
H-TCP Implementation in ns-3

[Extended Abstract]
∗

Amir Modarresi∗, Siddharth Gangadhar∗, Truc Anh N. Nguyen∗,
and James P.G. Sterbenz∗†§

∗Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science,

The University of Kansas, Lawrence, KS 66045, USA
‡School of Computing and Communications (SCC) and InfoLab21, Lancaster University, LA1 4WA, UK
§Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

{amodarresi, siddharth, annguyen, jpgs}@ittc.ku.edu
www.ittc.ku.edu/resilinets

ABSTRACT
Along with the evolution of the Internet, high bandwidth-
delay product (BDP) network environments are becoming
more common for data transfer. However, TCP, as the
most popular transport protocol in the Internet, is not able
to fully utilize the available resources in these connections.
Conventional TCP has been proven to react conservatively,
especially in the presence of packet losses. Multiple variants
have been proposed to address this issue and Hamilton TCP
(H-TCP) is one such variant. H-TCP implements a loss-
based congestion control algorithm that modifies the con-
gestion avoidance and the fast retransmit/recovery states to
allow for the protocol to achieve better throughput in high
BDP instances. In this paper, we present our implemen-
tation of the H-TCP protocol in the open source network
simulator (ns-3) and validate the model. We also perform
multiple experiments with H-TCP comparing it against ex-
isting ns-3 TCP algorithms in varying scenarios which are
available in the full version of this paper.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General, Model Develop-
ment, Model Validation and Analysis; C.2.2 [Computer-
Communication Networks]: Applications— Transport
protocol

Keywords
TCP, NewReno, Westwood, HighSpeed, Hamilton, conges-
tion control, ns-3 network simulator, performance evaluation

1. INTRODUCTION
∗A full version of this paper is avail-
able as H-TCP Implementation in ns-3 at
www.ittc.ku.edu/resilinets/reports/h-tcp-2016.pdf

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Wns3 ’16 June 15, Seattle, United States.
c© 2016 ACM. ISBN .

DOI:

In order to enhance the poor behavior of conventional
TCP, many variants have been designed and implemented.
Various mechanisms have been included such as additional
additive factors in the additive increase (AI) phase to in-
crease link utilisation. Each variant relies on specialised
congestion control algorithms by using network parameters
such as RTT and try to deduce the optimal sending rate of
the protocol. Existing variants include TCP Hybla [2], Scal-
able TCP [4], and HighSpeed TCP [3]. Much work has been
focused on allowing these algorithms to not only use the
large pipes, but also behave fairly in a shared environment,
particularly with NewReno still widely used.

H-TCP [6][5] is one of the loss based algorithm that in-
tended for high BDP environments. The objective of this
paper is to present our implementation of H-TCP in ns-3,
an open source network simulator [1] and validate it against
the results in the original paper [6]. In addition to implemen-
tation and validation, we perform multiple experiments that
compare H-TCP to other variants in varying scenarios that
include both congestion and corruption. The implementa-
tion, validation and experiments of this protocol has been
done in the development version of ns-3 (ns-3-dev), avail-
able between version 3.24 and 3.25, that has gone through
a major overhaul of the TCP framework.

2. H-TCP IMPLEMENTATION
We implement the H-TCP protocol in the development

version of ns-3 that contains the new TCP framework. As
part of this section, we explain TCP class interactions briefly,
followed by the H-TCP architecture.

2.1 TCP Class Interaction in ns-3
TCP functionality in ns-3 is provided by a set of classes

interacting with each other. TCP sockets interact with TCP
protocols to pass data segments to IP modules [1]. TCP pro-
tocols are located between the socket and IP layer. After
ns-3.24, a major overhaul was performed in the structure
and relationship among modules. A new class, TcpSock-

etState, was introduced to keep track of the common at-
tributes and state of sockets like congestion window size and
slow start threshold. These attributes had been defined in
TcpSocketBase in older versions. Another class, called Tcp-

CongestionOps, was designed as a base class to control the
congestion operations. On the other hand, class TcpNewReno
was set as the parent class of other TCP protocols including



TCP HighSpeed, Hybla and Westwood inherited from Tcp-

CongestionOps. H-TCP follows the same relationship and
inheritance from TcpNewReno.

