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ABSTRACT
Despite the modern advancements in networking, TCP con-
gestion control is still one of the key mechanisms that ensure
the stability of the Internet. Given its principal role, it is
a popular research topic revisited every time TCP and its
variants are studied. Open-source network simulators such
as ns-3 are important tools used by the research community
to gain valuable insight into existing TCP congestion con-
trol algorithms and to develop new variants. However, the
current TCP infrastructure in ns-3 supports only a few con-
gestion control algorithms. As part of the ongoing effort to
extend TCP functionalities in the simulator, we implement
Scalable, Vegas, Veno, and YeAH based on the original lit-
erature and their implementations in the Linux kernel; this
paper presents our implementation details. The paper also
discusses our validation of the added models against the the-
ories to demonstrate their correctness. Through our evalu-
ation, we highlight the key features of each algorithm that
we study.

CCS Concepts
•Networks → Transport protocols; Network simula-
tions;

Keywords
TCP Vegas, NewReno, Veno, YeAH, Scalable, transport
protocols, ns-3 network simulator, performance evaluation,
congestion control, loss-based, delay-based, hybrid, Future
Internet

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3, June 15-16, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2915371.2915386

TCP has been proven to be a crucial component of the In-
ternet due to its ability to sustain its performance (although
not optimal) with the evolution of networking during the
past decades. One of TCP elements that is principal in en-
suring the Internet stability and widely studied with numer-
ous research is its congestion control algorithm. TCP con-
gestion control is revisited on almost every attempt to study
the Internet transport layer. With the modern advance-
ments in networking, comes the emergence of new network
environments such as Gigabit Ethernet or satellite links with
challenging characteristics: high bit-error rate, long propa-
gation delay, high link capacity, and asymmetric channels.
Standard TCP has been enhanced for the Future Internet,
resulting in many variants such as those studied in our pa-
per (Scalable, Vegas, Veno, and YeAH). The current effort to
employ load balancing at the transport layer by incorporat-
ing multi-path feature into TCP producing MPTCP [8] also
requires a thorough understanding of the standard conges-
tion control. This enables design of new algorithms that can
operate efficiently in a more complex system, one with mul-
tiple coexistent, but heterogeneous subflows simultaneously
transferring data through a bottleneck with high congestion
probability.

The study of existing TCP algorithms and the develop-
ment of any new enhancements gain substantial benefits
through the use of open-source network simulators such as
ns-3 [2]. However, the current ns-3 standard release only
consists of NewReno (default), Westwood, Westwood+, Hy-
bla, and HighSpeed congestion control algorithms. In or-
der to extend the supported ns-3 TCP functionalities, we
implement additional protocols, including Scalable, Vegas,
Veno, and YeAH. This paper presents our implementation
details of the added models. The paper also discusses our
validation of these contributions against the original papers
to demonstrate the correctness of the models. Through our
evaluation, we highlight the key features of each algorithm.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly provides the theoretical background of the con-
gestion control algorithms studied in our paper followed by a
short survey on related work. Section 3 explains the imple-
mentations and how the new models interact with the rest of
the TCP framework in ns-3. In Section 4, the correctness of
our implementations is verified. Finally, Section 5 concludes
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our paper with directions for future work.

2. BACKGROUND AND RELATED WORK
This section provides the theoretical background of differ-

ent congestion control algorithms studied in our paper, in-
cluding the standard NewReno, Scalable, Vegas, Veno, and
YeAH, followed by a brief survey of related work.

2.1 TCP Congestion Control Algorithms
TCP congestion control algorithms can be classified into

four categories: loss based, delay based, hybrid, and explicit
notification [5]. Loss-based algorithms treat the occurrence
of a packet loss as an indication of congestion. Delay-based
algorithms infer congestion based on the increasing delay
due to queue build-up when traffic load exceeds network ca-
pacity. Hybrid algorithms take advantage of both loss- and
delay-based mechanisms, while explicit congestion notifica-
tion (ECN) relies on explicit signals from network elements
to learn about congestion. Our paper covers the first three
groups, in that Scalable is a loss-based algorithm, Vegas is
delay-based, and Veno and YeAH are hybrid. The loss-based
NewReno (default TCP in ns-3) is used in our paper as the
baseline for comparison.

