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Abstract—Realistic network topologies are crucial for network
research and are commonly used for the analysis, simulation, and
evaluation of various mechanisms and protocols. In this paper, we
discuss network topology models to generate physical topologies
for backbone networks. In order to gain better understanding
of current topologies and engineer networks for the future, it is
necessary to generate realistic physical topologies that are gov-
erned by the infrastructure as opposed to only logical topologies
that are governed by policy or higher-layer abstractions. The
objective of this work is to present the principles that are key
to node distributions of realistic topologies and the challenges
involved. We argue that the dominant factors that influence the
location of the PoPs are population density distribution and the
technology penetration of a given region. Hence we implement
a clustering algorithm to accurately predict the location of PoPs
and later explore cost constrained models to generate realistic
physical topologies.

Index Terms—Network topology model, cost-constraint, geog-
raphy, population, resilience, technology penetration.

I. INTRODUCTION AND MOTIVATION

The motivation for network topology research is to un-
derstand the structure and evolution of the Internet as well
as create realistic models for the purpose of experimentation
and analysis. Therefore, it is necessary to model not only the
graphical properties of a topology but also the processes that
are fundamental to the growth of that topology. Moreover, the
constraints that shape the physical topology heavily impact
the properties of the resulting logical topologies. For example,
the link connectivity of a network is dependent on the node
locations. Realistic physical topology models enable us to
accurately evaluate the performance of protocols and services
and ultimately predict the topologies of the future Internet.

The ever-increasing importance and pervasiveness of com-
munication networks also increases the expectations from
these networks in terms of resilience and survivability. Practi-
cal networks are never fully resilient and hence it is necessary
to do a systematic evaluation of topologies to know how
a particular network reacts to challenges. Furthermore, such
research is helpful for network architects to generate alternate
topologies based on realistic constraints. To accurately model
an existing ISP, we need to know where actual node locations
are and how fiber infrastructure is laid out to connect these
nodes. This information is key to accurately determining delay,
capacity, and resilience characteristics of a network. On the
other hand, simply placing nodes randomly in a given region

and connecting them using an attachment model does not
reflect realistic topologies.

The primary concern for a new ISP desiring to build
a network in a region that already has network resources
extensively deployed, is to know where infrastructure such
as exchange points and fiber links are located in that region.
Hence, we need a model to generate realistic topologies that
accurately reflects the actual node and link locations. For
certain regions that do not have a lot of fiber laid out already,
this model could help predict the optimal node and link
locations. Current examples of Sprint, AT&T, and Level 3
networks show that the blueprint of node locations is deeply
embedded into their topologies. We claim that physical node
locations combined with a realistic link generation model is
critical for network evaluation, particularly for resilience [1],
in which many challenges such as large-scale natural disasters
and power failures are geographic in nature [2]. We present
a model that generates realistic physical node locations for a
given region based on real world constraints and later compare
to the location of actual ISP PoPs (points of presence).

We begin our discussion with an overview of the proposed
model in Section II. We compare random and population-
based node distributions and consider the challenges faced
by the network community in validating models due to the
lack of real data. In Section III, we present our methodology
discussing the real world constraints for node distribution and
how we implement these in our simulations. In Section IV,
we compare the location of backbone PoPs generated by our
algorithm to actual ISP PoPs. Finally, in Section V, we discuss
a simple topology example generated by linking cluster centers
based on a cost constrained model.

II. OVERVIEW OF PROPOSED MODEL

The main thrust of this work is to model and generate
realistic topologies, with an emphasis on backbone networks
in this paper. Therefore, the generation model should be
representative of the actual network structure and evolution
process. We seek the precise location of the backbone nodes
for various countries and continents. Some of the well known,
yet fundamental aspects that govern their placement are pop-
ulation density distribution and technology penetration. Our
model has the ability to generate a specific number of cluster
centers for a given geographical area while understanding that
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simply placing nodes in the order of most populated cities will
not necessarily generate realistic topologies.

