of traffic in DCNs is
delay-sensitive short messages (cat traffic) that have a size
between 100 KB and 5 MB generated by applications such
as YouTube or Picasa. The last traffic type is throughput-
sensitive long flows (elephant traffic) of more than 5 MB
in size generated by those applications such as software up-
dates. A data center also needs to process data coming from
outside or another data center, for example when an end user
uses a cloud application.

In addition to the incast impairment, TCP in DCNs also
suffers from outcast, queue buildup, and buffer pressure
problems. TCP outcast occurs when a small set of traffic
flows looses their throughput share to a larger set when they
arrive at the same output port due to the characteristic of
drop-tail queues [32]. Queue buildup happens when short
traffic flows experience long queuing delay because their

packets are buffered behind those of longer flows while all of
them traverse the same queue [9]. Lastly, the buffer pressure
issue arises when the greedy elephant flows occupy most of
the bottleneck queue buffer space, leaving little room for the
mice traffic, resulting in packets being dropped [9]. The im-
pairments of TCP in DCNs have motivated the development
of multiple TCP variants to address TCP issues, including
DCTCP [9], ICTCP [36], IA-TCP [23], and D2TCP [33].
However, these variants gain their advantages at the cost
of many drawbacks in the general wide-area Global Inter-
net [32]. An ideal congestion control for DCNs should be
able to efficiently utilize the available network bandwidth
and experience low packet latency with small buffer occu-
pancy. Other design constraints such as scalability, robust-
ness, and deployment complexity also need to be considered.
Moreover, as an end-to-end algorithm, the protocol should
be able to cooperate with commodity switches off-the-shelf
at its full potential without any requirements to modify the
network devices.

We believe that every new TCP variant development needs
to be established on top of a comprehensive understanding
of the existing mechanisms in order to arrive at a better
solution without reinventing the wheel. Unfortunately, the
research community still lacks such a comprehensive com-
parative study of conventional TCP congestion control algo-
rithms in the context of modern networking. Although this
paper only presents our initial set of results in DCNs, it sets
our first milestone towards our ambitious goal of a thorough
analysis of existing general-purpose TCP variants under dif-
ferent network environments, including satellite networks, in
addition to further extend the DCN study. We hope that
our work will provide useful detailed insights into these al-
gorithms, serving as a reference for the research community
towards the development of better TCP congestion control
algorithms that are adaptable to the characteristics of the
underlying network while satisfying the application require-
ments specific to a particular environment.

In this paper, we use the open-source network simulator
ns-3 [1] due to its effective scalability for large-scale sim-
ulations with low memory usage [34]. We study the per-
formance of three TCP congestion control categories: loss-
based with NewReno, HighSpeed, Scalable, Westwood+,
BIC, and CUBIC, delay-based with Vegas, and hybrid with
YeAH-TCP in DCNs using a 6-ary fat tree architecture. For
each protocol, we measure the queue length, total number of
packet drops, average packet delay, and aggregate through-
put as a percentage of the available network bandwidth.

The remainder of our paper is organized as follows: Sec-
tion 2 briefly presents the theoretical background of the TCP
variants studied in our paper. Section 3 explains our simula-
tion setup and an analysis of the obtained results. Section 4
concludes our paper with directions for future work.

2. BACKGROUND AND RELATED WORK
This section provides the theoretical background of the

conventional TCP congestion control algorithms evaluated
in our paper, including NewReno, Vegas, HighSpeed, Scal-
able, Westwood+, BIC, CUBIC, and YeAH. The key fea-
tures of these protocols are summarized in Table 1.

2.1 TCP Congestion Control Algorithms
Our paper evaluates three different categories of TCP con-

gestion detection algorithms, including loss-based, delay-

based, and hybrid. The loss-based algorithms (NewReno,
Westwood+, HighSpeed, Scalable, BIC, and CUBIC) rely
on packet loss events to detect congestion in network chan-
nels while the delay-based variants (Vegas) interpret the
increasing delay due to queue overflow as an indication of
congestion. All hybrid mechanisms (YeAH) incorporate the
features from the first two categories.