Most TCP congestion control variants are derivatives of
the standard defined in RFC 5681 [4], which is known as the
Reno algorithm introduced by Jacobson [13] as a revision of
his original Tahoe [12]. The standard specifies four inter-
twined algorithms that together play a principal role in the
stabilization of the Internet and the prevention of congestion
collapse: slow start, congestion avoidance, fast retransmit,
and fast recovery. The implementation of these algorithms
requires the definition and maintenance of three state vari-
ables: cwnd, rwnd, and ssthresh. Congestion window (cwnd)
determines the amount of data a sender can transmit be-
fore it receives an ACK to prevent network overflow. The
receiver window (rwnd) indicates the amount of data a re-
ceiver is willing to accept. The actual sending window is the
minimum of cwnd and rwnd. Slow start threshold (ssthresh)
provides the transition point between slow start and conges-
tion avoidance phases.

The slow start allows TCP to gradually probe for network
bandwidth when TCP starts its data transmission or after
an expiration of its retransmission timer. The slow start al-
gorithm prevents TCP from suddenly throttling the network
with a large burst of traffic. In addition, slow start initiates
TCP ACK clocking that determines when new data should
be placed into the network to sustain equilibrium during a
connection lifetime. During slow start, cwnd is incremented
by 1 for every new ACK received, resulting in an exponential
increase of the sending rate until a loss happens as shown in
Equation 1.

cwnd = cwnd + 1 (1)

The congestion avoidance algorithm continues to allow
TCP to increase its sending rate (cwnd), but at a slower
speed than when it is in the slow start phase to prevent con-
gestion after the sending rate reaches ssthresh. Specifically,
cwnd is incremented by 1 for every RTT, resulting in a lin-
ear increase over time until the experience of a loss. This is
equivalent to the cwnd modification per Equation 2 upon a
new ACK receipt.

cwnd = cwnd +
1

cwnd
(2)

The fast retransmit algorithm is responsible for promptly
detecting and recovering lost data by observing the number
of received duplicate ACKs (dupACKs), with the arrival of
three dupACKs signifying the loss of a segment. Fast re-
transmit was developed as an alternative to the original re-
transmission timer in detecting packet losses. The fast re-
covery governs data transmission after fast retransmit until
a new ACK arrives informing the recovery of the loss. The
occurrence of a loss requires Reno to halve its slow-start
threshold and sending rate according to Equations 3 and 4,
respectively.

ssthresh =
cwnd

2
(3)

cwnd = ssthresh + 3 (4)

2.1.1 NewReno
NewReno [11] modifies the Reno fast recovery algorithm

explained above by introducing a mechanism for respond-
ing to partial acknowledgments to enhance TCP’s ability by
recovering more efficiently from multiple losses occurring in
a single sending window. NewReno defines an additional
state variable named recover to keep track of the highest
sequence number transmitted before the sender enters fast
retransmit, and it only leaves its fast recovery state upon
the receipt of a full ACK, which is an ACK that acknowl-
edges all sent data up to and including recover. In case a
partial ACK arrives with acknowledgment number less than
recover, the algorithm remains in fast recovery trying to re-
transmit the next in-sequence packet while sending a new
segment if cwnd and rwnd allow. The NewReno algorithm is
an alternate solution for multiple data loss recovery in the
absence of TCP selective acknowledgment (SACK) [16].

2.1.2 Scalable
Scalable (STCP) [14] improves TCP performance for bulk

transfers in high-speed wide-area networks that are charac-
terized by long delay and high link bandwidth, by altering
TCP congestion window update algorithm. The goal is to
shorten TCP recovery time following a transient congestion
by using a different additive increase and multiplicative de-
crease factors from those employed in Reno. While oper-
ating in congestion avoidance phase, STCP increments its
cwnd by 0.01 for every new ACK received until a loss occurs
as shown in Equation 5. On its detection of a congestion, the
ssthresh value is reduced by a factor of 0.125 as in Equation 6
instead of 0.5 as in Reno (Eq. 3).