2.2 H-TCP Implementation in ns-3
H-TCP [6][5] is a variant designed for networks with high

BDP. It is compatible with standard TCP, while it can
switch to more aggressive behavior in high bandwidth net-
works. H-TCP considers elapsed time since last congestion.
Then it calculates factor α as a function of last congestion
time. The value of α starts larger, if congestion has not
occurred. This value increases the size of the congestion
window every time an ACK is received. Therefore, the pro-
tocol can utilise the bandwidth faster than standard TCP
resulting in higher throughput and link utilization.

H-TCP does not change the slow start process. However,
α is used in the congestion avoidance process to adjust the
congestion windows size. If δ is the elapsed time in seconds
since the last congestion for a specific flow, then the α can
be calculated as a function of δ. Moreover, in order to be
compatible with standard TCP, H-TCP changes its mode
from standard to enhanced mode, when δ is greater than or
equal to a threshold such as δl.

The Backoff coefficent β is calculated based on maximum
and minimum RTT since the last congestion and throughput
of the flow. The details can be found in the full version of
the paper.
HTCP is an inheritance of TcpNewReno. Since the slow start

process is the same as standard TCP, we do not define any
new method for slow start. Moreover,HTcp::Congestion
Avoidance is defined to modify m cWnd based on H-TCP
protocol. HTcp::CongestionAvoidance uses AlphaFunction
method to calculate the correct value of α. Htcp::PktsAcked
is used to keep RTTmin, RTTmax and throughput for each
congestion period. We use HTcp:: GetSsthresh to adjust
ssthresh value based on calculated β.

co
ng

es
tio

n 
w

in
do

w
 [M

b]

time [s]

HTcp
TcpNewReno

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 5 10 15 20

Figure 1: Slow start and fast recovery validation

3. VALIDATION
In order to validate our implementation, the first topol-

ogy consists of a single sender and receiver connected by a
router. Our second topology is the popular dumbbell topol-
ogy with multiple senders and receivers separated by a pair
of routers. In all of our experiments, traffic generation is uni-
directional and from the sender to the receiver. The TCP
socket buffer sizes, along with the TCP delayed ACK and its
timeout are unmodified from ns-3’s default parameters. In
our experiments, we start the initial flow at 4s. We set the

co
ng

es
tio

n 
w

in
do

w
 [M

b]

time [s]

HTcp
TcpNewReno

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 20 40 60 80 100 120 140 160 180 200

Figure 2: Validation of all operational states

th
ro

ug
hp

ut
 [b

/s
]

time [s]

HTcp flow 1
HTCP flow 2

0E+00

1E+03

2E+03

3E+03

4E+03

5E+03

6E+03

7E+03

8E+03

0 20 40 60 80 100 120 140 160

Figure 3: Friendliness of two H-TCP flows

router queue size to be BDP for all scenarios. Some of the
validation results for various part of the H-TCP algorithm
are illustrated in Figures 1,2 and 3.

4. CONCLUSION
In this paper, we explain the implementation of the H-

TCP protocol. We validate each state of our protocol and
compare its behavior against the original paper. Further-
more, we compare the performance of the protocol with
other available protocols in ns-3 in the full version of this
paper. The results show that, H-TCP is able to fill up the
pipe much faster than NewReno, and performs in the range
of other high speed protocols such as HighSpeed and Hybla.

5. REFERENCES
[1] The ns-3 Network Simulator. http://www.nsnam.org.

[2] C. Caini and R. Firrincieli. TCP Hybla: a TCP
enhancement for heterogeneous networks. International
journal of satellite communications and networking,
22(5):547–566, 2004.

[3] S. Floyd. HighSpeed TCP for Large Congestion
Windows. RFC 3649 (Experimental), Dec. 2003.

[4] T. Kelly. Scalable tcp: Improving performance in
highspeed wide area networks. SIGCOMM Comput.
Commun. Rev., 33(2):83–91, Apr. 2003.

[5] D. Leith and R. Shorten. online.

[6] D. Leith and R. Shorten. H-TCP protocol for
high-speed long distance networks. In Proc. PFLDnet,
2004.


