
A Framework for Improving Network Resilience
Using SDN and Fog Nodes

Amir Modarresi∗, Siddharth Gangadhar∗, and James P.G. Sterbenz∗†‡

amodarresi|siddharth@ittc.ku.edu, jpgs@{ittc.ku.edu|comp.{lancs.ac.uk|polyu.edu.hk}}

∗Information and Telecommunication Technology Center
Electrical Engineering and Computer Science

The University of Kansas, Lawrence, KS 66045, USA
www.ittc.ku.edu/resilinets

†School of Comp. and Comm. (SCC) and InfoLab21
Lancaster University, LA1 4WA, UK

‡Computing, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Abstract—The IoT (Internet of Things) is one of the primary
reasons for the massive growth in the number of connected
devices to the Internet, thus leading to an increased volume
of traffic in the core network. Fog and edge computing are
becoming a solution to handle IoT traffic by moving time-
sensitive processing to the edge of the network, while using the
conventional cloud for historical analysis and long-term storage.
Providing processing, storage, and network communication at
the edge network are the aim of fog computing to reduce delay,
network traffic, and decentralise computing.

In this paper, we define a framework that realises fog com-
puting that can be extended to install any service of choice. Our
framework utilises fog nodes as an extension of the traditional
switch to include processing, networking, and storage. The fog
nodes act as local decision-making elements that interface with
software-defined networking (SDN), to be able to push updates
throughout the network. To test our framework, we develop an IP
spoofing security application and ensure its correctness through
multiple experiments.

Index Terms—Resilience, survivability; Future Internet, IoT;
SDN, OpenFlow; Cloud and fog computing, OpenFog; Network
security, IP spoofing, intrusion detection; Mininet network sim-
ulator

I. INTRODUCTION

Cloud computing operates as the back-plane of a cloud-
based Internet of Things (IoT) architecture to process and store
data generated at the edge network. Furthermore, increasing
the number of edge nodes due to the emergence of IoT
devices leads to greater traffic in the core network. Although
all generated traffic is not part of the Internet services that
need fast response time, low delay and jitter are two necessary
requirements for interactive and mission-critical services. Un-
fortunately, delay is not a predetermined attribute in the core
network and transferring more traffic saturating the network
impacts this attribute directly. Furthermore, the growth of IoT
nodes and their computing and storage requirements stresses
data center capacity; therefore, a solution is required to de-
crease these effects. Fog computing is a horizontal, and possi-
bly multi-layer architecture to provide computing, storage, and
networking capabilities close to the edge network [1]. While
there is no standard model for fog computing, the OpenFog

Consortium [2] has introduced a model for this architecture.
Throughout this paper, we use the OpenFog architecture as the
reference model for our study. OpenFog does not consider fog
computing as a separate architecture from cloud computing,
but rather recognises fog computing as a cloud-to-things
continuüm [1]. In other words, fog computing is an extension
of cloud computing. Based on this architecture, some services
run in the cloud, while others are more apt to run in the fog.

Software-defined networking (SDN) [3], [4], [5] is another
emerging technology that moves the control plane of net-
work switches to a centralised controller. In this technology,
switches are not responsible to generate and update forwarding
tables, rather they receive this information from a controller in
the network. For each missing destination in the forwarding
table of a particular switch, it contacts the controller to get
and update its forwarding table. Such an architecture enables
programmability in the control-plane architecture. Centralised
control is another SDN attribute that facilitates network man-
agement. We use SDN and fog nodes in this paper to decide,
redirect, or drop traffic based on incoming rate and other
attributes of the flow. The close proximity of the fog nodes
to the edge leads to retrieving accurate information about
each flow and its corresponding node. The fog nodes send
the proper information to the controller to issue redirection or
other commands to a specific node. While it is easily possible
to impose new policies in SDN on the fly, it is not practical
in conventional (non-programmable) switches. This solution
can be adopted for blocking network traffic during an attack
or redirecting traffic to another possible path when the edge
network is under a challenge, improving network resilience.

