
Computer Networks 61 (2014) 51–74
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
The GpENI testbed: Network infrastructure, implementation
experience, and experimentation
1389-1286/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bjp.2013.12.027

⇑ Corresponding author at: University of Missouri–Kansas City, Kansas
City, MO, USA. Tel.: +1 816 235 2006.

E-mail addresses: dmedhi@umkc.edu (D. Medhi), byrav@cse.unl.edu
(B. Ramamurthy), caterina@ksu.edu (C. Scoglio), rohrej@ittc.ku.edu
(J.P. Rohrer), ekc@ittc.ku.edu (E.K. Çetinkaya), ramkumar.ch03@gmail.com
(R. Cherukuri), Xuan.Liu@umkc.edu (X. Liu), acb@cs.princeton.edu (A. Bavier),
cort@kanren.net (C. Buffington), jpgs@ittc.ku.edu (J.P.G. Sterbenz).
Deep Medhi a,g,⇑, Byrav Ramamurthy b, Caterina Scoglio c, Justin P. Rohrer d,
Egemen K. Çetinkaya d, Ramkumar Cherukuri a, Xuan Liu a, Pragatheeswaran Angu b,
Andy Bavier e, Cort Buffington f, James P.G. Sterbenz d,h

a University of Missouri–Kansas City, Kansas City, MO, USA
b University of Nebraska–Lincoln, Lincoln, NE, USA
c Kansas State University, Manhattan, KS, USA
d The University of Kansas, Lawrence, KS, USA
e Princeton University, Princeton, NJ, USA
f KanREN, Lawrence, KS, USA
g Indian Institute of Technology–Guwahati, India
h Lancaster University, Lancester, UK
a r t i c l e i n f o

Article history:
Received 19 December 2012
Received in revised form 29 November 2013
Accepted 26 December 2013
Available online 3 January 2014

Keywords:
Programmable future Internet testbed
Network virtualization
Dynamic circuit network
a b s t r a c t

The Great Plains Environment for Network Innovation (GpENI) is an international program-
mable network testbed centered initially in the Midwest US with the goal to provide pro-
grammability across the entire protocol stack. In this paper, we present the overall GpENI
framework and our implementation experience for the programmable routing environ-
ment and the dynamic circuit network (DCN). GpENI is built to provide a collaborative
research infrastructure enabling the research community to conduct experiments in Future
Internet architecture. We present illustrative examples of our experimentation in the
GpENI platform.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Deploying large-scale network testbeds brings signifi-
cant benefits to researchers to conduct scalable network
experiments and evaluate the performance. Those testbeds
provide fundamental capabilities such as high-speed infra-
structure, programmable network nodes, and open access
permission to registered researchers so that they are al-
lowed to use the network resources through the open API
provided by the testbed. Two prominent network research
programs in the past five years are GENI (pronounced as
‘genie’) [12,41] and FIRE [9], and both focus on the Future
Internet architecture design and relevant technological
development, while supporting creation of experimental
testbeds. However, it is important to remember that the
idea of large-scale testbeds on which to conduct network-
ing research is not new. In this section, we summarize a
few of the most relevant previous efforts on network re-
search testbeds.

� Gigabit Testbeds: A set of testbeds was constructed in the
early 1990s to further the state of high-speed networking
research, funded by the US NSF and DARPA (Defense
Advanced Research Projects Agency), managed by CNRI
(Corporation for National Research Initiatives). Five sepa-
rate testbeds were constructed, Aurora, Blanca, Casa, Nec-
tar, and Vistanet [49], later supplemented by MAGIC [20].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bjp.2013.12.027&domain=pdf
http://dx.doi.org/10.1016/j.bjp.2013.12.027
mailto:dmedhi@umkc.edu
mailto:byrav@cse.unl.edu
mailto:caterina@ksu.edu
mailto:rohrej@ittc.ku.edu
mailto:ekc@ittc.ku.edu
mailto:ramkumar.ch03@gmail.com
mailto:Xuan.Liu@umkc.edu
mailto:acb@cs.princeton.edu
mailto:cort@kanren.net
mailto:jpgs@ittc.ku.edu
http://dx.doi.org/10.1016/j.bjp.2013.12.027
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