cwnd = cwnd + 0.01 (5)

ssthresh = cwnd− �0.125× cwnd� (6)

2.1.3 Vegas
Vegas [6] implements a proactive congestion control al-

gorithm that tries to prevent packet drops by keeping the
backlog at the bottleneck queue small. During a connection
lifetime, Vegas continuously samples the actual throughput
rate and measures the RTT since these metrics reflect the

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2 
Seattle, Washington, USA - June 15-16, 2016

18



 
 
 

network condition when it approaches congestion. The ac-
tual sending rate is computed using Equation 7. The dif-
ference diff (Equation 9) between this throughput value and
the expected throughput calculated in Equation 8 reflects
the number of packets enqueued at the bottleneck, i.e. the
amount of extra data sent because the Vegas sender has
been transmitting at a rate higher than the available net-
work bandwidth. Vegas tries to keep this diff value between
two predefined thresholds, α and β by linearly increasing
and decreasing cwnd during its congestion avoidance phase.
The diff value and another predefined threshold γ are used
to determine the transition between slow-start and linear
increase/decrease mode.

actual =
cwnd

RTT
(7)

expected =
cwnd

BaseRTT
(8)

diff = expected− actual (9)

In Equation 8, BaseRTT represents the minimum RTT
observed during a connection lifetime.

2.1.4 Veno
TCP Veno [9] enhances Reno algorithm to deal with ran-

dom loss in wireless access networks by employing the Ve-
gas algorithm for estimating the current network condition
to identify the actual cause of a loss. Specifically, Veno
does not use the estimated number of packets enqueued
(backlog N calculated in Equation 10) at the bottleneck to
proactively detect congestion, but to distinguish between a
corruption-based loss and a congestion-based loss. When
Veno learns that a loss is non-congestive, instead of halv-
ing ssthresh (Eq. 3), it reduces ssthresh by a smaller amount
using Equation 11. Veno also refines the Reno congestion
avoidance algorithm by increasing the sending rate by 1 ev-
ery 2 RTTs if the backlog exceeds its predefined threshold
β, allowing it to operate longer in the stable state during
which network capacity is fully utilized.

N = actual× (RTT− BaseRTT) = diff × BaseRTT (10)

ssthresh = cwnd× 4

5
(11)

2.1.5 YeAH
Yet Another Highspeed (YeAH) [5] is a heuristic aimed to

fully exploit the capacity of high bandwidth-×-delay product
(BDP) networks with a small number of induced congestion
events, while trying to balance among various constraints
such as fair competition with standard Reno flows and ro-
bustness to random losses. YeAH-TCP operates between its
Fast and Slow modes. While in the Fast mode when the net-
work link is not yet fully utilized, YeAH increases its cwnd
according to STCP rule (Eq. 5). After full link utilization is
achieved, it switches to Slow mode and behaves as Reno with
a precautionary decongestion algorithm. The transition be-
tween the two modes is determined based on the backlog
at the bottleneck queue calculated in Equation 12 and the
estimated level of network congestion shown in Equation 13.
Note that Equation 12 is basically the same as Equation 10.

Q = RTTqueue×G = (RTTmin−RTTbase)× cwnd

RTTmin
(12)

L =
RTTqueue

RTTbase
(13)

To fairly compete with Reno flows, YeAH ensures that it
only executes its decongestion algorithm if its current cwnd
is greater than the cwnd of the competing Reno flows that
it estimates, denoted by countreno in the algorithm.
Upon the receipt of three dupACKs, YeAH adjusts its

ssthresh based on the current value of Q as in Equation 14
if it is not competing with Reno flows. Otherwise, ssthresh
is halved as in Reno.

ssthresh = min{max{cwnd
8

, Q}, cwnd
2

} (14)

2.2 Related Work
There are three ns-3 research works that are most rele-

vant to our paper. The first implements TCP Westwood
and Westwood+ protocols [10] and compares their perfor-
mance against existing variants, including Tahoe, Reno, and
NewReno under some selected network conditions. The sec-
ond presents an implementation of TCP CUBIC [15], which
is the default congestion control algorithm in the Linux ker-
nel. The authors validate their implementation by compar-
ing their model with the one in Linux using Network Simu-
lator Cradle (NSC) and the corresponding implementation
in ns-2 [1]. In the most recent work, Window Scaling and
Timestamp Options together with other congestion control
algorithms including Hybla, Highspeed, BIC, CUBIC, and
Noordwijk are introduced into ns-3 TCP infrastructure [7].

