
Performance Analysis of AeroRP with Ground Station Updates in
Highly-Dynamic Airborne Telemetry Networks
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ABSTRACT

Highly dynamic airborne telemetry networks pose unique challenges for data transmission. Domain-
specific multi-hop routing protocols are necessary to cope with these challenges and AeroRP is one such
protocol. In this paper, we discuss the operation of various AeroRP modes and analyse their performance
using the ns-3 network simulator. We compare the performance of beacon, beaconless, and ground sta-
tion (GS) modes of AeroRP. The simulation results show the advantages of having a domain-specific
routing protocol and also highlight the importance of ground station updates in discovering routes.

I. INTRODUCTION AND MOTIVATION

The present day telemetry architecture uses legacy point-to-point links connecting multiple sources (test
articles) to a ground station. The increased usage of wireless devices to meet the emerging needs of Major
Range and Test Facility Bases (MRTFB) led to increased requirements for bandwidth and connectivity.
These legacy point-to-point links will not be able to cope with the limited spectrum. This need was recog-
nised by various groups including the Integrated Network Enhanced Telemetry (iNET) group [1], [2].
Multihop routing protocols are necessary for the airborne test articles (TAs) to operate as an integrated
system. TAs in these environments move at velocities of up to Mach 3.5 and move towards each other
with relative velocities of about Mach 7.0. These high velocities lead to frequent link breaks and incon-
sistent routing of packets among nodes.

The Aeronautical Routing Protocol (AeroRP) is one such domain specific routing protocol that was
designed for highly dynamic airborne networks [3]. AeroRP was first introduced in [4] and later mod-
elled and analysed using the ns-3 network simulator [5, 6]. The preliminary results showed that AeroRP
outperforms the traditional MANET routing protocols in terms of throughput and packet delivery ra-
tio (PDR) [5, 6]. AeroRP uses the node’s current or predicted geolocation1 information for discovering
routes. Neighbour discovery in AeroRP is multi-modal, in which various modes can be used to discover
neighbours depending upon the mission needs including stealth requirements. One of those neighbour
discovery modes is GS (ground station) update mode. In this paper we present the design and implemen-
tation of GS update mode of AeroRP in ns-3 network simulator [7]. We compare the results of different

1The words location and position can be used interchangeably and mean the same in the context of this paper.
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modes of AeroRP neighbor discovery modes and show that priori knowledge of the network topology in
this highly-dynamic environment significantly improves the performance of the routing.

The rest of the paper is organised as follows. In Section II we present an overview of MANET routing
protocols, AeroRP, and AeroNP. The AeroRP design with GS updates is explained in Section III followed
by implementation discussion of AeroRP in Section IV. Gateway functionality implementation in ns-3 is
presented in Section V. The performance of AeroRP is analysed in Section VI. Finally, we present the
conclusions and future work in Section VII.

II. BACKGROUND AND RELATED WORK

AeroRP is a geographic routing protocol designed for highly dynamic airborne telemetry networks [4].
Contrary to the other MANET routing protocols that discover end-to-end paths, AeroRP makes only per-
hop routing decisions. This is reasonable as the nodes in the telemetry network move at very high velocities
often leading to breakage of links after an end-to-end path has been determined. AeroRP can operate in
various modes based on the mission requirements [3].

• TA update mechanism: AeroRP can operate in beacon and beaconless modes. In beacon mode,
the test article advertises its location information by broadcasting periodic hello messages, whereas
in beaconless mode no messages are sent out.

• Location information: AeroNP may or may not include the geolocation information of TAs in
their headers. This can be due to mission requirements. For example in a given mission, TAs can be
programmed to be in stealth mode so that they are not making their location available to other TAs.
We will explain more about location information in Section II-B.

A. Operational Aspects of AeroRP

The operation of AeroRP can be divided into two phases. The first phase of operation is the neighbour
discovery phase. In this phase, a TA gathers as much information as it can about the network topology in
the following ways:

• Active snooping: Active snooping is a mechanism in which the nodes snoop packets that are being
exchanged among other nodes, extract the location information from them and build or update their
topology tables. To accomplish this, active-probing on the node’s network interface must be enabled.
Location information thus gathered is only valid for a time interval specified by neighborHoldTime.
On expiration of this time-interval, the stored location information of a node is purged unless a new
update with a higher expire time is received. This helps in keeping track of all active neighbours in
this highly dynamic environment.

• Hello beacons: Hello beacons are transmitted by the TA when it is not transmitting any data. This
ensures that its neighbouring TAs are aware of its presence. These messages are usually broadcasted
periodically over helloUpdateInterval with time-to-live (TTL) set to one hop.