We define resilience as the ability of the network to
provide an acceptable level of service in the face of faults
and challenges to its normal operation [6], [7]. As defined
in ResiliNets [7] disciplines, our model to express network
resilience, security is a major subdomain of resilience and is
part of a larger field called trustworthiness. Security is defined
as the property of a system and the measures taken such that
it protects itself from unauthorised access or change, subject
to policy [8]. Security can also be considered to be related to

1978-1-5386-0671-1/17/$31.00 ©2017 IEEE

self-protection, which is one of the core pillars of resilience.
This paper describes how fog computing and SDN can work

together to improve the resilience of the network. Fog nodes
have the ability to perform local packet-processing operations
and send the end result through control packets signalling the
SDN controller for necessary actions to be performed on the
network. As part of this work, we introduce a framework
for such integration to take place. To show our framework
in action, we concentrate on a particular example service, IP
spoofing prevention. The fog node helps detect the spoofed
packet and passes on a dropflow message containing the
spoofed source IP address to the controller. The controller,
upon receiving the message, drops the flow containing the
corresponding parameters for a fixed duration of time. This
framework can be easily extended to accommodate complex
applications such as traffic management, traffic monitoring, or
parental control.

The rest of this paper is organised as follow. In Section
II, we review the new architectures and models in both
fog computing and SDN. In Section III, we introduce the
framework of our model. Section IV comprises our simulation
experiments and the results. Finally, we conclude our paper in
Section V.

II. BACKGROUND AND RELATED WORK

To the best of our knowledge, Cisco adopted the term fog [9]
for the first time in its IoT reference architecture. In this
model, illustrated in Figure 1, fog computing has been located
in the third layer of a seven-layer architecture equivalent to
edge computing. According to this model, the function of
fog computing is converting network data into information
suitable for higher-level processing and storage. The first
objective of the fog layer is performing information processing
close to the edge network. However, Cisco mentions that
this layer performs packet-by-packet information processing
and there is no awareness about sessions or transactions.
Therefore, this processing is limited to evaluating data based
on some criteria, formatting and reformatting, expanding and
decoding, summarisation, and assessment to compare with
some thresholds or alerts [9]. After this reference architecture,
the concept of fog computing has been used with different
names including edge computing, cloud at the edge, or mobile
cloud computing; however, there are some differences among
all of these terms. For example, OpenFog has clearly expressed
that fog computing differs from edge computing. The fog
works with the cloud while edge computing is an exclusion
of the cloud limited to few layers [1].

Cloud at the edge has been proposed as a solution by
introducing private clouds and mini-clouds at the edge [10].
The idea of resource sharing is used to expand the layer among
nodes in this architecture.

Cloudlet [11] is a similar solution to cloud-at-the-edge by
using private nodes in public areas between the edge network
and the cloud to reduce network traffic and delay in cellular
networks. By installing resource-rich network nodes that can
run many simultaneous virtual machines, users at the edge

Levels

Physical Devices & Controller
“Things” in IoT

Connectivity
(Communication & Processing Units)

Edge (Fog) Computing
(Data Element Analysis & Transportation)

Data Accumulation
(Storage)

Data Abstraction
(Aggregation & Access)

Application
(Reporting, Analytic, Control)

Collaboration and process
(People & Business Processes)

OT

Non-real
Time

Real
Time

Event
Based

Query
Based IT

Data Policy & control

7

6

5

4

3

2

1

Fig. 1. Cisco reference architecture for IoT

request cloud services on these machines. Virtual machines
are created upon the user request and destroyed upon service
completion. Wireless LAN is used when available in this
model instead of cellular network protocols such as 3G/4G
to reduce delay and network traffic in the cellular networks.

Another similar concept has been introduced for cellular
networks, called mobile edge computing (MEC) [12]. In this
model, MEC servers are attached to the base stations to
perform user requests. Once the MEC servers fulfill user
requests, the results return to the user without sending any
request to the cloud, otherwise the the user request is sent to
the cloud. This architecture has the same purpose as cloudlets,
while cloudlets do not use the cellular network when the
wireless (non-telephony) network is available.