2.1.1 NewReno
NewReno [21] implements the standard AIMD (additive

increase multiplicative decrease) congestion control algorithm,
known as the TCP Reno variant described in RFC 5681 [10].
Specifically, NewReno increases its congestion window (cwnd)
exponentially during the slow start phase, which is equiva-
lent to the cwnd increment in Equation 1 upon every new
ACK arrival until a loss happens.

cwnd = cwnd + 1 (1)

When the cwnd reaches the slow start threshold (ssthresh)
value, NewReno slows down its window growing rate, allow-
ing the increment of cwnd by 1 only every RTT, or by 1/cwnd
every ACK receipt until a loss happens as in Equation 2.

cwnd = cwnd +
1

cwnd
(2)

When a loss is detected through the arrival of three du-
plicate ACKs (dupACKs), NewReno enters fast retransmit,
resends the lost segment, halves its ssthresh and modifies its
cwnd according to Equations 3 and 4, respectively.

ssthresh =
cwnd

2
(3)

cwnd = ssthresh + 3 (4)

Fast recovery then governs the data transmission until a
new ACK arrives signifying the recovery of the lost segment.
NewReno augments Reno’s fast recovery phase by introduc-
ing a mechanism for responding to partial acknowledgments,
those ACKs that acknowledge only part of the data trans-
mitted before the loss detection. NewReno remains in the re-
covery phase, trying to recover additional missing segments
when these ACKs are received. This mechanism allows the
protocol to recover from multiple packet losses happening
in a single sending window when TCP selective acknowledg-
ment (SACK) option [29] is not available.

2.1.2 Vegas
TCP Vegas [12] is a pure delay-based congestion control

algorithm that proactively prevents the loss of data seg-
ments. In its steady state, Vegas linearly increases/decreases
its sending rate to ensure a very small number of extra pack-
ets queued up at the bottleneck at any given time (backlog).
Vegas bases its congestion window modification on its mea-
surements of the RTT and the actual throughput achieved
by a connection because the changes in these metrics re-
flect the network dynamics, especially when it approaches
congestion. Vegas estimates its backlog (the diff rate) using
Equation 7, where the actual and expected throughputs are
calculated in Equations 5 and 6, respectively.

actual =
cwnd

RTT
(5)

expected =
cwnd

BaseRTT
(6)

diff = expected− actual (7)

BaseRTT (Eq. 6) denotes the minimum of all RTT mea-
surements during a connection lifetime.

2.1.3 HighSpeed
HighSpeed TCP (HSTCP) [14] improves the performance

of standard TCP in high bandwith-×-delay product (BDP)
networks by making the additive increase and multiplica-
tive decrease factors functions of the current window size
when the congestion window grows large (beyond the value
of Low Window). Specifically, the increase and decrease pa-
rameters are calculated using Equations 8 and 9, respec-
tively. The packet drop rate p(w) is also a function of cur-
rent congestion window size as shown in Equation 10. A
number of other parameters are used in these calculations,
including High Decrease with the usual default value of 0.1,
W or Low Window with the default value of 38, and W1 or
High Window with the default value of 83000.

a(w) = w2 × p(w)× 2× b(w)

(2− b(w))
(8)

b(w) =
(High Decrease− 0.5)(log(w)− log(W))

log(W1)− log(W)
+ 0.5 (9)

p(w) =
0.078

w1.2
(10)

2.1.4 Scalable
Scalable TCP (STCP) [25] is a simple modification to

standard TCP additive increase and multiplicative decrease
factors to enhance performance for bulk data transfers in
high-speed wide area networks. STCP increases its con-
gestion window aggressively during its steady state to allow
full utilization of high BDP links while slowly decreasing the
window to shorten TCP recovery time after the occurrence
of a loss. During its congestion avoidance phase, STCP in-
creases its cwnd by 0.01 for every new ACK until some data
loss is detected as in Equation 11. On an occurrence of con-
gestion, the ssthresh is reduced by a factor of 0.125 as in
Equation 12.

cwnd = cwnd + 0.01 (11)

ssthresh = cwnd− d0.125× cwnde (12)

2.1.5 Westwood+
Similar to TCP Westwood [27], Westwood+ [28] employs

a bandwidth estimation mechanism to adjust its congestion
window. However, instead of performing the sampling ev-
ery ACK receipt as in Westwood, Westwood+ measures the
bandwidth every RTT to alleviate the protocol’s aggressive-
ness in the presence of ACK compression [30].