52 D. Medhi et al. / Computer Networks 61 (2014) 51–74
The Gigabit Testbeds were a platform for research in high-
speed networking, new bandwidth-enabled applications
[58], and networked supercomputing.
� Active Network Testbeds: In the late 1990s, testbeds

were constructed in the US and Europe to support
active networks research. Active networks are program-
mable networks in which one of the programming
modalities includes capsules of mobile code that can
dynamically program network nodes. In the US, the
ABone [42] was constructed as part of the DARPA-
funded Active Networks Program [1], to permit experi-
mentation on programmable network languages, man-
agement and control [54], node operating systems
[65], and security mechanisms [50]. The ABone had
the goal of open access to the research community. In
Europe, the EU FP5 FAIN (Future Active IP Networks)
[52] and related projects (e.g., LARA++ [47]) also inves-
tigated active and programmable networks, with test-
beds constructed for experimentation. These active
network architectures and testbeds permitted sharing
infrastructure by the simultaneous execution of active
applications (AAs) in execution environments (EEs) on
a network node operating system (NodeOS). While not
generally recognized in this manner, the active network
testbeds had many goals similar to that of GENI, and
should be considered a conceptual precursor.
� Modern Large-Scale Testbeds: More recently, two large

scale testbed infrastructures have been constructed
with the explicit goal of permitting open access for net-
working research. PlanetLab [26] is a worldwide infra-
structure that permits users to run networked
experiments on a large scale. The infrastructure is
shared using the slice paradigm. It is important to note
that while PlanetLab permits experimentation in net-
worked applications and end-to-end protocols, the net-
work itself is not programmable, and experiments in
lower-layer protocols can only be performed on over-
lays. VINI [29] provides a virtual network infrastructure
that is built on PlanetLab. VINI allows researchers full
control to create virtualized arbitrary network topolo-
gies where routing software can be invoked for experi-
mentation. Emulab [6] is a network testbed consisting
of a cluster of computing nodes interconnected by flex-
ible network infrastructure, which permits researchers
to experiment with network protocols and applications
with complete root access to the systems. A number of
Emulab facilities are located throughout the world,
some of which provide access to external researchers
in addition to the main facility at the University of Utah.
Both PlanetLab and EmuLab are the basis for GENI con-
trol frameworks; GpENI uses the PlanetLab control
framework.
� Current Future Internet Initiatives: While a number of

researchers proposed alternatives to the Internet archi-
tecture as early as the 1980s (including research pro-
grams such as DARPA Next Generation Internet –
NGI), there is now a general consensus in the research
community that the current architecture is limiting in
scale and support for emerging application paradigms
such as mobile and nomadic computing and communi-
cations. Recent research initiatives include NSF FIND
(Future Internet Design) [23] in the US, EU FP6 SAC (Sit-
uated and Autonomic Communications) [11], and the
research component of FP7 FIRE (Future Internet
Research and Experimentation) [9]. These research ini-
tiatives aim to investigate clean slate (greenfield) as
well as incremental (brownfield) architectures to evolve
the Future Global Internet architecture. A key problem
remains how to experiment with Future Internet archi-
tectures on a reasonable scale. For this reason, the NSF
GENI (Global Environments for Network Innovation)
program [12], the experimental component of the EU
FP7 FIRE programme [9], and the Japanese JGN2plus
[18] testbeds plan to deploy large-scale programmable
testbeds for experimentation of the Future Internet
research.

The scope of this paper is to give a comprehensive
presentation on the GpENI testbed from three different
aspects: network infrastructure, implementation
experiences, and experimentation. This comprehensive
work is built on our earlier conference and workshop
papers [36,48,60,68]. The rest of the paper is organized
as follows. In Section 2, we present the motivation and
overview about the GpENI testbed. In Section 3, we pres-
ent the physical topology of the GpENI testbed over the
United States, Europe and Asia, as well as the infrastruc-
ture design. In Section 4, we give a high level description
on the GpENI node cluster architecture. In Section 5 and
Section 6, we present a detailed discussion on the net-
work layer and the optical layer programmability of the
GpENI testbed, including both architecture design and
preliminary results. We discuss our current federation
status in Section 7. In Section 8, we discuss the experi-
mentation work we have done with the GpENI testbed.
A recent GpENI extension to KanREN-GENI is briefly de-
scribed in Section 9. We summarize this paper in
Section 10.

2. GpENI testbed: Motivations and overview

The Great Plains Environment for Network Innovation –
GpENI (pronounced as ‘japini’, rhyming with GENI) is an
international programmable network testbed centered on
a regional optical network between The University of Kan-
sas (KU) in Lawrence, the University of Missouri–Kansas
City (UMKC), the University of Nebraska–Lincoln (UNL),
and Kansas State University (KSU) in Manhattan associated
with the Great Plains Network, in collaboration with the
Kansas Research and Education Network (KanREN) and
the Missouri Research and Education Network (MOREnet).
GpENI has been extended to several sites in Europe. GpENI
started with funding provided initially through the NSF
GENI program.

The goals of GpENI are to:

� Build a collaborative research infrastructure, and con-
struct an international programmable network infra-
structure enabling GpENI member institutions to
conduct experiments in Future Internet architecture
and autonomic management.

Fig. 1. GpENI US Midwest topology.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 53
� Enable the capability of dynamically creating circuits of
specified requested bandwidth not only across GpENI
testbed among participating universities, but also sup-
port inter-domain dynamic circuit creation.
� Provide a flexible infrastructure to support the GENI

program as part of GENI node Cluster B, which uses a
PlanetLab-based control framework.
� Provide an open environment for networking research

community experiments.
� Provide an interface for the GpENI community to use

resources from other testbeds via federation.