• Ground station updates: These are optional updates transmitted by the ground station during some
missions having a pre-determined flight plan. These updates are broadcasted periodically and are
exchanged among all the TAs in the network.
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The AeroRP modes explained earlier affect the various neighbour discovery processes. In beaconless
mode the hello messages are not sent by any of the test articles. Therefore, neighbour discovery relies
on overhearing the packets in the medium. Depending on the mission needs, AeroRP messages can have
location information of TAs. If the AeroRP routing messages include location information, then the TAs
can determine network topology information. Otherwise, without the location information, TAs can only
be aware of their neighbours. In GS update mode of neighbour discovery, the ground station broadcasts
GSLink or GSTopology packets. GSLink packets carry only the active or predicted links among all the
nodes and GSTopology packets carry the geolocation information of the nodes.

The second phase of AeroRP operation is data forwarding. In this phase, the sender node determines
the next hop to forward a packet by using the topology table built in the neighbour-discovery phase. The
Time-to-intercept (TTI) metric is used in determining this next hop neighbour [5, 6, 8]. TTI is calculated
for every node from the topology table as:

TTI =
∆d−R
sd

where ∆d is the euclidean distance between the current location and a predicted location of a node based on
the recorded location coordinates and velocity components from the table, R is the common transmission
range of all the nodes, and sd is the recorded speed component. The assumption made here is that the
nodes move at a constant speed during the interval for which we calculate the TTI value. TTI gives the
estimate of time taken by the neighbours to reach within the transmission range of the destination. The
neighbour with the lowest TTI value is chosen as the next hop neighbour and packets are forwarded to this
neighbour.

B. AeroNP

AeroNP is an IP-compatible network protocol specifically designed for highly-dynamic telemetry net-
works. Telemetry systems and other devices on TAs are IP -based. In addition to replicating the services
provided by IP, AeroNP provides QoS (Quality of Service), flow control, and error detection to the AeroTP
transport layer [9]. QoS is provided by tagging packets based on priorities; AeroNP provides four levels
of priorities. The AeroRP control packets are always given the highest priority. Mission specific com-
mand and control data will be given higher priority compared to telemetry data. The packets tagged with
a particular priority are queued in specific buffer classes. The flow-control mechanism is accomplished by
implementing a cross-layering mechanism with the iNET TDMA MAC layer. The congestion indicator
(CI) field in AeroNP specifies the congestion level at a node. If a node identifies that the MAC buffer is
full, it increases its congestion indicator value in the AeroNP header. Neighbouring nodes do not forward
packets to a node with high CI value, unless it is the destination. The wireless medium is error-prone
leading to packet corruption, and detecting these errors at the destination and waiting for the source to re-
send the packet increases the end-to-end delay. The AeroNP corruption indicator and HEC-CRC (header
error check – cyclic redundancy code) fields provide the error detection. As mentioned in Section II-A,
depending on the mission requirements geolocation information can be included in the AeroNP header.
We designate the AeroNP header with the geolocation information as the extended header, whereas the
AeroNP header without the geolocation information as is referred to as the basic header. The AeroNP
basic and extended headers are shown in Figure 1 and 2, respectively.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Ver |CI | C | Type |Parity |IP Protocol ID | IP ECN/DSCP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source TA Address | Destination TA Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Hop TA Address | Flags | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Dev ID | Dest Dev ID | NP HEC CRC-16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ AeroTP Payload /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: AeroNP basic header

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Vers |CI | C | Type | Prty |IP Protocol ID | IP ECN/DSCP |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source TA Address | Destination TA Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Hop TA Address | Previous Hop TA Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GS Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Fragment Bits | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter X Coordinate | Transmitter X Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter Y Coordinate | Transmitter Y Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter Z Coordinate | Transmitter Z Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination X Coordinate | Destination X Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Y Coordinate | Destination Y Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Z Coordinate | Destination Z Speed |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Dev ID | Dest Dev ID | NP HEC CRC-16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ AeroTP Payload /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: AeroNP extended header

III. DESIGN OF AeroRP WITH GROUND STATION UPDATES

Introducing ground station updates to the AeroRP routing protocol adds an additional mechanism for
neighbour discovery in AeroRP. The ground station tracks movements of all the TAs and broadcasts either
their TopologyInformation or LinkInformation to other TAs in the network.