The OpenFog reference architecture (RA) [1] is currently
the most complete model to represent fog computing. This
architecture is based on a set of core principles including
security, scalability, openness, autonomy, RAS (reliability,
availability, and serviceability), agility, hierarchy, and pro-
grammability. These attributes are required to implement a
horizontal-layer, distributed system with processing, storage,
control, and network facilities as the fog layer. Figure 2
illustrates an abstract representation of this architecture. The
OpenFog RA is based on a view and perspective: A view
represents a structural aspect of the architecture recognising
various stakeholders’ view, while a perspective is a system
attribute that needs to be considered across all layers. The
current OpenFog RA represents three views including soft-
ware, system, and node. The software view is the three top
layers of RA from the application-services layer to the node-
management layer. The node view contains two bottom layers
including the protocol-abstraction layer, and sensor, actuator,
and control layer. The system view represents a platform and
is a combination of one or more node views integrated with
other components to create a platform.

Security is one of the main concerns of fog computing
and has been researched recently in SDN. SnortFlow [13]
is a Snort-based [14] intrusion prevention system that been
proposed for cloud environments. Depending on the attack

2

OpenFog Node Management (OOB)

S
e
c
u
ri
ty

(H

W
-R

o
T

,
A

tt
e
s
ta

ti
o
n
,
A

A
A

,
..

.)

M
a
n
a
g
e
a
b
ili

ty
 (

R
A

S
,
A

le
rt

in
g
,

D
is

c
o
v
e
ry

,
..

.)

IT
 B

u
s
in

e
s
s
 a

n
d
 C

ro
s
s
-F

o
g
 A

p
p
lic

a
ti
o
n
s

D
a
ta

,
A

n
a
ly

ti
c
s
,
&

 C
o
n
tr

o
l

P
e
rf

o
rm

a
n
c
e
 &

 S
c
a
le

 (
R

T
,

Q
o
S

,
…

)

Sensors, Actuators, & Controller

Protocol Abstraction Layer

Hardware Platform Infrastructure

Network

TSN, TCC,

Comms

Accelerators

FPGA, GPU, …

Hardware Virtualization

r

Application Support

Application Services

OpenFog Node Security – HW Security

Node Management (IB) & Software Backplane

Compute Storage

Fig. 2. OpenFog reference architecture [1]

vectors, SnortFlow can dynamically be reconfigured in real-
time. The architecture is based on Xen cloud-based environ-
ments and OpenFlow switches. A total of three modules exist
for the SnortFlow server: a SnortFlow daemon for collecting
data from Snort agents, an alert interpreter to parse alerts, and
finally, a rule generator that is responsible for generating rules
to be pushed to the OpenFlow devices.

Anomaly detection and mitigation systems for SDNs have
been proposed [15] that are an architectural design of a
framework that promotes anomaly detection and mitigation.
The approach is combined with sFlow [15] for flow-based data
gathering. Three major components exist in this framework:
a collector, an anomaly detection module, and anomaly miti-
gation. The collector is responsible for gathering flow-related
information and this data is produced by the anomaly detection
module every few seconds. The anomaly detection module is
capable of using any kind of anomaly detection to identify
the attacker that is then passed on to the anomaly mitigation
module to insert the corresponding flow entries required to
mitigate the attack.

A multipath load balancer has been proposed for DDoS (dis-
tributed denial of service) attack mitigation [16], performed in
two steps: layer-7 load balancing based on DNS/NAT balanc-
ing, while layer-4 load balancing splits traffic between paths
in the network. The algorithm used for redirection is three-
fold: first get the load information from the network, second
override the routing with a static Bellman-Ford algorithm, and
finally split traffic paths that are either overloaded or have
other alternate paths available.

Our solution builds a framework that integrates both fog
computing and the security aspects provided by SDN. Fog
computing provides the ability to run processing and store
data closer to the end users, while these decisions can be
broadcasted over the entire network using SDN technology.
Details on the framework that helps achieve this is provided
in the following section.