GpENI aims to enable programmability not only at upper
layers such as the application or transport layer, but also at
the network layer and even at the optical layer. As shown in
Table 1, application and transport layer programmability
are provided by a private instance of PlanetLab (MyPLC).
At the network layer, programmable routers are imple-
mented in the routing software suite (i.e., Quagga or XORP).
Flexible network-layer virtualization is provided by GpENI-
VINI, which is a customized private instance of VINI [29]. At
the optical layer, dynamic VLAN configurations are pro-
vided by dynamic circuit network (DCN) enabled Gigabit-
Ethernet switches at the center of each GpENI node cluster.
GpENI institutions directly connected to the optical back-
bone use DCN-enabled Ciena switches to provide dynamic
lightpath and wavelength configuration.
3. GpENI network infrastructure and topology

The core of GpENI is the regional optical backbone cen-
tered around Kansas City. This is extended by KanREN
(Kansas Research and Education Network) to various GPN
(Great Plains Network) institutions located in the Midwest
region of the US. Connectivity in Kansas City to Internet2
provides tunneling access to the European GpENI infra-
structure. GpENI is growing, currently with about 38 node
clusters in 17 nations, including KanREN, G-Lab, and Nor-
Net. Institutions may connect to GpENI if they are inter-
ested in becoming part of the GpENI community, and
manage a node cluster. GpENI runs a PlanetLab implemen-
tation of Slice Facility Architecture (SFA) [59] to allow the
application/transport layer and the network layer federa-
tion, and GpENI also allows federation at Layer-2 with
the dynamic circuit network (DCN) software suite.

GpENI is built around the core GpENI optical backbone
centered in the great plains, shown in Fig. 1, among the
principal institutions of KU, UMKC, UNL, and KSU, includ-
ing the GMOC (GENI Meta-Operations Center). The optical
backbone consist of a fiber optic run from KSU to KU to the
Table 1
GpENI programmability layers.

Layer GpENI Layers Programmability

Application Application PlanetLab
Transport End-to-End
Network Router XORP & Quagga

Topology GpENI-VINI
Layer-2 VLAN DCN

Lightpath
Internet2 PoP in Kansas City, interconnected with tunnels
to UMKC and UNL, as shown in Fig. 2.

Each of the four core institutions will have a node clus-
ter that includes optical switching capabilities provided by
a Ciena CoreDirector or CN4200, permitting a flexible spec-
trum, wavelength, and lightpath configurations.

GpENI is extended to Europe across Internet2 to GÉANT2
and NORDUnet and then to regional or national networks,
as shown in Fig. 3. Currently, connectivity is achieved using
L2TPv3 and IP tunnels. A direct fiber link over JANET is de-
ployed between Lancaster and Cambridge Universities. The
principal European GpENI institutions are Lancaster Uni-
versity in the UK and ETH Zürich in Switzerland.
4. GpENI node cluster architecture

Each GpENI node cluster consists of several compo-
nents, physically interconnected by a managed Netgear
Gigabit-Ethernet switch to allow arbitrary and flexible
experiments. GpENI uses a KanREN 198.248.240.0/21 IP
address block within the gpeni.net domain; management
access to the facility is via dual-homing of the Node Man-
agement and Experiment Control Processor. The node clus-
ter is designed to be as flexible as possible at every layer of
the protocol stack, and consists of the following compo-
nents, as shown in Fig. 4 (the curved arrow shows the log-
ical flow):

� GpENI management and control processor: general-
purpose Linux machine.
� Control framework consisting of aggregate managers:

MyPLC with SFA, MyVINI with SFA, and DCN.
� MyPLC programmable nodes.
� GpENI Virtualized Network Infrastructure (GpENI-VINI)

providing flexible virtual network topology creation
with programmable routers allowing an experimenter
to choose a routing software suite, either Quagga or
XORP. GpENI participants are able to use node resources
from public PlanetLab and public VINI with the SFA
client.
� Ciena optical switch running DCN providing Layer-2

programmability among GpENI node clusters, and
inter-domain Layer-2 programmability between GpENI
and MAX testbed.

http://www.gpeni.net

Fig. 2. GpENI US Midwest optical backbone.

Fig. 3. GpENI European topology.

54 D. Medhi et al. / Computer Networks 61 (2014) 51–74

Fig. 4. GpENI node cluster.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 55
4.1. GpENI management and control

The GpENI management and control services are dis-
tributed across the Linux machines dedicated for the pur-
pose at each of the node clusters. Open-source tools are
used wherever possible to minimize the amount of GpEN-
I-specific software development and maintenance re-
quired. Some of these services are installed at every node
cluster, for example the Cacti monitoring tool [2] is used
to monitor the per-port network usage on each of the Net-
gear Gigabit-Ethernet switches. Nagios [21] is used to
monitor the status of individual nodes and services across
all the clusters. Zenoss Core [31] is also being evaluated as
an alternative to Nagios.