2.1.6 BIC
BIC (Binary Increase Congestion Control) [37] improves

TCP RTT fairness while effectively utilizing the available
bandwidth of high BDP network environments. At the heart
of BIC are four algorithms: binary search increase, addi-
tive increase, slow start, and fast convergence. The binary
search increase allows BIC to achieve TCP friendliness when
the window size is small with its logarithmic increase func-
tion. The additive increase enhances the performance of
long-RTT flows when they compete with connections that
have shorter delay. The slow start probes for a new maxi-
mum window size that is used in the binary search and fast
convergence algorithms when the current window reaches
the saturation point. Finally, the fast convergence reduces
the increase rate of larger window flows to allow those with
smaller windows to catch up.

2.1.7 CUBIC
CUBIC [20] simplifies BIC congestion control algorithm

complexity while further enhancing BIC friendliness when
competing with standard TCP connections. CUBIC win-
dow growth is a cubic function of the elapsed time since
the last time it reduces its sending rate due to a loss event
(Equation 13), resulting in a concave followed by convex
graph shape.

W (t) = C(t−K)3 + Wmax (13)

In the equation, C is the CUBIC parameter, K is the
elapsed time from the last window reduction following a loss,
and Wmax is the congestion window size when the loss hap-
pened.

2.1.8 YeAH
YeAH (Yet Another Highspeed) [11] is a high-speed TCP

that tries to achieve various design goals of an ideal conges-
tion control algorithm. Vegas’ method for estimating the
network condition is employed to determine YeAH opera-
tion mode: the fast mode with more aggressive congestion
window increment or the slow mode that is equipped with
a precautionary decongestion algorithm. YeAH also stands
out for its capability to detect the presence of legacy Reno
flows and adjust its own sending rate properly to ensure a
fair competition for network resources. The calculations of
the backlog at the bottleneck queue in Equation 14 and the
congestion level in Equation 15 are used to determine the
transition between YeAH’s operating modes.

Q = RTTqueue×G = (RTTmin−RTTbase)×
cwnd

RTTmin
(14)

L =
RTTqueue

RTTbase
(15)

The value of Q (Eq. 14) is also used to adjust the ssthresh
upon the receipt of three dupACKs when YeAH is not com-
peting with Reno flows as shown in Equation 16. Otherwise,
ssthresh is halved to ensure friendliness.

ssthresh = min[max(
cwnd

8
, Q),

cwnd

2
] (16)

Protocol Target environment Category Design goals Descriptions

NewReno
wired, low

bandwidth, small
delay

loss-based
recover multiple losses occuring in

a single sending window

standard AIMD (AI factor = 1,
MD factor = 1/2); exit fast

recovery upon full ACK receipt

Vegas
wired, low

bandwidth, small
delay

delay-based
increase throughput while still

competing fairly with Reno flows

proactively prevent packet losses;
linear increase/linear decrease

algorithm based on queue backlog

HighSpeed high BDP loss-based
fully utilize high bandwidth links
without unrealistic requirement of

a very low packet drop rate

modified AIMD with AI and MD
factors functions of current window
size under large congestion windows

Scalable high-speed WANs loss-based better utilize high bandwidth links
modified AIMD with AI factor =

0.01 and MD factor = 0.125

Westwood+
wireless networks

with high number of
random losses

loss-based
improve throughput in the presence

of corruption-based losses

adjust congestion window based on
estimated bandwidth; perform

bandwidth sampling every RTT

BIC high BDP los-based

tackle RTT unfairness, especially
with the use of drop tail queues

while still ensure friendliness and
scalability

use binary search method to
identify the sending rate

CUBIC high BDP loss-based
simplify BIC window control;

enhance BIC friendliness
window growth a cubic function

YeAH high BDP hybrid
balance multiple design constraints:

efficiency, intra fairness,
friendliness, random loss robustness

dual operating modes based on
queue backlog and network

congestion level

Table 1: Summary of TCP congestion control algorithms

2.2 Related Work
To the best of our knowledge, this paper is the first that

provides an evaluation of multiple conventional TCP conges-
tion control algorithms in data center network environments.
Furthermore, there have been very few papers comparing
many TCP variants [19, 22].