III. SYSTEM DESIGN

A. Fog Attributes of Interest

The proximity of the fog nodes to the edge networks leads to
many advantages including recognition of accurate attributes
of a flow. Furthermore, considering various attributes of the
OpenFog RA makes fog a dependable layer between the edge
networks and the cloud. Consequently, the processing power
centralised in the cloud is distributed throughout this hierar-
chical architecture. On the other hand, many things in IoT
systems, including sensors, do not have sufficient resources
for intensive processing. Lack of processing power and energy
consideration for battery-operated things limit edge networks
to carry out vital operations such as security or optimal
decision making. This shifts processing to the fog nodes, the
first resource in the network to perform various operations
such as context-aware decision making, enforcement of access
control for traffic management, or encryption for security. We
consider three attributes of the OpenFog RA for our study
including security, scalability, and autonomy:

• Security is one of the pillars of the OpenFog RA, con-
sidered as a multi-layer security mechanism starting from
hardware to any software installation on a particular node.
Since fog nodes are the first line of defense for some
simple edge networks such as wireless sensor networks,
they should be secure in both hardware and software; the
ultimate result is a secure path from the edge to the cloud.

• The scalability attribute of the OpenFog RA defines
the scalability inside a node and extension to the fog
layer. In other words, a node can improve its capability
by adding extra hardware or software, or the whole
layer can scale up by adding extra nodes. This leads
to improving performance by decreasing response time,
dependability by adding redundant nodes, and security by
using software or hardware accelerators for cryptographic
processing.

• The autonomy attribute of the OpenFog RA increases the
dependability of the architecture in the face of external
challenges such as cable cut or natural disaster. This is
due to the autonomy of decision making during chal-
lenges. This attribute distributes the centralised decision-
making in a cloud architecture without any other layer
in-between the fog nodes in various levels of the fog
architecture. The autonomy attribute can be expanded to
other areas, including autonomy of resource discovery,
autonomy of security, and autonomy of operation. Auton-
omy of resource discovery leads to autonomous decision
making for resource sharing and management among
other nodes. Autonomy of security allows a node to
decide about security issues including blocking malicious
traffic that may pass through the node or updating virus
scanner databases. Finally, the autonomy of operation
increases the ability of a node to support local decision
making, including proper response for an actuator in the
edge network [1].

3

We consider these attributes as part of our model architec-
ture.

B. SDN Role in Framework

We use these properties of a fog node to propose our
model to increase the resilience of the edge network with
lightweight processing. The idea is to use simple and cost-
efficient components to improve the overall resilience of the
network. In our model, we use SDN switches and simple
hosts with limited processing power as a fog node, instead
of conventional high-end switches and full-function firewalls.
The main intent to use SDN is the flexibility in programming
and centralised management of multiple switches. Each SDN
switch receives its forwarding table from the controller in the
network. Furthermore, one controller is enough to manage
multiple switches [17]. If a switch cannot find a path to a
particular destination, it sends a request to the controller to
receive an updated forwarding table, including the path to
the requested destination. The controller is responsible for
running routing algorithms to keep the paths updated. We add
processing power in the form of a VM to transform each SDN
switch into a fog node, in order to be capable of executing
lightweight algorithms. Since switches have full visibility to
their own subnet, this offers an opportunity to block many
attacks, including IP spoofing with simple processing such as
comparison of IP addresses. Firewalls installed in the core
network have difficulty blocking an IP spoofing attack as they
must consider other aspects of a particular flow, including from
other layers. In contrast, a switch at the edge network can
easily detect the IP prefix of its own network. In this case,
any packet that has a different source address than the local
network is considered as a spoofed packet.

C. Framework Design

Ideally, fog nodes are devices with processing, networking
capability, and storage. As fog nodes have not been realised
yet, we consider a fog node as a virtual machine connected
to a switch with the processing and storage unit shown as a
separate entity.