The control node for each cluster also provides firewall
and NAT services using Firestarter [10] for that cluster’s
private subnet, thereby protecting insecure devices, such
as the Netgear switch telnet and SNMP management inter-
faces, from direct exposure to the public Internet.

4.2. GpENI-MyPLC control framework sub-aggregate

The GENI Project has four basic node clusters, and GENI
Cluster B is based on the PlanetLab control framework. The
PlanetLab Control Framework provides the control soft-
ware to implement the control plane, data plane, manage-
ment plane, and operations plane functionalities. To better
understand this framework, it requires familiarity with a
number of terminologies such as slice and sliver, and they
are summarized in the Appendix A. There are a number of
distinct aggregates belonging to Cluster B: PlanetLab nodes,
VINI nodes, Supercharged PlanetLab Platform (SPP) back-
bone nodes [28], OpenFlow switches [25], and GpENI node
clusters.

The GpENI aggregate consists of three sub-aggregates:
the MyPLC sub-aggregate, the routing and topology
sub-aggregate, and the DCN sub-aggregate (discussed in
the following sections). MyPLC is a private instance of
PlanetLab that runs the same control framework as
PlanetLab does. GpENI-MyPLC sub-aggregate provides the
programmability at both the application layer and
transport layer, so that the researchers can run their appli-
cation experiments within their slice on the GpENI-MyPLC
sub-aggregate. Currently, GpENI-MyPLC has been feder-
ated with PlanetLab, so researchers are able to use the
PlanetLab node resources from the GpENI-MyPLC aggre-
gate interfaces. A tutorial on how to use GpENI-MyPLC is
available from the GpENI wiki page [14].

4.3. GpENI-VINI sub-aggregate

For Layer-3 programmability, GpENI provides program-
mable topologies using MyVINI and an arbitrary number of
programmable routers in each node cluster. We will use
GpENI-VINI for a customized MyVINI to indicate the net-
work layer virtualization infrastructure on the GpENI net-
work testbed in the rest of this paper, in order to
differentiate from the original MyVINI.

GpENI-VINI runs a private instance of public VINI and
extends a few features from the public VINI to provide
more flexible resources provisioning. The public VINI en-
ables virtual topology creation on top of the physical net-
working infrastructure, and it is essentially a flavor of
PlanetLab with a set of enhancements to the PlanetLab ker-
nel and tools called Trellis [39]. Trellis allows users to cre-
ate their own virtual topology in their slices, either
automatically using the IIAS (Internet In A Slice) toolkit
or manually designating links between slivers. GpENI-VINI
extended the features of the IIAS tool to allow a researcher
to create an arbitrary virtual topology in a slice, and auto-
matically create the virtual links between the virtual nodes
in the virtual topology.

The Trellis [39] software system combines both host
and network virtualization in a single system. Trellis al-
lows a GpENI-VINI node to be sliced into multiple virtual
slivers that can be configured as Layer-3 virtual program-
mable routers by hosting the routing software suites such
as Quagga [27] and XORP [8]. Those routing softwares sup-
port a wide range of existing routing protocols. For exam-
ple, Quagga supports RIPv1, RIPv2, OSPFv2, BGP-4, RIPng,
and OSPFv3. However, these programmable routers have
very limited processing power and can only handle moder-
ate size forwarding tables compared with realistic routers
in backbone networks since they are running in commod-
ity PCs. GpENI-VINI is initially running Quagga and XORP.
Details on GpENI-VINI architecture and implementation
will be described in Section 5.

4.4. DCN sub-aggregate

GpENI uses DCN for control of VLAN interconnections
among L2TPv3 tunneled node clusters as well as optical
switches connected directly to the core backbone.

In recent years, the Internet2 network has evolved from
a pure IP-based packet-switching network into an ad-
vanced hybrid optical and packet network. Apart from
the traditional IP service, the new Internet2 network offers
a virtual circuit service to provision dedicated bandwidth
across the network, called the Internet2 Interoperable
On-demand Network (ION) [16]. The ION service is dy-
namic and can be used to set up short term connections
by a requestor or an application through a web interface.
The control plane software that automates the set up and
tear down of the circuits was developed for the Internet2

56 D. Medhi et al. / Computer Networks 61 (2014) 51–74
dynamic circuit network (DCN) research prototype and
leverages technology developed by DRAGON (USC/ISI East,
MAX, and George Mason University), GÉANT2, and the DOE
ESnet (OSCARS project).