3. EVALUATION
In this section, we present our simulation topology and

parameters in detail followed by an analysis of the collected
results that demonstrate the performance of each TCP algo-
rithm using queue length, total number of dropped packets,
average throughput as a percentage of the ideal bandwidth,
and average packet delay as the metrics.

3.1 Simulation Topology and Parameters
Our simulation topology is the fat-tree architecture de-

veloped to support large-size data-center networks at a low
cost, allowing the use of commodity switches while still be-
ing able to achieve full aggregation bandwidth and back-
ward compatible with the current networking technologies
and protocols (Ethernet, IP, and TCP) [8].

To simplify the illustration, we present a 4-ary fat tree
with k equal to 4 in Figure 1. This tree consists of 4 pods.
Each pod contains 2 level of switches: edge and aggregation
with 2 (k/2) switches at each level. All edge switches are
directly connected to the aggregation switches above and the
hosts below them in the hierarchy. The aggregation switches
connect to 2 (k/2) groups of core switches, allowing these
upper-layer switches to communicate with every single pod.
A 4-ary fat tree supports a total of 16 (k3/4) hosts.

In the simulations for this paper, we use k equal to 6,
resulting in a topology of 54 hosts. Although it is small
comparing to the size of DCNs in practice, it is sufficient to

Edge	

Aggrega)on	

Core	

	
 Pod	
 0	
 	
 Pod	
 1	
 	
 Pod	
 2	
 	
 Pod	
 3	

Group	
 0	
 Group	
 1	

Figure 1: Simple fat-tree topology with k = 4

provide us helpful insights for our initial evaluation of the
various TCP congestion control algorithms. Table 2 sum-
marizes the parameters of the 6-ary fat tree.

k 6
Number of pods 6

Number of edge switches per pod 3
Number of aggregation switches per pod 3

Number of group of core switches 3
Number of core switches per group 3

Number of ports per switch 6
Total number of hosts in tree 54

Total number of edge switches in tree 18
Total number of aggregation switches in tree 18

Total number of core switches in tree 9

Table 2: Fat tree parameters with k = 6

Our test script is a TCP-version (in the current ns-3.25
standard release) of the publicly available ns-3 fat-tree im-
plementation [5] under the NTU-DSI-DCN project [3]. Sim-
ilar to the simulation setup discussed in Wong et. al. pa-
per [35], traffic flow in the network is generated by randomly
selecting (with uniform probability) pairs of communication
hosts across all 54 end systems, resulting in 54 TCP con-
nections simultaneously sending data and ACK segments
across the entire network. In each pair, one host plays the
role of a sender that transmits data at a rate of 50 Mb/s
with an on-off behavior to the other destination host. The
traffic flow has an exponential random distribution. Each
data packet is 1500 bytes in size. All device channels have
a capacity of 100 Mb/s with a delay of 0.001 ms. We also
use the Nix-Vector routing protocol that was developed for
simulating large-scale network topologies [6] as in the origi-
nal setting of the source code. We modify the default initial
slow-start threshold in ns-3 to 2 MB to allow all TCP proto-
cols to enter their congestion avoidance phases shortly after
the start of the simulations, during which they exhibit their
distinct behaviors. The timestamp [24] and window scal-
ing [24] options are both enabled. No loss model is used due
to the reliable characteristic of DCN channels. Each simu-
lation has a duration of 60 seconds. Table 3 summarizes our
simulation parameters. We utilize the ns-3 Flow Monitor
module [4] to collect the performance statistics with some of
our own modifications to calculate the average throughput
percentage of the ideal bandwidth and the average packet
delay. While NewReno and HighSpeed are part of the stan-
dard release, Vegas, Scalable, Westwood+, and YeAH are
our contributions to the ns-3 community [15, 31]. BIC and
CUBIC implementations are obtained from the ns-3 SOCIS-
2014 project [2].