Our framework is depicted in Figure 3. The network consists
of the various hosts shown at the bottom of the figure and
includes the fog nodes, which are the integration of an SDN
switch and a VM. This assumption holds that the fog node
has access to the data that passes through. Each switch in a
fog node is connected to the SDN network through the SDN
controller, which acts as the main component of the network’s
control plane. The controller is responsible for pushing flow
table entries to the switches.

The end hosts can send packets to each other through the
switches, while the SDN controller provides routing informa-
tion when it is required. The fog node, in turn, inspects any
network data that passes through its connected switch. The fog
node has access to the entire packet, including the payload,
when it is required to make decisions based on the requested
network service. The decisions are then relayed through the
controller using specially crafted packet-in messages, with

Linux VM OpenFlow Switch

Hosts Network

Data Network

Southbound
API

Processing
Storage

Fog Node

Controller Layer

OpenFlow Application Layer
Northbound API

Controller Northbound API

Fig. 3. Fog SDN Architecture Diagram

the action to be performed included in the payload that is
then pushed to all switches in the network. The payload can
be in the form of a JSON message for standardisation of
message exchange between the controller and the fog node.
The messages deliver key parameters of the various flow entry
attributes that the controller sets to modify flow entries.

Let us consider an IP spoofing experiment with realised
through our framework. Spoofed packets originate from a
network with a different source address of the attacker and if
left unchecked, travel through the network. When the spoofed
packets reach the fog-connected switch, the fog VM has a
process running that inspects the header of the packet and
decides whether the packet is spoofed or not. Legitimate traffic
is allowed to pass through to the controller without any action
from the fog node, with the controller installing flow rules
for the packets to reach the destination. In case the packet is
determined to be spoofed, special packet-in messages are
sent to the controller with the payload formatted as a JSON
message. This contains key features depicting the action to
be performed such as drop flow, the source IP address, and
the destination IP address. The message is received by the
controller and the drop action is performed for a specific period
of time. The pseudocode for implementing this scenario in a
fog node is shown in Algorithm 1.

D. Service Realisation through the Framework

In this section, we outline some of the various services that
can be realised through this framework. We consider a few that
can be developed with minimal changes to our framework.

A simple traffic management system is possible by mon-
itoring the volume of traffic and the utilisation of the CPU
in the switch, as well as packet drop rates in the ingress
and egress buffers. In this case, if there is another interface
available and buffer overflow occurs for a particular interface,
the switch can inform the controller to add an alternate path
to the forwarding table. This feature increases the dynamic
manageability of the network. However, this condition needs
a degree of network context-awareness. In order for a node
to be self-aware, it must be able to monitor itself; in our
architecture, the fog nodes promote this awareness. Broadly

4

Algorithm 1 IP spoofing application based on framework
1: procedure PACKET SNIFFER
2: for each packet traversing the network
3: Sniffing phase:
4: sniff packet occuring on eth0
5: save the source IP of packet for further processing
6: Analysis phase:
7: compare packet IP with network of host network
8: if IP not in network then
9: spoofed packet

10: procedure IP SPOOFING FRAMEWORK
11: run packet sniffer on fog node
12: if packet spoofed then
13: generate packet-in messages to controller
14: payload contains action to be performed
15: controller executes necessary action
16: else
17: flow allowed

speaking, self-awareness is categorised as either public or
private [18], [19]. Public self-awareness refers to knowledge
acquired from the environment related to the consequences
of a system action. Private self-awareness refers to knowledge
internally available to the system. Since a fog node is installed
close to the edge network, it has a better view of the local
network and is able to make decisions optimally for its own
network. Consequently, the decision for traffic management is
likely to be more accurate based on the condition of the edge
network and neighbor switches.

LAND (local area network denial) attacks [20] in which a
malicious node sends a TCP SYN packet with the same source
and destination of the target node are also recognisable in this
model. In such an attack a node sends packets continuously
to itself. This type of attack is easily detectable by a simple
comparison when such requests enter the LAN network switch.