To connect these nodes we propose a cost-constrained
connectivity model. High resilience can be achieved at un-
acceptably high costs, however unrealistic. If costs were not
constrained, networks would be full meshes. Hence realistic
generators must have the ability to produce feasible topologies
at a finite cost.

A. Node Distribution

The physical topologies of networks are highly constrained
by the geographic location of its components. It is obviously
inaccurate to assume that the distribution of nodes is uniform.
In fact, the distribution is very irregular for any given geo-
graphic area due to the constraints imposed by population,
terrain such as mountains and bodies of water, and policy
issues. Several works in the past [3], [4] have shown that
the router-level topology shows a very high correlation to the
population density. However, we are not aware of any existing
models that apply such realistic constraints to deduce node
placement. While it is obvious that distribution of network
infrastructure is driven by population, it is certainly not the
only factor governing the spatial distribution of nodes. For
certain regions where the demand for Internet access is non-
uniform, we need to consider effective population, that is
the number of Internet users in a sub-region as opposed
to the absolute population. Typically, for a well developed
nation, there is very little difference between effective and
absolute population. However, the difference is pronounced in
an economically diverse region such as India.

B. Challenges

One of the fundamental challenges in developing a phys-
ical topology model is the lack of real data for validation.
The physical topology of commercial networks including the
Internet is not readily available because of competition among
ISPs and security concerns. Previous research has considered
several inference mechanisms to determine geographic node
locations and physical link distances [5], [6], [3], but despite
these efforts, the inference of physical topologies remains an
open problem. There are, however, a few educational and
research networks such as GÉANT2 and Internet2 for which
the physical topology is available for validation1.

III. METHODOLOGY

In this section, we discuss the principles which are key
to the topologies generated by our model. We discuss their
implementation for geographical areas including the USA,
Europe, India, and Africa.

A. Clustering Algorithm

We use the k-means clustering algorithm [7] to find optimal
locations to place a backbone PoP; the location at which an ISP
terminates services and hands off to the local service provider.
This algorithm uses gridded population density data sets

1Note that these networks are much smaller than many commercial ISPs.

from the Center for International Earth Science Information
Network (CIESIN) [8] . The data is available for all areas
across the globe for the year 2000 and is in raster format
with a 1 km2 grid. K-means is an iterative clustering method
that works in two phases. The goal is to minimize the sum
of the distances between all data points to cluster centers
for all clusters. The initial selection of the cluster centers is
random. The first phase, generally referred to as the batch
phase, recomputes the cluster centers by re-associating each
data point to its nearest cluster center. This phase provides an
approximate but fast computation of cluster centers.

The second phase is generally called the on-line phase that
uses the output of the first phase as the initial cluster centers
and re-associates points to a different cluster only if doing so
reduces the sum of distances. Cluster centers are recomputed
after each re-association. Each iteration requires one pass
through all data points. This is computationally complex and
time consuming, especially for such large data sets.

The two inputs to our algorithm are the population data and
the number of cluster centers. From the inferred topologies
obtained from Rocketfuel [9], we note the number of PoPs
for various ISPs for the various geographical areas considered.
For example, the Sprint backbone has 27 nodes spatially
distributed across the USA. We use this number as the input
to our algorithm and generate an equal number of population
centers. We consider multiple ISPs so that we can aggregate
across major tier-1 providers, so as to not neglect certain parts
of a country which may not be serviced by a specific ISP.

B. Technology Penetration

The other fundamental aspect governing the location of the
PoPs is technology penetration. We argue that the location
of the backbone PoPs is highly dependent on the number
of Internet users in a given area. We denote the technology
penetration factor as γ, defined as the fraction of Internet
users to the total population in a particular area. Intuitively,
this factor is uniform for a developed country like USA, for
which we consider γ=1. This factor particularly has significant
influence on a developing country such as India, where there
are many densely populated areas along the river Ganges with
very few Internet users. Hence, placing network resources
solely based on the population density data set would not lead
to a realistic network deployment. We use the quarterly report
released by Telecom Regulatory Authority of India [10] to get
the state-wise list of broadband subscribers in India. We in-
corporate technology penetration into our model by weighting
the population of each grid in an area by corresponding γ and
then clustering the resulting data set.