3. IMPLEMENTATIONS
In this section, we first explain the TCP congestion con-

trol classes and their main operations in the new ns-3 TCP
framework. We follow this with the implementation details
of STCP, Vegas, Veno, and YeAH algorithms.

3.1 TCP Congestion Control Classes in ns-3
TCP implementation in ns-3 resides in the Internet mod-

ule and consists of multiple classes interacting with each
other to perform the supported TCP functionalities. The
current standard release contains multiple TCP variants in-
cluding NewReno as the default congestion control algo-
rithm, Hybla, Highspeed, Westwood, andWestwood+. They
are pluggable components implemented as child classes of
TcpNewReno, which is in turn derived from the congestion
control abstract class TcpCongestionOps. The main meth-
ods currently utilized in the base classes are described in ns-
3 documentation [3] and summarized below. An extended
version of this paper with class diagram is available on our
ResiliNets wiki [17] 1.

• TcpCongestionOps::GetSsThresh() and
TcpNewReno::GetSsThresh(): These methods compute
ssthresh after a loss event.

• TcpCongestionOps::IncreaseWindow() and
TcpNewReno::IncreaseWindow(): These methods de-
termine the current congestion phase by comparing
cwnd and ssthresh and call the corresponding functions.

• TcpNewReno::SlowStart(): This method adjusts cwnd
during slow-start phase.

1http://www.ittc.ku.edu/resilinets/reports/Nguyen-
Gangadhar-Rahman-Sterbenz-2016-extended.pdf
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• TcpNewReno::CongestionAvoidance(): This method
modifies cwnd during congestion avoidance phase.

• TcpCongestionOps::PktsAcked(): This method ma-
nipulates timing information carried by received ACKs.

3.2 STCP
TcpScalable is a derived class of TcpNewReno that inher-

its TcpNewReno::IncreaseWindow() and TcpNewReno::

SlowStart(). Because STCP modifies NewReno additive
increase and multiplicative decrease factors used in the con-
gestion avoidance and fast retransmit modes, respectively,
TcpScalable replaces TcpNewReno::CongestionAvoidance()
and TcpNewReno::GetSsThresh(). The implementation of
these methods requires three class members to be declared:
m aiFactor that represents the increase factor with a default
value of 50, m mdFactor that represents the decrease fac-
tor with a default value of 0.125, and m ackCnt that keeps
track of the number of segments acknowledged. Following
the Linux implementation of STCP, we use 50 for m aiFactor
instead of 100 suggested in the literature to account for de-
layed ACKs. Listing 1 shows a code snippet of TcpScal-

able::CongestionAvoidance().

u i n t 32 t w = std : : min ( cwndInSegments ,
m aiFactor ) ;

i f (m ackCnt >= w)
{

cwndInSegments += m ackCnt / w; }
cwnd = cwndInSegments ∗ m segmentSize ;

Listing 1: TcpScalable::CongestionAvoidance().

TcpScalable::GetSsThresh() updates ssthresh after the
receipt of three dupACKs following STCP rule as shown in
Listing 2.

u in t32 t ssThresh = std : : max ( 2 . 0 ,
cwndInSegments ∗ ( 1 . 0 − m mdFactor ) ) ∗
m segmentSize ;

Listing 2: TcpScalable::GetSsThresh().

3.3 Vegas
The key components of our Vegas implementation in

TcpVegas are its RTT sampling performed in TcpVegas::

PktsAcked() method upon the receipt of an ACK, its cal-
culation of the diff rate based on the RTT measurements
in PktsAcked(), and the implementation of its linear in-
crease/decrease mode. The latter is performed inside TcpVe-
gas::IncreaseWindow() method, in which a code snippet is
presented in Listing 3.

i f ( d i f f > beta )
{

/∗ We are going too f a s t , we need to
slow down by l i n e a r l y dec r ea s ing cwnd
f o r the next RTT ∗/

cwnd = cwnd − m segmentSize ; }
e l s e i f ( d i f f < alpha )

{
/∗ We are going too slow , we need to
speed up by l i n e a r l y i n c r e a s i n g cwnd
f o r the next RTT ∗/
cwnd = cwnd + m segmentSize ; }

e l s e
{

/∗ We are going at the r i g h t speed ,
∗ cwnd should not be changed ∗/ }

Listing 3: TcpVegas::IncreaseWindow().