If a switch has enough processing power, it can perform
decision making to stop malicious traffic causing various types
of denial of service (DoS) attacks. For instance, a fog node
can gather statistics about daily traffic for further analysis.
Using this information, events such as flash crowds and other
anomalies can be detected. To this effect, learning algorithms
can be used to diffrentiate good and malicious traffic and
measures taken accordingly [21].

URL filtering and parental control can be another use of
our framework. While switches and routers process layers 2
and 3, URL filtering needs deep packet inspection. If DNS
requests are monitored at the switch level, a proper result for
filtering can be gained.

Furthermore, having fog nodes at the edge network ben-
efits interactivity and response time, particularly for mission-
critical and interactive systems in which edge networks contain
limited-resource sensor nodes.

We would like to justify why are model is preferred to other
existing solutions. The optimal explanation comes from the
main attributes of fog computing and the SDN environment.

As mentioned previously, a fog node can obtain more accurate
information from the edge network if it is installed in the
proper place. This information may be more beneficial if it
is shared with other fog nodes. Our solution for sharing this
information is using SDN controllers. Since SDN provides a
logically centralised management plane for a large network,
signalling can be propagated through the network efficiently,
with programmability to take appropriate action.

IV. EVALUATION

This section describes the setup for our simulations and the
various experiments conducted to validate our framework.

A. Simulation Setup

In order to evaluate our model, we emulate a topology as
illustrated in Figure 4 using Mininet [22]. Mininet can create
a virtual network in the Linux kernel, instantiate OpenFlow
switches, and run application code on bare metal or virtual
machines. It has the ability to develop experiments with
OpenFlow [3], [23] and SDN. Accessing the host kernel allows
Mininet users to add their experimental code to the network.
In our topology, end hosts at the lower level of the network are
able to generate legitimate or malicious traffic. A Python script
generates traffic that controls when and what type of traffic
should be injected into the network. In order to implement
spoofed packets, we change the source IP address to another
address that is not part of the local network. Furthermore,
malicious traffic can be mixed with legitimate traffic destined
to the other parts of the network.

In addition to the hosts, a set of SDN OpenFlow switches
is connected to an SDN controller (OFC), from which the
forwarding table along with the action related to each flow
is obtained. We use POX [24], which is an OpenFlow open-
source Python-based platform for SDN control applications,
to which we add our code to implement new policies to the
controller.

OF

S4

Linux VM/
fog node 2

End host 2End host 1

S0

S2S1

S3

Linux VM/
fog node 1

OF

OFC

OF

OF OF

Controller

Fig. 4. Simulation topology

The last piece of the topology is the fog nodes that are im-
plemented as Linux VMs, connected directly to the OpenFlow
switches. In this case, a copy of all traffic passing through
the switch is forwarded to the fog node where the decision
making is performed. Therefore, fog nodes have visibility to

5

TABLE I
SNIFFER VS. NO SNIFFER PACKETS EVERY SECOND

Second 1 Second 2 Second 3 Second 4
No sniffer packets 45 45 45 45

Sniffer packets 45 0 0 0

their own network. We implement a simple packet sniffer in
Python and install it in the fog nodes, similar to the technique
that intrusion detection systems (IDS) use to monitor traffic
for irregularity. Furthermore, a direct request to the controller
can stop malicious traffic or reroute it to a null port. In this
case, the fog node that has detected malicious traffic sends a
packet-in message containing flow information and drop
actions. After processing the message in the controller, it
updates the forwarding table and pushes to all switches.
Receiving the updated table, switches drop the identified flow.
This action remains in the forwarding table for a limited
amount of time and then is removed. Therefore, it prevents the
forwarding table from being overrun by attackers that change
the source IP address constantly. If the same attack persists,
the fog node sends a new request to the controller. Although
the fog node is not inline with the traffic, its ability to send
the requests and proximity to the switch permits the fog node
work as an intrusion prevention system (IPS). Therefore, the
risk of having a long delay to allow the malicious traffic pass
the switch is negligible.

B. Experiments

We perform three experiments to validate our IP spoofing
application. We utilise the topology specified in Figure 4 for
the experiments.