We made necessary changes on the current network
infrastructure of the GpENI to establish DCN across GpENI.
This enables the creation of on-demand circuits at the re-
quired bandwidth for specified durations using the DCN
software suite. Deploying DCN across GpENI will also facil-
itate setting up VLAN circuits across the Ciena CoreDirec-
tors located at various locations in Internet2. The
CoreDirector Component Manager Interface [36] describes
the use of the CoreDirector in the GpENI testbed. As addi-
tional GpENI optical switches are deployed, a common
GpENI–wide DCN testbed will emerge over a multidomain
network with CoreDirectors forming the optical domain
and Netgear switches forming the Ethernet VLAN domain
at each GpENI institution. More details about DCN deploy-
ment in the GpENI network testbed will be discussed in
Section 6.
5. GpENI-VINI: Architecture and implementation

In previous sections, we have discussed the GpENI net-
work infrastructure from the backbone topology to node
cluster architecture. In this section, we focus on details
about network layer programmability in the GpENI net-
work testbed through GpENI-VINI. In short, GpENI-VINI is
a virtual network resource provisioning testbed to support
programmable routing experiments. The core architecture
of GpENI-VINI is a customized private instance of VINI [29]
by extending the flexibility of conducting experiments in a
virtualized network environment, from a user’s
perspective.

5.1. GpENI-VINI core architecture

The GpENI-VINI testbed is a geographical-distributed
network infrastructure, where all physical GpENI-VINI
nodes are under control of a central server. Fig. 5 depicts
the GpENI-VINI core architecture on how GpENI-VINI
nodes and the researchers interact with the GpENI-VINI
Central Server. The major components of the GpENI-VINI
architecture are MyPLC [53] and the IIAS (Internet In A
Slice) tool [15]. MyPLC is portable PlanetLab central (PLC)
software; this acts as a resource manager on the GpENI-
VINI testbed. It has both a web interface and an API inter-
face. The web interface facilitates easy access and manage-
ment of user accounts. With the API interface, researchers
can access data with a command line interface through
XML-RPC. The IIAS tool helps researchers to create virtual
interfaces and virtual links inside a slice, and it includes
a set of programs consisting of two parts: server side pro-
grams and client side programs. In the following subsec-
tions, we explain the architecture of the GpENI-VINI
central server and the GpENI-VINI node in detail.

5.1.1. GpENI-VINI central server
The GpENI-VINI central server is responsible for the

testbed management from all aspects, such as sites (i.e.,
university), resources (nodes), users, and slices. The key
components of GpENI-VINI are illustrated below:

� MyPLC: MyPLC is portable PlanetLab software; by using
this, we can create a private PlanetLab. It acts as the
manager of GpENI-VINI resources. From a management
point of view, it is a combination of four components: a
web server, an API server, a database server, and a boot
server.
– Web Server provides the web interface to researchers

and the administrator. By using this interface,
researchers can create accounts, create slices, and
select resources from the GpENI-VINI testbed. An
administrator can enable, disable or delete users,
sites, and nodes. An administrator can also modify
the data of sites, users, nodes, or can add content
to the GpENI-VINI Server.

– API Server is an interface between the database ser-
ver (PostgreSQL) and other components of GpENI-
VINI. MyPLC provides a few API methods to allow
accessing data by using these methods. The API ser-
ver listens on a port for incoming XML-RPC calls.
Based on the incoming request method, first it
authenticates the requestor, then it sends the
request to the database server to get the data from
the database and returns the result to the requested
component.

– Database Server, based on PostgreSQL, is the primary
storage space of GpENI-VINI resource data. Its func-
tion is to process the API server requests and send
the results to the API server.

– Boot Server provides the required software for GpEN-
I-VINI nodes. Software includes the boot OS and
Node manager.

� IIAS Tool: Server-side IIAS Programs are used to create a
virtual infrastructure on the GpENI testbed. They assist
researchers in selecting a virtual topology and in creat-
ing a virtual topology inside a slice. Server side pro-
grams create topology resource specifications of
virtual links inside a slice. Once these topology resource
specifications are created, they are stored in the GpENI-
VINI database. We have extended IIAS server-side pro-
grams to support arbitrary topology creation with gen-
eral users’ privileges, which provide more flexibility of
experiment design within a slice. We will explain IIAS
features from the implementation perspective in
Section 5.3.3.

5.1.2. GpENI-VINI nodes: Programmable routers
GpENI-VINI Nodes are the physical machines to host

multiple slivers as software-based routers by running the
routing software suite like Quagga [27] or XORP [8], and
they are geo-distributed and are available globally to
experimenters. Each physical node is running a customized
software system called Trellis [39] that combines two
types of virtualization technologies. The client-side IIAS
programs are responsible to create virtual interfaces with
an assigned virtual IP address for the slivers, which are
added in a virtual topology in a slice. An overview about
the major components of a GpENI-VINI node is enumer-
ated as follows:

Fig. 5. GpENI-VINI architecture overview.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 57
� Trellis Node: Trellis [39] is a customized software sys-
tem for nodes in the GpENI-VINI testbed. It is a combi-
nation of two virtualization technologies, Linux VServer
[19] and NetNS [22], to support virtual nodes, virtual
interfaces, and virtual links inside a node.
� Node Manager: Node Manager is a daemon on the node

that manages the node. It polls the data from the server
at regular intervals and makes changes accordingly.
Examples of changes include creating slivers and delet-
ing slivers. It provides API for remote access and calls
IIAS tools that are responsible for creating virtual inter-
faces and virtual links.
� IIAS Tool: Client (GpENI-VINI node) side programs are

started by the node manager. These programs get the
topology resource specifications from the database.
Based on the topology resource specifications of a slice,
these programs create virtual interfaces inside the sliver
(virtual host context) and tunnel interfaces in the node
(root context). By using tunnel interfaces, virtual links
between slivers are constructed.
Apart from the job of creating virtual and tunnel inter-
faces, these programs also provide support for Quagga
and XORP to conduct routing studies, as shown in
Fig. 5. To support Quagga functionality on a virtual net-
work, the IIAS tools write Quagga installation and
Quagga routing configuration files for routing protocols
such as RIP and OSPF into each slice file system. In the
same manner, to support XORP on a virtual network,
IIAS tools write XORP installation and XORP configura-
tion files for a routing protocol into each slice’s file sys-
tem (more details on XORP implementation in
Section 5.3.2). These configuration and installation files
can be used by researchers.

5.2. GpENI-VINI resources

As we mentioned in the beginning of this section,
GpENI-VINI is responsible for the provisioning of virtual
network resources that can be accessed through a slice
interface. The virtual network resources inside a slice are
available as long as the slice remains valid. By using virtual
network resources we can build programmable virtual net-
works inside a slice. The virtual network consists of two
components: virtual hosts and virtual links. The virtual
networks resemble the real routable networks and provide
a high degree of control to a researcher. The virtual net-
work resources are built by using Trellis, a customized
software system [39]. All GpENI-VINI nodes run Trellis
software, available from a GpENI-VINI server as a boot im-
age. Details of the Trellis design can be found at [39].
5.2.1. Trellis overview
Originally, the Trellis software platform was designed to

support multiple programmable virtual networks on a sin-
gle hardware system (a VINI node) and was designed to
run on VINI nodes with the following properties:

� Speed – Packets should be forwarded at high speed in
the virtual network.
� Isolation – It should provide isolation between virtual

networks, i.e., one virtual network on one slice does
not interfere with other virtual networks in different
slices; it should provide isolation at the system level
and the network level.
� Flexibility – It should provide the flexibility to research-

ers to select their routing protocols (including any mod-
ification) in a virtual network environment.
� Scalability – It should be able to simultaneously support

a greater number of programmable virtual networks.
� Low cost – Because it can run on a normal system, it

should decrease the cost of hosting virtual networks.

The Trellis software system combines both host and
network virtualization in a single system to meet the above
listed desired properties. For host virtualization, Trellis
uses a container based virtualization technology called
the Linux VServer [19]. The main advantage of the Linux
VServer is that it provides OS-level virtualization instead
of full virtualization. It also gives acceptable speed and sca-
lability with reasonable isolation and flexibility that are

58 D. Medhi et al. / Computer Networks 61 (2014) 51–74
critically required properties. To provide network stack vir-
tualization, Trellis uses NetNS (Network Name Space) [22].
Network Name Space virtualizes all access to network re-
sources from the root system to the container system. It
gives network containers with its in-kernel virtual devices,
IP table settings, FIB, and so on. Fig. 6 presents an illustra-
tion of Trellis architecture.

We note that although isolation is an important prop-
erty of Trellis, it is not completely possible to achieve iso-
lation at the performance level due to each virtual network
competing for resources from a common physical node.

5.2.2. Virtual node
Virtual nodes are built inside a GpENI-VINI node that

runs Trellis software. It allows researchers to host multiple
virtual networks on shared hardware (GpENI-VINI nodes).
Trellis allows researchers to program their virtual topology
based on their requirements such as a star, a mesh, or a
fully-connected network. It also allows the researchers to
select routing protocols such as RIP, OSPF, or BGP and al-
lows them to define their own forwarding tables. Besides
Linux Vserver and NetNS, the Trellis system implements
a new tunneling mechanism called EGRE (Ethernet over
Generic Routing Encapsulation (GRE) [51] tunnel) that al-
lows the node to support virtual hosts and virtual links.

5.2.3. Virtual link
Virtual links give an illusion of a direct physical link be-

tween two systems, although they may be situated at mul-
tiple hops away. In GpENI-VINI, the virtual links are
created between the slivers inside a slice. By using this vir-
tual link analogy, we can build a virtual topology between
nodes inside a slice. Fig. 7 illustrates a virtual link between
slivers in a slice. Since, in reality, virtual links may be built
over the commodity Internet (such as using L2TP tunnel), it
is not entirely possible to avoid performance impact. Re-
cently, it was reported in [56], which used GpENI for exper-
imentation, that it is important to conduct multiple runs of
Fig. 6. Trellis design architecture (adapted from [39]).
an experiment over the created virtual network to avoid
any artifacts due to the underlay network.