3.4 Veno
Similar to Vegas, TcpVeno requires an implementation of

the PktsAcked() method to perform RTT sampling needed
for the calculation of backlog N at the bottleneck queue.
TcpVeno::IncreaseWindow() modifies cwnd following Veno
additive increase rule as shown in Listing 4, where m inc is
a boolean variable that is only set to True every other RTT.

i f (N < beta )
{

/∗ Ava i l ab l e bandwidth i s not f u l l y
u t i l i z e d , we i n c r e a s e cwnd by 1 every
RTT as in NewReno ∗/
TcpNewReno : : CongestionAvoidance ( tcb ,

segmentsAcked ) ; }
e l s e

{
/∗ Ava i l ab l e bandwidth i s f u l l y
u t i l i z e d , we i n c r e a s e cwnd by 1 every
other RTT ∗/
i f ( m inc )

{
TcpNewReno : : CongestionAvoidance (

tcb , segmentsAcked ) ; }
e l s e

{
m inc = true ; } }

Listing 4: TcpVeno::IncreaseWindow().

TcpVeno::GetSsThresh() implements the Veno multiplica-
tive decrease algorithm as shown in Listing 5.

i f (N < beta )
{

/∗ Random l o s s i s most l i k e l y to have
occurred , we reduce cwnd by only 1/5 ∗/
return std : : max (cwnd ∗ 4 / 5 , 2 ∗
m segmentSize ) ; }

e l s e
{

/∗ Congestion−based l o s s i s most l i k e l y
to have occurred , we reduce cwnd by

1/2 as in NewReno ∗/
return std : : max (cwnd / 2 , 2 ∗
m segmentSize ) ; }

Listing 5: TcpVeno::GetSsThresh().

3.5 YeAH-TCP
TcpYeah also implements the PktsAcked()method to mea-

sure the RTT values required for its calculation of Q, which
is used by TcpYeah::IncreaseWindow() to determine YeAH’s
operation mode (Fast or Slow) during its congestion avoid-
ance phase. A code snippet of TcpYeah::IncreaseWindow()
is presented in Listing 6. Following the Linux kernel imple-
mentation of YeAH, we use 80 and 8 as the default values
of the two thresholds maxQ and phy, respectively.

i f (Q < maxQ & L < (1 / phy ) )
{
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// We are in Fast mode ; cwnd i s
incremented based on STCP ru l e
TcpScalable : : CongestionAvoidance ( tcb ,
segmentsAcked ) ; }

e l s e
{

/∗ We are in Slow mode , determine i f we
need to execute the precaut ionary

deconges t i on a lgor i thm ∗/
i f (Q > maxQ && cwndInSegments >
renoCount )

{// Precaut ionary deconges t ion
cwndInSegments −= Q;
cwnd = cwndInSegments ∗

m segmentSize ; } }

Listing 6: TcpYeah::IncreaseWindow().

In TcpYeah::GetSsThresh(), the reduction of cwnd de-
pends on whether YeAH competes with Reno flows as shown
in Listing 7, where the threshold rho is the minimum number
of RTTs required to consider the presence of Reno flows.

i f ( doingRenoNow < rho )
{// YeAH does not compete with Reno f l ows

re turn std : : min ( std : : max (cwnd / 8 ,Q) ,
cwnd / 2) ; }

e l s e
{// YeAH competes with Reno f l ows

re turn std : : max (cwnd / 2 , 2 ∗
m segmentSize ) ; }

Listing 7: Yeah::GetSsThresh().