C. GS Update Mechanism

A ground station broadcasts updates for all the TAs periodically over a time-interval called the period-
icUpdateInterval. Depending on velocities of the TAs and the frequency at which they change direction,
the periodicUpdateInterval is set. The frequency at which the GS sends these updates will affect the
protocol’s performance significantly. If the periodicUpdateInterval is low, the GS broadcasts updates
frequently resulting in increased control overhead. On the contrary, if the periodicUpdateInterval is
high, the GS will broadcast updates rarely resulting in the TAs not having up-to-date information about
the other TAs. Velocities of all the TAs are unlikely to be uniform and some of the TAs may change
their direction more frequently than others. Therefore, sending updates of all the TAs for every period-
icUpdateInterval alone is not sufficient. There is a need for a mechanism in which the ground station
can broadcast updates in-between the periodicUpdateIntervals as well, called the trigger update mech-
anism. Whenever the GS identifies a change in direction of any TA, it will immediately broadcast the
changed location and velocity information of the TA. Highly dynamic changes result in the GS sending
trigger updates more frequently which leads to more control overhead and increased packet collisions in
the network. To avoid this, trigger updates over a triggerUpdateInterval are aggregated into a single
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update and sent together. On the other hand, the GS verifies if a trigger update can be cancelled and the
change be sent in the next periodic update. If the time duration to the next periodic update is less than the
triggerUpdateInterval, then the trigger update is not sent.

To make sure the GS advertisements do not violate the maximum transmission unit (MTU) of 1500 B
set by the MAC layer, they are fragmented to multiple packets. Each packet is uniquely identified by the
time at which this packet was originated and by a 16-bit fragment number.

D. Types of GS Updates

The ground station sends two types of advertisements: GSTopology and GSLink. The GSTopology
and GSLink advertisements are explained in the following sub sections.

D..1 Topology Advertisements

Topology information of all the nodes is advertised by ground station using GSTopology advertisements.
This advertisement carries a TypeHeader over multiple GSTopologyHeaders containing the geolocation
coordinates and the velocity components in x, y, and z directions. A ground station also maintains a
topology table just like other TAs. The difference is that the TAs fill their table on receiving AeroRP
updates, whereas the GS topology table is assumed to have updated information of the entire network at all
times. The ground station uses this information to send out topology updates. It sets the EnableBroadcast
flag to true so that this message can be rebroadcasted among all the TAs. Depending on the update
mechanism used, the GS sends out updates for all the TAs or only for the TAs with changed information
since the last update. The GS creates multiple topology headers, one for each node and adds them to
a packet. It then creates a single TypeHeader, populates the necessary fields and adds it on top of the
topology headers. This packet is then broadcasted in the network. Every TA receiving the packet will
process the TypeHeader, identify the type of headers present in the packet and based on the header length
it will process each header separately. Figures 3 and 4 shows the header formats for TypeHeader and
GSTopologyHeader, respectively.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Flags | Header Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\ \
/ AeroRP Message /
\ \
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: AeroRP TypeHeader

Topology updates have an option for adding start time and end time as well. These fields are used
when a TA is flying in a pre-determined path. When the start time is populated, it is interpreted as the
TA is located at the location coordinates specified by the topology header. The end time field is the
time from which the TAs should stop using this location information. This field can also be set to next
periodicUpdateInterval or the predicted time after which the TA might go out of the network.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source TA Address | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter X Coordinate | Transmitter X Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter Y Coordinate | Transmitter Y Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Transmitter Z Coordinate | Transmitter Z Speed |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time | Expire Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: AeroRP GSTopologyHeader

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Node1 Address | Node2 Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Start Time | End Time |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LinkCost |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5: AeroRP GSLinkHeader

D..2 Link Advertisements

GSLink advertisements carry multiple GSLinkHeaders for all the links formed among nodes in the net-
work. Figure 5 shows the header format for GSLinkHeader. Each GSLinkHeader will carry two 16-bit
node-id addresses of the TAs forming the link, the start and the expire times for that link, and the link
cost. The start and expire times are calculated based on node’s geolocation and velocity information. A
link is said to be established between two nodes if the euclidean distance between the two is less than their
transmission range. The assumption here is that all nodes have the same transmission range. Based on the
nodes geolocation coordinates the euclidean distance is calculated. The link expire time is predicted based
on the geolocation and velocity components. The expire time is increased until the euclidean distance be-
tween the new predicted locations of the two nodes is greater than their transmission ranges. Thus the GS
calculates this information for all the nodes in the network. If there are n nodes in a network, considering
the best case scenario in which every node is connected to every other node, the total number of links are
n× (n− 1)/2.