5.2.4. Packet flow in virtual link
Once a virtual link is created, it is helpful to see the

packet flow in it. In Fig. 7, the packets flow on a virtual link
between slivers inside a slice with an EGRE (Ethernet over
GRE) tunneling mechanism. First, the data packet comes
out of the virtual interface that is an Ethernet frame in
the context of a virtual host. This becomes the payload in
the context of the root. At the tunnel interface (root con-
text), this payload is encapsulated with a GRE header
[51] and a four byte-key to demultiplex the packet to the
correct tunnel interface. Then the IPv4 delivery header is
added. The reverse process is carried out at the other
end. First, the IPv4 header is removed, and then the GRE
header is checked to determine the correct tunnel inter-
face. Finally, the payload (Ethernet Frame) is delivered to
the correct virtual interface of the sliver.

5.3. Flexible resource provisioning by GpENI-VINI

The major components of the core architecture of the
GpENI-VINI inherits the resource management framework
and the technologies applied to the network virtualization.
We have made three specific contributions towards
exploring a user-friendly interface that supports a more
flexible resource provisioning manner: (1) Successfully de-
ploy XORP 1.7 on GpENI-VINI slivers, and script the XORP
installation process into one program; (2) Extend IIAS fea-
tures on both server and client sides, so that there are less
restrictions on virtual links when creating virtual topology.
On the client side, XORP configuration files customized for
the virtual topology are automatically generated. (3) Auto-
mate the routing software installation and startup process.
In this section, we present technical details on how these
have been accomplished.

5.3.1. Issues and challenges
By investigating resource provisioning with the VINI

Veritas testbed [29,37], we noticed a few issues and
challenges.

� Routing tools such as XORP were not supported in the
current VINI testbed. Having such additional tools
would allow researchers to choose from multiple pro-
grammable routing systems such as Quagga and XORP
in their experimentation.
� With the auto virtual topology creation, originally the

IIAS tools limited the link creation to be between phys-
ically adjacent nodes as a design choice. Regular users
are not provided the permission to manually create
arbitrary virtual topology in a slice. While this made
sense for the VINI Veritas testbed, we wanted to extend
the functionality of the IIAS tools to allow regular users
to create arbitrary virtual topologies with the GpENI-
VINI testbed.
� With the VINI Veritas testbed, since the auto virtual

topology creation for the regular users’ framework is
based on the default physical topology between VINI
nodes, there was no graphical user interface (GUI) to

Fig. 7. Virtual link between slivers.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 59
create a virtual network inside a slice. This limited
researchers from a graphical view of the virtual net-
work and they were required to use manual configura-
tion through a file.

To provide GpENI-VINI with additional services and
make it user friendly to create a virtual network, our goal
was to extend the functionality of the IIAS tools and design
a prototype for the GUI. Thus, we faced the following
challenges:

1. How to integrate a XORP routing application support
with routing protocol (OSPF) in GpENI-VINI nodes (this
is discussed in Section 5.3.2).

2. How to make a virtual network inside a slice to be a
routable network allowing an arbitrary virtual topol-
ogy, with the XORP routing application running (this
is discussed in Section 5.3.3).

3. How to run/start a routing application inside all slivers
of a slice simultaneously (this is discussed in
Section 5.3.4).

5.3.2. XORP integration with GpENI-VINI
XORP [8] supports IPv4 and IPv6 routing protocols such

as RIP, OSPF, BGP, and PIM-SM. It supports unicast routing
policies and SNMP. The architecture of XORP consists of
two subsystems. The first one is at a higher-level (‘‘user-
space’’) that consists of the routing protocols and manage-
ment mechanisms. The second one is at a lower-level
(‘‘kernel’’) that provides a forwarding path and API for
the higher-level to access.

XORP uses a multi-process architecture at the user-level
with one process per routing protocol. It also uses XORP
Resource Locators (XRLs) that are novel inter-process com-
munication mechanisms to communicate with other pro-
cesses. The lower-level subsystem can use traditional
UNIX or Linux forwarding, the Click modular router [3],
or Windows kernel forwarding. Currently, we use Linux
kernel forwarding in the GpENI-VINI testbed. There are
several different important XORP processes. For more de-
tails, refer to the XORP documentation [8].

Before incorporating XORP on the GpENI-VINI testbed,
we first tested it on one of our internal lab demo platforms.
Initially, we downloaded XORP version 1.6 from [8]. We
configured and tested XORP for its routing functionality
by using the OSPF routing protocol. We created two virtual
interfaces on the Ethernet interface and configured those
with OSPF and then tested them. After compiling XORP
1.6, we found that this occupied around 2.2 GB of disk
space, where the XORP directory contains configuration,
makefiles, different routing protocol daemons, documents,
and other related files.