4. VERIFICATION AND VALIDATION
In addition to writing various unit tests that are manda-

tory in ns-3 to ensure the correctness of our new models be-
fore they can be merged into the standard release, we also
try to simulate them under various network conditions and
validate their performance against the corresponding litera-
ture. Given that the testing scenarios in the original papers
are varied, the exact parameters used are not explicitly de-
scribed in some sources, and to be consistent in our paper,
we use the dumbbell topology illustrated in Figure 1 to fulfill
our validation purpose. The goal of this section is to demon-
strate that despite the simulation topology that we use, our
models still exhibit the key characteristics of the protocols.
Our simulations are conducted with ns-3.24-dev.

4.1 Simulation Topology
At each edge of the dumbbell topology in Figure 1 are two

nodes serving as the sources on one end and the sinks at the
other end. The endpoints communicate through a single bot-
tleneck link that connects two network routers. All traffic
across the network are generated using BulkSendApplica-

tion with an MTU size of 1500 bytes. Drop Tail queues are
used at the bottleneck link with size set to the bandwidth-
×-delay product. Each of the access link that connects an
endpoint with one of the two routers has a bandwidth of 10
Mb/s with a negligible delay of 0.1 ms. The bandwidth and
delay of the bottleneck link are varied depending on the sim-
ulated scenarios. The one-way delay value of this link ranges
from 50 ms to 300 ms to cover the different delays for various
network environments. Given that the protocols studied in

this paper focus on improving the standard NewReno lin-
ear increase and multiplicative decrease phases, we set both
the initial congestion window and slow start threshold to 15
packets to eliminate the slow start phase. Timestamps and
window scaling options are both enabled. The duration of
each simulation is 200 to 400 seconds. We use NewReno as
the baseline for all of our comparisons. Simulation parame-
ters are summarized in Table 1.

router router 

TCP 
source 1 

TCP 
source 2 

TCP sink 1 

TCP sink 2 
bottleneck link 

Figure 1: Simulation topology.

Table 1: Simulation parameters.
Parameter Values

Access link bandwidth 10 Mb/s
Bottleneck link bandwidth varied

Access link delay 0.1 ms
Bottleneck link delay varied
Packet MTU size 1500 B

Delayed ACK count 2 segments
Application type Bulk send application

Queue type Drop tail
Queue size BDP

Simulation time 200 s – 400 s

4.2 Robustness to Random Loss
To study the impact of random packet losses on the con-

gestion control algorithms, we set the bottleneck bandwidth
to 10 Mb/s and delay to 100 ms. Using ns3::RateErrorModel,
we introduce a packet error rate (PER) of 10−3 into the un-
reliable bottleneck link. For a clearer presentation of the
plots, each simulation is run for 200 seconds. We show the
congestion window dynamics of a single connection with one
sender and receiver on each network edge.
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Figure 2: cwnd dynamics of STCP and NewReno.

Figure 2 shows the cwnd of STCP in comparison with
NewReno’s as they evolve over time. Overall, STCP’s cwnd
values are much higher than NewReno’s, resulting in about
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7 times more average throughput than the standard algo-
rithm. As seen in the plot, NewReno takes C/2 seconds
to recover where C is the cwnd that NewReno reaches fol-
lowing a loss, while the packet loss recovery time for STCP
is independent of the connection’s window size. In addi-
tion, NewReno halves its cwnd upon the receipt of three
dupACKs. STCP, on the other hand, only reduces its win-
dow by b×C with b equal to 0.125. However, similar to other
loss-based congestion control algorithms that were designed
for high BDP network environments, the high throughput
achieved by STCP comes at a price of higher chance of expe-
riencing multiple retransmission timer timeouts (RTO) due
to its aggressive increasing rule, as shown in the plot at time
between 110 seconds and 160 seconds.
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Figure 3: cwnd dynamics of Vegas and NewReno.
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Figure 4: cwnd dynamics of Veno and NewReno.