3.2 Results and Analysis
Figure 2 displays the total number of packet drops occur-

ring at all 45 switches of the network. The pure delay-based
Vegas experiences no drops as it is designed to maintain a
very small number of extra packets queued up at any given
time during a connection. YeAH-TCP, with the incorpora-
tion of Vegas mechanism for monitoring network conditions,
particularly when the network approaches congestion, also
does not cause many queue drops. All of the loss-based
congestion control algorithms, especially those designed to
fully utilize the available bandwidth of high BDP links suf-

Parameter Values
Device channel bandwidth 100 Mb/s

Device channel delay 0.001 ms
Packet MTU size 1500 B

Delayed ACK count 2 segments
Delayed ACK timeout 200 ms

Traffic flow pattern exponential random
Simulation time 60 s
Routing protocol Nix-Vector

Queue type drop tail

Table 3: Simulation parameters

Figure 2: Total number of dropped packets

fer badly from packet losses at the network queues, with
CUBIC and STCP performing the worst due to their ag-
gressiveness. The number of packet drops in Westwood+
is slightly smaller than HighSpeed and BIC, which can be
attributed to its bandwidth estimation mechanism.

To illustrate the level of queue occupancy, we utilize the
tracing system [7] in ns-3 to trace the queue length of one of
the core switches during the connection lifetime. Figure 3
displays the collected results. While the other TCP variants
tend to overflow the queue, Vegas maintains a small number
of packets of less than 20 in its queue most of the time. CU-
BIC and STCP cause many queue-overflow instances with
extended drop periods resulting in burst of packet losses.
Multiple packet drops occurring in a single sending window
trigger RTO (retransmission timeout), which resets the con-
gestion window to its initial value. Our results illustrate the
TCP incast impairment in DCNs when multiple mice flows
transmit data simultaneously and experience collision at the
upper-level core switches.

Table 4 presents the aggregate throughput achieved by
each TCP variant as the percentage of the ideal channel
bandwidth (100 Mb/s) and the average packet delay. The
throughputs of all studied algorithms are far from optimal
in our simulation scenario. Overall, the delay-based Vegas
performs the best with higher throughput and smaller de-
lay; a bit higher than 1/5 of BIC delay. As illustrated in the
previous plots, when Vegas is used, the queue length is very
small, enabling traffic flows to traverse through the network

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

Reno

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(a) NewReno

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

Vegas

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(b) Vegas

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

HS

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(c) HighSpeed

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

STCP

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(d) STCP

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

W+

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(e) Westwood+

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

Bic

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(f) BIC

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

Cubic

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(g) CUBIC

qu
eu

e
le

ng
th

 [s
eg

m
en

ts
]

time [s]

YeAH

0.00

20.00

40.00

60.00

80.00

100.00

0 10 20 30 40 50 60

(h) YeAH

Figure 3: Core switch queue length

NewReno Vegas HSTCP STCP Westwood+ BIC CUBIC YeAH
% of ideal throughput 5.61 8.02 5.64 5.32 5.64 5.23 5.42 5.74

Average packet delay (ms) 14.17 3.36 13.01 16.07 13.01 16.04 14.54 13.58

Table 4: Percentage of ideal throughput and average delay

switches with low queueing delay, thus smaller end-to-end
latency. The small delay of DCNs (0.001 ms in our simula-
tion) also contributes to the poor performance of TCP vari-
ants that were intentionally designed to handle long-latency
channels.

4. CONCLUSIONS
In our paper, we perform an evaluation of multiple con-

ventional TCP congestion control algorithms, including the
standard NewReno, Vegas, HighSpeed, STCP, Westwood+,
BIC, CUBIC, and YeAH in data-center networks using a
6-ary fat tree topology in ns-3. We learn that while Ve-
gas has been known for its inability to compete for network
resource with other greedy, loss-based flows in other envi-
ronments due to its proactive pure-delay based scheme, the
same mechanism contributes to Vegas better performance
when comparing with other loss-based variants (NewReno,
HighSpeed, STCP, Westwood+, BIC, and CUBIC) and even
with the hybrid scheme YeAH-TCP in DCNs. Our finding is
consistent with the recent study that proposes the revival of
delay-based TCP for data centers in which the authors show
Vegas potentials when comparing it with DCTCP [26]. We
agree that future development of TCP algorithms for DCNs
should consider incorporating a delay-based mechanism sim-
ilar to Vegas to reduce queue occupancy and overcome the
queue buildup and buffer pressure problems so that all types
of traffic flows can enjoy a shorter end-to-end delay. The ag-
gressiveness of high-speed TCP variants trigger many packet
drops at the queues while not helping them to achieve high
throughput in this type of network, at least under our sim-
ulation setting presented in this paper.