C. Cost-Constrained Connectivity Model

Cost constraints significantly impact network design and
evolution. The resilience and survivability of networks [1] is
almost always limited by the cost, therefore, realistic models
must incorporate cost constraints. For simplicity, we assume
that all nodes in the backbone network have equal cost,
denoted by Cb. The link cost Ci,j of a link i, j is calculated
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Fig. 1. Relative node locations for ISPs in USA

(a) Predicted PoPs (20) (b) Actual population density chart [8]
(reprinted with permission)

Fig. 2. Cluster centers for Africa

as:Ci,j = f+v×di,j , where f is the fixed cost associated with
link, v is the variable cost per unit distance for the link and di,j

is the length of the link. The Internet is commonly modeled
as pure preferential attachment but here we consider just the
backbone network. The nodes in our model are connected
using a cost-constrained Waxman model, which accurately
represents link connectivity in backbone networks [3]. While it
is generally agreed that backbone networks are mesh like [11],
there is some contention as to exact relationship between link
probability and distance. While some works claim that this is
exponential [3], others claim that this is linear [4].

According to the Waxman model [12] the probability that

two nodes u and v have a link between them is given by

P (u, v) = βe
−d(u,v)
Lα

where 0 < α, β ≤ 1 and L is the maximum distance
between any two nodes. The Waxman parameters α and β
are controlled by the cost. A high value of α corresponds to
a high fraction of short links to long links and β is directly
proportional to the link density; d is the Euclidian distance
between the two nodes. We use the node locations based on
realistic constraints and connect them using Waxman model
for a realistic backbone topology.
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IV. COMPARISON OF NODE LOCATIONS

In this section we compare the physical location of real
ISP backbone PoPs to the location of PoPs generated using
our population based clustering algorithm. We present results
pertaining to uniform and non-uniform technology penetration
factors.

A. Uniform Technology Penetration

As discussed earlier, a well developed country has relatively
uniform technology penetration. For illustration purposes, we
discuss results for various ISPs in the USA. Since the focus is
on backbone topologies, we consider major tier-1 providers.
Figure 1 shows the comparison of Sprint, Level 3, and AT&T
backbone PoP locations to 27, 38, and 106 nodes respectively,
generated by performing clustering on the US Population
density data set. A visual inspection (Figure 1a, 1b, 1c) shows
that for very densely populated regions like the east coast,
the locations are very well matched. However, there are a
few outliers. This is because not all regions across the nation
are serviced by a particular ISP. It is therefore necessary
to aggregate multiple tier-1 ISPs to make an appropriate
comparison. We combine the PoPs for all ISPs while limiting
to one PoP per city. This results in 112 unique points as shown
in Figure 1d. We then generate 112 cluster centers using our
population based clustering algorithm for comparison.

TABLE I
COMPARING OFFSET DISTANCE WITH EXISTING POPS IN KMS

Network (POPs) Mean σ Min. Max.
Sprint (27) 54.2 45.3 2.6 163.6

AT&T (106) 26.5 37.3 1.1 265.2
Level 3 (38) 43.4 31.7 9.6 118.6

GÉANT2 (34) 101.5 54.1 20.2 252.3
Ebone (27) 56.3 27.9 17.7 131.1
Tiscali (47) 34.8 22.3 2.47 80.6
VSNL (5) 26.7 34.9 2.6 265.1

We quantify the distance between inferred PoP locations and
population based cluster centers as the offset distance for a pair
of nodes. To provide a rigorous analysis of such a comparison,
we plot the complementary cumulative distribution function
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Fig. 4. CCDF of offset distance

(CCDF) of the offset distance for individual and combined
ISPs. We note from Figure 4 that when we combine all ISPs,
almost 90% of the nodes generated by our algorithm are within
50 km offset distance. A very small percentage of the nodes
are outliers.