IV. PROCESSING OF AeroRP UPDATES

AeroRP uses a protocol id of 251 and works in conjunction with the AeroNP network protocol. The
AeroNP protocol on receiving any packet from the MAC layer will identify an AeroRP packet by look-
ing at the protocol id field in the AeroNPHeader, and if appropriate will deliver it to the AeroRP routing
protocol along with the extracted AeroNPHeader. A GS node does not require any AeroRP control infor-
mation as it always keeps track of all the nodes in the network. Each TA examines the sourceTimestamp
field present in the AeroNPHeader. It compares it with the stored, last-received timestamp value for that
neighbouring node in its topology table. If the received timestamp is newer, the protocol will update the
node’s topology table with the geolocation information present in the AeroNPHeader. It also updates
the congestion and corruption indicators for the node from which this packet was received. AeroRP then
compares its own GSTimestamp value with that of the neighbouring node’s GSTimestamp value. If it
identifies that the neighbour node does not have a newer update from the GS, it unicasts those updates to
the neighbour node. This mechanism will make sure that every node will be as consistent as possible.

As mentioned in Section III, AeroRP uses three types of control messages to broadcast its updates.
They are hello messages, GSLink advertisements, and GSTopology advertisements. A hello message
does not have any information to be used by the AeorRP routing protocol. It is only used to inform
a node’s neighbours of its presence. Upon receiving a GSTopology advertisement, AeroRP unpacks
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Figure 6: Flowchart for processing a GS advertisement

all the GSTopologyHeaders one by one and updates the topology table entry for that node. GSLink
advertisements will also be processed the same way as a GSTopology advertisement by extracting the
GSLinkHeaders. However, after all the GSLinkHeaders are updated in the topology table, the protocol
will determine if the Dijkstra shortest-path algorithm should be run based on the changed link costs. If
there is a change in the links, AeroRP runs the Dijkstra algorithm, otherwise the algorithm is scheduled to
run at the time determined by the creation of a new link based on the predicted geocoordinates and velocity
components. A timer schedules the Dijkstra algorithm by keeping track of the new link formations or
breakages based on the information from the topology table. Figure 6 is the flowchart showing the GS
update process.

V. DESIGN AND ns-3 IMPLEMENTATION OF AeroGW

Telemetry data is expected to originate from a system supporting TCP/UDP/IP. This data should be
moved over the domain-specific ANTP protocol suite and handed over to the destination which is again
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expected to be TCP/UDP/IP-based. All the current telemetry applications and devices are IP-based which
arises compatibility issues of the new protocol suite. To overcome this, we have introduced an interface
called the Aero Gateway (AeroGW) [10] that resides on every node in the telemetry network including the
GS. Telemetry data originating from, or destined to these applications will be processed by the AeroGW
to convert to the ANTP protocol suite. The AeroGW will translate the IP header to the AeroNP header
and the TCP or UDP header to the AeroTP header. The original TCP/UDP/IP headers will be removed
from the packet and replaced with the newly generated AeroTP/AeroNP headers.

The AeroGW simulation in ns-3 was implemented with only the functionality of translating IP ad-
dresses used by the GS and the TAs to 16-bit device ids used in the ANTP protocol suite. As the ANTP
protocol suite is being simulated in ns-3 that creates all sockets by binding them to IP addresses, it is nec-
essary for the protocols being simulated in ns-3 to use IP addresses. To correctly evaluate the performance
of the Aero protocols, the 32-bit IP addresses are mapped to a 16-bit device ids in these AeroGWs.

VI. SIMULATION RESULTS

We performed the simulations over an area of 150 × 150 km2. All the simulations were averaged
over 10 runs with each simulation running for 1000 s and plotted with 95% confidence interval bars.
Simulations were performed with varying node densities ranging from 5 to 60 nodes. The communication
model is peer-to-peer with as many flows as the number of nodes in the network. All the TAs are configured
to send 1 packet/s. Using this lower packet rate, we can correctly evaluate the performance of the protocol
by removing any possibility of congestion at MAC layer. We used the ns-3.10 to perform these simulations.
The On-Off application in ns-3 is used to generate CBR (constant-bit rate) traffic. The 802.11b MAC is
used over the Friis propagation loss model to limit the transmission ranges of nodes. The transmit power
was set to 50 dBm to achieve a 27800 m (15 nautical mi) transmission range. The mobility model used
is 3D Gauss-Markov [11] with node velocities ranging from 50 – 1200 m/s. Setting α between zero and
one allows us to tune the model with degrees of memory and variation. We set the α to 0.85 to have
some predictability in the mobility of the nodes, while avoiding abrupt TA direction changes. Ferrying of
packets is enabled by default in AeroRP using a drop-tail queue implementation. The maximum buffer
size is set to 400 and the maximum buffering time is set to 30 s. Any packet that reaches its buffer expiry
time will be purged. Active snooping on all interfaces is enabled by default.