1) IP Spoofing Application Validation: As part of our first
experiment, we validate our IP spoofing detection in the
presence of only spoofed traffic. For the first part of the
experiment, we do not make use of the sniffer application and
monitor the spoofed packets for the length of the simulation
period. IP spoofed packets are generated from host 1 and
travel through the fog node and the controller to host 2;
Scapy [25] is used to generate packets. For the second part of
the experiment, we introduce the sniffer when the experiment
starts, which is run on the fog node 1.

The results are shown in Table I. In the case where there
are no sniffer packets, we see a steady rate of spoofed packet
generation, sampled at every second for the entirety of the
simulation. When the sniffer is introduced, we see that the
spoofed packets drop after the first second. This is due to
the sniffer detecting the spoofed packet and sending control
signals to the controller requesting it to drop the flow with the
necessary flow parameters.

2) IP Spoofing Validation in midst of Legitimate Traffic:
As part of our second experiment, we validate the working of
our IP spoofing application in the midst of legitimate traffic,
flowing between host 1 and host 2 for the entirety of the
simulation. Spoofed packets are introduced at time 20 s of
the simulation for the duration from host 1. The IP sniffer is

installed in fog node 1. We consider two cases of study for
this experiment: the first when no IP sniffer is employed and
the second when an IP sniffer listens to flow information in
the network.

The results are provided in Figure 5. The number of packets
transmitted over time is plotted against the simulation time
for both cases. We see that in the first no-sniffer case, a spike
occurs around 20 s. This is due to the extra packets being
generated by the spoofing application. In the second case, we
observe that the spoofed packets get blocked by the IP sniffer
application beginning at 20 s, showing that the sniffer does
not affect any legitimate traffic destined for the same host.

0 10 20 30 40 50 60
Time [s]

0

50

100

150

200

250

300

Nu
m

be
r o

f p
ac

ke
ts

No Sniffer
Sniffer

Fig. 5. Sniffer vs. no sniffer in midst of legitimate traffic

3) IP Sniffer Action for Differing Timeout Values: For the
final experiment, we focus on the action of an IP sniffer
when the duration of the forwarding table entries are low. The
forwarding table entries have two types of duration parameters.
The idle timeout parameter is a value that triggers when
no flows are present for the specified period of time. Hard
timeout, on the other hand, is a hard stop after which flow
entries expire. When the hard timeout value is low, there are
concerns that the spoofed packets will start to reappear. In this
experiment, we set a value of 20 s for both the idle and hard
timeout and check how the sniffer reacts to this case.

The results are presented in Figure 6. We see that when
the sniffer is not in action, there is a surge in the number
of spoofed packets starting at simulation time 20 s when the
spoofed packets start to transmit. This trend is seen until the
end of the simulation. On the other hand, when the sniffer is
started, we notice spoofed packets occurring at 20 s and 21 s
of the simulation for the first iteration. These spoofed packets
are then dropped by the IP sniffer for an idle timeout and hard
timeout of 20 s. At the end of 40 s, we see spoofed packets
coming back only to be dropped at that instant, showing
that the IP sniffer works continuously for the entirety of the
simulation.

6

0 10 20 30 40 50 60
Time [s]

0

20

40

60

80

100

120

140

160

180
Nu

m
be

r o
f p

ac
ke

ts
No Sniffer
Sniffer

Fig. 6. Sniffer vs. no sniffer for spoofed packets

V. CONCLUSIONS

In this work, we have defined a new framework that
includes fog nodes integrating with SDNs to improve the
resilience of networks. The framework utilises fog nodes that
are attached to OpenFlow switches and have the ability to
inspect data packets that pass through the network. Services
can then be developed based on the scenarios. Messages are
then relayed to the controller to install flow rules accordingly
across the network. To test the framework, we make use of
a simple IP sniffer application that is installed on the fog
node. Experiments show the proper working of the detector
application, both with and without legitimate traffic. As part
of our future work, we intend developing more services such
as traffic management systems, and machine learning based
intrusion detection on top of the framework.