We consider a geographic area like the continent of Africa,
currently with few network resources limited to countries like
South Africa, to predict the location of network infrastructure.
We generate the optimal location of backbone PoPs that can
be used by an ISP desiring to have a continent-wide topology.
Figure 2a shows the predicted location of 20 PoPs. We provide
a population density chart (Figure 2b) [13] to make a visual
comparison. It should be noted that since there is no continent-
wide ISP in Africa, we cannot compare node locations with
real data, but use this as a tool to predict future PoP locations.

B. Non-Uniform Technology Penetration

As discussed earlier, γ is a significant factor, generally, for
less developed nations. We take a simple and obvious case
of India to illustrate this factor. India is highly populated in
the northern belt of the river Ganges. However, the number of
Internet users for this region is small compared to the absolute
population. We consider the inferred topology of the VSNL
network in India [9]. VSNL has only 5 PoPs in Delhi, Mumbai,
Hyderabad, Bangalore, and Chennai. We run our clustering
algorithm both on the absolute population data set as well
as the effective population data set (γ weighted per grid) to
make visual comparison. Figure 3 shows that 4 of the PoPs
match closely. Instead of a PoP near Chennai, we end up with
one in Patna (γ=1) for two reasons: a) Patna is much denser in
population than Chennai and, b) the PoP placed near Bangalore
is close enough to Chennai for our algorithm to place another
PoP. After correcting for γ [10], the four PoPs which matched
earlier get closer to the real locations, while the one in Patna
moves to Kolkata as it is one of the metropolitan areas with
a high number of Internet users.

We provide Table I as summary of our results pertaining to
the locations of PoPs for various ISPs for various geographic
areas. It is to be noted that all of them are inferred topologies
except for GÉANT2 [14], which is a research network in
Europe. Our predictions match very well with ISPs with large
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infrastructure. For example, in the case of AT&T, the mean
separation between real and clustered nodes is 26.5 km and
the closest match is with an offset of 1.1 km. Initial experi-
mentation has produced promising results and we discuss our
road map for future work in Section VI.

V. SAMPLE SYNTHETIC GRAPH

In this section, we demonstrate the ability to generate a
realistic 27 node topology based on US population density
data set. We use a cost-constrained Waxman model to connect
the backbone nodes. The objective is to go from realistic node
locations to understanding realistic topologies and evaluate
resilience of synthetic graphs. Figure 5 shows the topology
generated by our model. We are unable to do a comparison
between synthetically generated physical topologies to real
ISP topologies due to lack of validation data as discussed in
Section II-B. Tools such as Rocketfuel provide us with inferred
topologies that are logical and are not sufficient to validate
synthetic physical topologies.

We computed betweenness, average node degree and clus-
tering coefficient along with other metrics for graph shown in
Figure 5. Betweenness is the number of shortest paths through
a particular node or link [15]. The node betweenness values
were calculated as (max:124, min:1, avg:32) and link between-
ness of (max:35.1, min:2.9, avg:11.3). A higher average node
degree value (mean number of links connected to a node)
generally indicates that a graph is better connected and is
more robust [15]. We observe that average node degree is 5.23.
Clustering coefficient is the measure of how well neighbors of
a node are connected and is calculated as 0.28.

Fig. 5. Synthetic topology for 27 nodes

VI. CONCLUSION AND FUTURE WORK

We have provided a model that precisely generates the
optimal locations to place backbone PoPs in a given region.
However, a new ISP wanting to layout a network will consider
the location of existing fiber infrastructure. Hence we plan to
constrain the location of PoPs to existing infrastructure by
doing a snap-to-grid. For the link model, we plan to constrain
links to the existing fiber routes which were in turn constrained
by deployable routes such as railway lines and highways.
On the flip side, for countries that have not yet extensively
laid out their fiber lines, such a model could provide the
answer to Where should the fiber infrastructure go? This
gives us the ability to plan and engineer future networks such
that resources are efficiently deployed. We have laid out key

aspects of realistic physical topologies, however they are by
no means exhaustive and require further research. Working
with large data sets is computationally time consuming. To
increase efficiency of our algorithm, we are in the process of
re-implementing the weighted clustering algorithms without
compromising accuracy.
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