Figure 3 shows the cwnd evolution of two versions of Ve-
gas against NewReno. Following the notation used in the
original Vegas paper, Vegas-1,3 sets α to 1 and β to 3, while
Vegas-2,4 uses 2 and 4 for α and β, respectively. Overall,
with our setup for this simulation, Vegas-2,4 outperforms
Vegas-1,3, which even has a lower sending rate than the stan-
dard NewReno. Vegas-2,4 is able to achieve a throughput of
4.6 Mb/s, which is 3 times higher than the 1.5 Mb/s through-
put achieved by NewReno. On the other hand, Vegas-1,3 is
unable to utilize the available network capacity, resulting in
a throughput of only 0.7 Mb/s. When we use 1 and 3 for α

and β as the default values, most of the time, the calculated
diff rate falls in between the two thresholds, causing Vegas
to remain sending at the same rate without modifying its
cwnd. For Vegas-2,4, the cwnd is increased by 1 segment
size every RTT when the diff value is less than α, resulting
in a linear increase until three dupACKs are received due
to the random packet loss we introduce into the channel,
which causes Vegas to reduce its cwnd by the maximum of
the current ssthresh and 1/4 of congestion window. The lin-
ear increase/decrease mode then governs the sending rate
after the reduction of cwnd. In our other simulations, we
use Vegas-2,4 for a better throughput of Vegas, and this is
also the default Vegas version in the Linux kernel.

Figure 4 shows the cwnd dynamics of Veno and NewReno.
In this case, when the protocols are unable to fully utilize the
available network bandwidth due to packet corruptions, the
Veno increase rule is the same as NewReno. The only dif-
ference is its decreasing algorithm when a loss is detected.
Since Veno is able to distinguish between congestive and
non-congestive losses, for most of the time, Veno only re-
duces its cwnd by 1/5, resulting in a better throughput than
NewReno.

nu
m

be
r o

f s
eg

m
en

ts

time [s]

YeAH

NewReno

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 20 40 60 80 100 120 140 160 180 200

Figure 5: cwnd dynamics of YeAH and NewReno.

Figure 5 shows the cwnd dynamics of YeAH and NewReno.
The congestion avoidance phase of YeAH is the switching
between its Fast and Slow mode. With our simulation pa-
rameters and the default value of maxQ set to 80 segments,
YeAH does not execute its precautionary decongestion algo-
rithm because Q is less than maxQ although it detects that
it does not compete with “greedy” Reno flows. Thus, the
cwnd is only updated when YeAH enters its Fast mode. The
increment rule during Fast mode follows STCP, but at a
slower speed than the result for STCP presented in Figure 2
because we set m aiFactor to 100 for YeAH implementation.
Upon the detection of a loss through the receipt of three
dupACKs before the occurrence of several RTOs, YeAH re-
duces its window by 1/8. The RTOs trigger a false alarm
of the presence of Reno flows, which causes YeAH to halve
its window afterward. All of these factors result in a low
throughput of YeAH when comparing with STCP.

4.3 Friendliness to NewReno
For a new TCP congestion control algorithm to be widely

deployed in practice, it must be friendly with the standard
Reno traffic. When it shares the network capacity with Reno
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Figure 6: Instantaneous throughput with NewReno traffic.
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Figure 7: Instantaneous throughput with second flow using same algorithm.

flows, it should avoid starving the competing flows while be-
ing able to exploit the link bandwidth. So, in our second sce-
nario, we study the friendliness of STCP, Vegas, Veno, and
YeAH. We use the same dumbbell topology, but with two
senders and two receivers at each network edge. Each 400-
second simulation generates two traffic flows; one of them is
NewReno while the other is one of the protocols studied in
the paper. The bottleneck link has a bandwidth of 6 Mb/s
and a delay of 100 ms with no random losses. The NewReno
flow starts 10 seconds later than the other one.