REFERENCES

[1] OpenFog Consortium Architecture Working Group, “OpenFog reference
architecture for fog computing.” https://www.openfogconsortium.
org/wp-content/uploads/OpenFog Reference Architecture 2 09
17-FINAL.pdf, 2017.

[2] OpenFog Consortium Architecture Working Group, “OpenFog.” https:
//www.openfogconsortium.org/, 2017.

[3] Open Networking Foundation, “ONF website.” https://www.
opennetworking.org/, 2017.

[4] K. Kirkpatrick, “Software-Defined Networking,” Commun. ACM,
vol. 56, pp. 16–19, Sept. 2013.

[5] N. McKeown, “Software-Defined Networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30–32, 2009.

[6] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in commu-
nication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[7] J. P. Sterbenz and D. Hutchison, “ResiliNets: Multilevel resilient and
survivable networking initiative.” http://wiki.ittc.ku.edu/resilinets, 2016.

[8] C. Landwehr, “Computer security,” International Journal of Information
Security, vol. 1, no. 1, pp. 3–13, 2001.

[9] Cisco, “The Internet of Things Reference Model.” http://cdn.iotwf.com/
resources/71/IoT Reference Model White Paper June 4 2014.pdf,
2014.

[10] L. M. Vaquero and L. Rodero-Merino, “Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” SIGCOMM
Comput. Commun. Rev., vol. 44, pp. 27–32, Oct. 2014.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput-
ing, vol. 8, pp. 14–23, Oct 2009.

[12] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile Edge
Computing: A Taxonomy,” in Proc. of the Sixth International Conference
on Advances in Future Internet, pp. 48–54, Citeseer, 2014.

[13] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “Snortflow: An
Openflow-based Intrusion Prevention System in Cloud Environment,” in
Research and Educational Experiment Workshop (GREE), 2013 Second
GENI, pp. 89–92, IEEE, 2013.

[14] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
LISA ’99, (Berkeley, CA, USA), pp. 229–238, USENIX Association,
1999.

[15] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining OpenFlow and sFlow for an Effective and
Scalable Anomaly Detection and Mitigation Mechanism on SDN envi-
ronments,” Computer Networks, vol. 62, pp. 122–136, 2014.

[16] M. Belyaev and S. Gaivoronski, “Towards Load Balancing in SDN-
networks during DDoS-Attacks,” in Science and Technology Confer-
ence (Modern Networking Technologies)(MoNeTeC), 2014 First Inter-
national, pp. 1–6, IEEE, 2014.

[17] Casado, Martin and Garfinkel, Tal and Akella, Aditya and Freed-
man, Michael J and Boneh, Dan and McKeown, Nick and Shenker,
Scott, “SANE: A Protection Architecture for Enterprise Networks.,” in
USENIX Security Symposium, vol. 49, pp. 137–151, 2006.

[18] C. Goukens, S. Dewitte, and L. Warlop, “Me, Myself, and My Choices:
The Influence of Private Self-Awareness on Choice,” Journal of Mar-
keting Research, vol. 46, no. 5, pp. 682–692, 2009.

[19] P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bah-
soon, J. Torresen, and X. Yao, “A Survey of Self-Awareness and Its
Application in Computing Systems,” in 2011 Fifth IEEE Conference on
Self-Adaptive and Self-Organizing Systems Workshops, pp. 102–107, Oct
2011.

[20] G. A. Marin, “Network security basics,” IEEE security & privacy, vol. 3,
no. 6, pp. 68–72, 2005.

[21] T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Traffic Classification using Machine Learning,” Communications Sur-
veys & Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[22] “An Instant Virtual Network on your Laptop (or other PC).” http://www.
mininet.org, July 2010.

[23] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 69–74, Mar. 2008.

[24] “The POX Controller.” https://github.com/noxrepo/pox, July 2010.
[25] P. Biondi, “Scapy Project.” http://www.secdev.org/projects/scapy/, 2011.

7