E. Performance Metrics

The performance metrics for the evaluation of AeroRP are packet delivery ratio (PDR), routing over-
head, and delay.

• PDR: The number of packets received divided by the number of packets sent by the application

• Routing overhead: The fraction of bytes used by the protocol for AeroRP control messages

• Delay: The time taken by the packet to reach the destination node’s MAC protocol from the source
node’s MAC protocol
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F. Simulation Analysis

We compare the AeroRP performance when the AeroNP header includes geolocation information
of the nodes (topology information) or no location information is present in the AeroNP header (link
information). Figure 7 shows the performance of different modes of AeroRP in terms of PDR as the
node density increases from 5 to 60 nodes, moving at a velocity of 1200 m/s. The GS update mode with
LinkInformation performed better until the node density reached 35 nodes and later it started to degrade
as the node density further increased. The increase in node density led to more link breakages. This
may have resulted in breakages in the end-to-end paths determined by the node. Though the GS tries to
update the changes in link information by sending out trigger updates, there is a chance that some nodes
might not receive all the updates leading to inconsistent routing of packets. As the node-density increased,
the AeroRP update mode without GS updates and using geolocation information in the TA update mode
began to perform comparatively better as the nodes in this mode exchanged geolocation information in the
AeroNP headers.
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Figure 7: Effect of node density on PDR
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Figure 8: Effect of node velocity on PDR

Figure 8 shows the variation of PDR as the velocity increases from 50 m/s to 1200 m/s for 35 nodes.
At 35 nodes the average network connectivity is 75%. The average network connectivity is determined by
using the geolocation information of nodes and their transmission ranges. Average network connectivity
of 75% is chosen to ensure we can analyse the PDR performance in a not fully connected network. We
see that AeroRP in presence of GS and using LinkInformation performed better. This is because with
the 3D Gauss-Markov mobility model TAs move without any abrupt change in their direction. Thus the
links predicted by the GS remains same most of the time. However, as the velocities increase there are
many link breakages leading to the GS sending an increased number of updates. As the TAs run the
Dijkstra shortest-path algorithm they need to have consistent information from the GS, otherwise this may
lead to inconsistent routing of packets. The other modes of AeroRP using TopologyInformation, with
and without the presence of GS updates, perform better as the velocities increase. This is because at high
velocities the nodes have more chance of identifying a path to the destination as they come across different
neighbours which increases their chance to identify a route to the destination. Furthermore, they are aware
of the entire topology of the network as they exchange geolocation information in the AeroNP headers.
AeroRP mode using LinkInformation in the absence of GS updates does not perform very well as it knows
only its next hop neighbours.
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Figure 10: Effect of node density on control overhead

Figure 9 shows the end-to-end packet delay with varying node densities. We see that the end-to-end
packet delay is greater while using TopologyInformation with and without the presence of GS updates.
This is because the calculation of of TTI is based on the node’s current and predicted geolocation coordi-
nates. By using TopologyInformation from GS updates, we can predict the node’s trajectory information
for a longer duration as the expire time provided by the GS is usually greater compared to the neigh-
bourholdTime. This results in having higher TTI values while using TopologyInformation from the GS
updates. TTI values specify how long a packet should be buffered before identifying a route to the destina-
tion. The other two modes using LinkInformation have very low delay as they do not use the TTI metric
to perform routing decisions.

The variation of AeroRP control overhead with node-density in its various modes of operation is anal-
ysed in Figure 10. The control overhead in the absence of GS updates and using LinkInformation is
significantly less as there are no AeroRP messages sent out except for the initial bootstrap beacons. Con-
trol overhead however, increases exponentially with the increase of node density for AeroRP mode with
GS updates enabled and sending out LinkInformation. This is because as the node density increases, so
do the number of links between those nodes leading more updates from the GS whenever a new link is
formed or an existing link is broken.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented the various modes of AeroRP concentrating on the ground station update
mode using both TopologyInformation and LinkInformation. We presented a detailed analysis of these
different modes by modelling them in ns-3 and analysing their performance under various operations
scenarios. We showed that location information in the AeroNP header increases packet delivery ratio as
the network density increases. Our results also indicate that using ground station update mode increases
the overhead.

As part of the future work, we plan to analyse AeroRP performance using TDMA MAC model and
compare its performance benefits over 802.11 MAC. We are also planning to analyse AeroRP performance
with the AeroTP protocol [9, 12]. We are also starting to implement these protocols on prototypes [13].
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