As mentioned earlier, this paper is only our initial eval-
uation of TCP performance in DCNs. To gain more in-
sights into the congestion control algorithms, for our future
work, we plan to extend our simulation model, not only
in the TCP variant dimension, but also in the architecture
(Dcell [18], BCube [17], and VL2 [16]), application (MapRe-
duce [13]), and performance metrics. In addition, we are
aware of the need to evaluate the algorithms in an environ-
ment with mixed traffic types (mice, cat, and elephant) since
application diversity is a natural characteristic of DCNs.

5. ACKNOWLEDGMENTS
The authors would like to thank the members of the Re-

siliNets group for discussions that led to this work. We
would like to thank the anonymous reviewers for their help-
ful feedback on this paper. We would also like to thank
Natale Patriciello and the ns-3 development team for their
help with the ns-3 platform and for the BIC and CUBIC
implementations. This work was funded in part by NSF
grant CNS-1219028 (Resilient Network Design for Massive
Failures and Attacks).

6. REFERENCES
[1] The ns-3 Network Simulator. http://www.nsnam.org,

July 2009.

[2] ns-3 SOCIS 2014: TCP versions for satellite
communications.
https://www.nsnam.org/wiki/SOCIS2014TCP, 2014.

[3] An open-source ns-3 simulation framework for data
center network architectures.
http://ntu-dsi-dcn.github.io/ntu-dsi-dcn/, 2015.

[4] ns-3 Flow Monitor Module Documentation.
https://www.nsnam.org/docs/models/html/
flow-monitor.html, 2015.

[5] ns-3 Implementation of Fat-tree Architecture.
https://github.com/ntu-dsi-dcn/ntu-dsi-dcn, 2015.

[6] ns-3 Nix-Vector Routing API, Usage, and
Implementation. https://www.nsnam.org/docs/
release/3.16/doxygen/group nixvectorrouting.html,
2015.

[7] ns-3 Tracing System Manual. https:
//www.nsnam.org/docs/manual/html/tracing.html,
2015.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture.
SIGCOMM Comput. Commun. Rev., 38(4):63–74,
Aug. 2008.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data Center TCP (DCTCP). In
Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, pages 63–74, New York, NY, USA,
2010. ACM.

[10] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. RFC 5681 (Draft Standard),
Sept. 2009.

[11] A. Baiocchi, A. P. Castellani, and F. Vacirca.
YeAH-TCP: yet another highspeed TCP. In Proc.
PFLDnet, volume 7, pages 37–42, 2007.

[12] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: new techniques for congestion detection
and avoidance. SIGCOMM Comput. Commun. Rev.,
24(4):24–35, 1994.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[14] S. Floyd. HighSpeed TCP for Large Congestion
Windows. RFC 3649 (Experimental), Dec. 2003.

[15] S. Gangadhar, T. A. N. Nguyen, G. Umapathi, and
J. P. Sterbenz. TCP Westwood Protocol
Implementation in ns-3. In Proceedings of the ICST
SIMUTools Workshop on ns-3 (WNS3), Cannes,
France, March 2013.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. In Proceedings of the ACM

SIGCOMM Conference on Data Communication,
pages 51–62, Barcelona, Spain, 2009.

[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,
C. Tian, Y. Zhang, and S. Lu. Bcube: A high
performance, server-centric network architecture for
modular data centers. In Proceedings of the ACM
SIGCOMM 2009 Conference on Data Communication,
SIGCOMM ’09, pages 63–74, New York, NY, USA,
2009. ACM.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
Dcell: A Scalable and Fault-tolerant Network
Structure for Data Centers. In Proceedings of the
ACM SIGCOMM 2008 Conference on Data
Communication, SIGCOMM ’08, pages 75–86, New
York, NY, USA, 2008. ACM.