Figure 6 shows the instantaneous throughput of each vari-
ant against NewReno’s. Overall, Veno is the most TCP-
friendly among all algorithms. The aggressive STCP puts
the NewReno flow in starvation with the ratio of STCP
throughput to NewReno throughput being 3.26:0.5 Mb/s.
Basically, STCP is a NewReno derivative with higher in-
crease, but smaller decrease factor than the standard algo-
rithm’s. Vegas exhibits its well-known behavior of a pure
delay based algorithm as being the least aggressive among
all protocols studied in our paper. While NewReno contin-
ues to increase its cwnd until a packet loss occurs, Vegas
executes its proactive window adjustment that tries to send
data at a moderate rate to prevent any packet drops at the
bottleneck queue. As soon as the Reno flow enters the net-
work, Vegas throughput starts to reduce. NewReno quickly
obtains the same throughput as Vegas about 40 seconds af-
ter it starts and continues to steal the network bandwidth
away from Vegas. Unlike Vegas, Veno does not use the ex-
tra number of packets at the bottleneck queue to control
its sending rate. When the available bandwidth is not fully
utilized and no random loss presents, Veno behaves exactly
as NewReno during its additive increase and multiplicative
decrease phase, resulting in a fair share of network capacity
at 200 seconds. Because YeAH does not execute its pre-
cautionary decongestion control algorithm due to the pres-

ence of NewReno flow, it behaves like STCP during conges-
tion avoidance. The ratio of YeAH to NewReno through-
put is 3.47:2.17, which is smaller than the ratio of STCP to
NewReno due to the higher m aiFactor used in YeAH imple-
mentation as explained previously.

4.4 Intra Fairness
In addition to TCP friendliness, a congestion control algo-

rithm is required to be internally fair: it should be friendly
to itself. We study intra fairness of the protocols by simu-
lating the same scenario as in Section 4.3, except that the
second flow uses the same TCP variant as the first flow.

Figure 7 plots the instantaneous throughput of each vari-
ant in the competition with a second flow. While STCP,
Veno, and YeAH try to converge to a fair share of the net-
work resource after some time, Vegas maintains a constant
gap between the throughput values of its two flows through-
out the whole simulation period. This is because both Ve-
gas flows have the tendency of attempting to prevent any
queue drops. The first flow has the advantage of entering
the network 10 seconds before the other, so it can obtain
more bandwidth. By the time the second flow starts, it just
attempts to utilize the remaining capacity.

4.5 Impact of Channel Delay
In this scenario, we study the impact of link delay on the

performance of our congestion control algorithms. Each sim-
ulation generates a single flow of traffic through the bottle-
neck link that has a bandwidth of 6 Mb/s and delay varying
from 50 ms to 300 ms. No random losses are introduced into
the link.

Figure 8 plots the average throughput achieved by each
algorithm when the bottleneck delay is varied. Overall, all
variants are affected by high link delay, resulting in a de-
creasing of throughput with increasing RTT. STCP exhibits
the most interesting behavior as it initially performs worse
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Figure 8: Average throughput vs. increasing delay.

than Vegas and YeAH, but starts to improve the through-
put at the 150-second delay. Considering Vegas and its vari-
ants (Veno and YeAH), Vegas performs the best while Veno
performs the worst. As explained above, with no random
loss and available bandwidth not fully utilized (the high
delays prevent all protocols from efficiently exploiting net-
work capacity), Veno behaves exactly like NewReno. The
non-aggressive behavior of the pure delay-based Vegas is an
advantage in this case as its sending rate is more stable,
resulting in fewer RTO occurrences.

5. CONCLUSIONS
We have presented our implementations of STCP, Vegas,

Veno, and YeAH congestion control algorithms in ns-3 and
studies of their behavior under various network conditions
using a variety of metrics (robustness to random loss, TCP
friendliness, intra-protocol fairness, and the impact of link
delay) while verifying the correctness of the models. The
results show that STCP is the most robust to random bit er-
rors, and Vegas outperforms Veno and YeAH in the presence
of non-congestive packet drops. While STCP and YeAH are
the most aggressive algorithms, Vegas is the least when they
have to share the bottleneck link capacity with a standard
NewReno flow. The proactive congestion control mecha-
nism that Vegas employs also prevents it from achieving
intra fairness, although the same mechanism helps Vegas to
better sustain its throughput than other protocols in a high
propagation delay network.

For future work, we plan to study these variants under ad-
ditional network scenarios to have a more complete picture
of the algorithms’ characteristics. We are also interested in
experimenting with different values for the thresholds used
in our implementations as we have seen from Section 4 that
the different default values for α and β affect Vegas perfor-
mance. In addition, we plan to continue to contribute to the
ns-3 community with more TCP models, inclduing CTCP.
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