[19] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu. A step
toward realistic performance evaluation of high-speed
tcp variants. In Fourth International Workshop on
Protocols for Fast Long-Distance Networks
(PFLDNet06), 2006.

[20] S. Ha, I. Rhee, and L. Xu. CUBIC: A New
TCP-friendly High-speed TCP Variant. SIGOPS
Oper. Syst. Rev., 42(5):64–74, July 2008.

[21] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida.
The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 6582 (Standards Track), 2012.

[22] S. Henna. A Throughput Analysis of TCP Variants in
Mobile Wireless Networks. In Next Generation Mobile
Applications, Services and Technologies, 2009.
NGMAST ’09. Third International Conference on,
pages 279–284, Sept 2009.

[23] J. Hwang, J. Yoo, and N. Choi. IA-TCP: A rate based
incast-avoidance algorithm for TCP in data center
networks. In Communications (ICC), 2012 IEEE
International Conference on, pages 1292–1296, June
2012.

[24] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323
(Proposed Standard), May 1992.

[25] T. Kelly. Scalable TCP: Improving performance in
highspeed wide area networks. ACM SIGCOMM
Computer Communication Review (CCR), 33(2):83,
Apr. 2003.

[26] C. Lee, K. Jang, and S. Moon. Reviving Delay-based
TCP for Data Centers. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages
111–112, New York, NY, USA, 2012. ACM.

[27] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and
R. Wang. TCP westwood: Bandwidth estimation for
enhanced transport over wireless links. In Proceedings
of the 7th annual international conference on Mobile
computing and networking, pages 287–297. ACM,
2001.

[28] S. Mascolo, L. Grieco, R. Ferorelli, P. Camarda, and
G. Piscitelli. Performance evaluation of Westwood+
TCP congestion control. Performance Evaluation,
55(1-2):93–111, Jan. 2004.

[29] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), Oct. 1996.

[30] J. C. Mogul. Observing TCP dynamics in real
networks. SIGCOMM Comput. Commun. Rev.,
22(4):305–317, Oct. 1992.

[31] T. A. N. Nguyen, S. Gangadhar, M. M. Rahman, and
J. P. Sterbenz. An Implementation of Scalable, Vegas,
Veno, and YeAH Congestion Control Algorithms in
ns-3 (extended). ITTC Technical Report
ITTC-FY2016-TR-69921-04, The University of
Kansas, Lawrence, KS, April 2016.

[32] R. P. Tahiliani, M. P. Tahiliani, and K. C. Sekaran.
TCP Variants for Data Center Networks: A
Comparative Study. In Cloud and Services Computing
(ISCOS), 2012 International Symposium on, pages
57–62, Dec 2012.

[33] B. Vamanan, J. Hasan, and T. Vijaykumar.
Deadline-aware Datacenter TCP (D2TCP).
SIGCOMM Comput. Commun. Rev., 42(4):115–126,
Aug. 2012.

[34] E. Weingartner, H. vom Lehn, and K. Wehrle. A
Performance Comparison of Recent Network
Simulators. In Communications, 2009. ICC ’09. IEEE
International Conference on, pages 1–5, June 2009.

[35] D. Wong, K. T. Seow, C. H. Foh, and R. Kanagavelu.
Towards reproducible performance studies of
datacenter network architectures using an open-source
simulation approach. In Global Communications
Conference (GLOBECOM), 2013 IEEE, pages
1373–1378, Dec 2013.

[36] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP:
Incast Congestion Control for TCP in Data Center
Networks. In Proceedings of the 6th International
COnference, Co-NEXT ’10, pages 13:1–13:12, New
York, NY, USA, 2010. ACM.

[37] L. Xu, K. Harfoush, and I. Rhee. Binary increase
congestion control (BIC) for fast long-distance
networks. In INFOCOM 2004. Twenty-third Annual
Joint Conference of the IEEE Computer and
Communications Societies, volume 4, pages
2514–2524, 2004.