In order to integrate XORP in the GpENI-VINI testbed,
we needed to create a slice with a virtual topology, and
XORP 1.6 in every sliver in a slice by building and installa-
tion. We created a three-sliver virtual topology in a test
slice. While XORP 1.6 requires approximately 2.2 GB for
each node, it turned out to be a time consuming process
taking approximately 30 min to configure and build XORP
for all three slivers. Thus, we realized that XORP 1.6 was
not a scalable option for the end users due to such a large
setup time.

XORP’s new version 1.7 was made available as
XORP.CT-1.7 under Candela Technologies [30] through a
GNU General Public License based on the official version
of the XORP 1.7 SVN repository. We decided to try XORP
implementation with this new version on our test slice.
By using the new version, the biggest advantage that we
observed was that it created an executable binary file in
compressed form after building XORP. This was advanta-
geous to us to build the XORP’s latest version on the GpEN-
I-VINI Server and install this in our GpENI-VINI local

60 D. Medhi et al. / Computer Networks 61 (2014) 51–74
software repository so that it can be distributed as an exe-
cutable binary file to the nodes whenever a researcher re-
quests it for an experiment. This was found to be useful for
GpENI-VINI nodes as this significantly saves configuration
time and memory space.

Implementing XORP has created its own challenges.
This required immense understanding of the underlying
architecture of both XORP and Trellis. Issues and experi-
ence working with XORP for GpENI have been described
in [48].
5.3.3. Extending IIAS features
Before getting into details of extended functionalities of

IIAS tools on the GpENI-VINI testbed, we start with several
features of the original IIAS tools.

IIAS tools are based on VINI-Veritas [37] and were writ-
ten in Python. On the server side, two software components,
which are topology and create-topo-attributes, are
referred to as the Topology Resource Specifications (‘‘topo_r-
spec’’) generator. The topologymodule contains the list of
physical links between adjacent sites in the GpENI-VINI
testbed. These adjacencies must be manually added by the
GpENI-VINI administrators, a laborious process. Running
as a cron job every 15 min, thecreate-topo-attributes
takes the list of physical links information in the module
topology as input to generate virtual topology links in
the slice, if the slice tag ‘‘topo_links’’ is set as ‘‘iias’’. In other
words, the functions of create-topo-attributes will
create topology resource specifications (‘‘topo_rspec’’), hosts,
and virtual topology links. The topology resource specifica-
tions (‘‘topo_rspec’’) originally represented only unidirec-
tional links. The IIAS tools created ‘‘topo_rspec’’ in the
following formats: ‘‘node-id’’, ‘‘IP address’’, ‘‘Link rate’’,
‘‘my virtual tip IP’’, ‘‘remote virtual tip IP’’, and ‘‘virtual
network.’’

On the client side, the IIAS tools contain two Python
modules: optin and topo; these together are called the
topology manager. They can be accessed in the root
context of the GpENI-VINI node. This is done by extending
the original node manager from the PlanetLab with
plug-ins. Optin generates open VPN configuration files
that support the injection of external traffic into the
virtual network topology. The node manager polls the lat-
est sliver information every 15 min from the GpENI-VINI
server and passes a copy of this to topo. The topo pro-
gram interprets the ‘‘topo_rspec’’ attribute values and
performs the following basic functions: (1) Creates virtual
and tunnel interface names based on the EGRE key and
node ids, (2) Creates new and clears old virtual interfaces
based on topo rspecs, (3) Creates new and clears old tun-
nel interfaces based on topo rspecs, (4) Creates and de-
letes NAT interfaces in both the root context and the
sliver context, (5) Sets up and tears down EGRE links
and NAT.

We have extended the features of IIAS from both the
server and client slide, which is presented as follows:

� Extended Features of IIAS Tools on Server Side: Based on
the original IIAS tools, we have extended its features to
support a virtual topology creation through a GUI.
– Web-based GUI Design: We have created a web-based
GUI to create and view virtual topology in a user’s
slice. With the GUI, a list of nodes within the slice will
be shown, together with their node ids. Meanwhile,
we can view the current virtual topology link informa-
tion in the form of [(a,b), (b,c), . . . , (m,n)], where the
letters represent the node ids of nodes in the slice.
To create the topology, the user can just enter the topo
links information in the same format.

– To support the GUI functionality, we have modified
the IIAS tools on the server side. When the user
has confirmed the topology creation, the topo link
information will be written into gui_topo module
together with the relevant slice’s name. Then the
extended IIAS software component gui-create-

topo-attributes will import information of both
the slice name and topo links from gui_topo and
generate topology resources specification (‘‘topo_r-
spec’’). It will create a ‘‘topo_links’’ tag value, which
represents all the links in a virtual topology network.
For example, if node A has id 1 and node B has id 2,
‘‘topo_links’’ consists of the value [(1,2), (2,1)],
where each one represents a unidirectional link.

� Extended Features of IIAS Tools on Server Side: On the
client side, we would like to achieve two goals with
extended IIAS features.
– Integrating XORP to IIAS Tools on Client Side: We

added the XORP supporting functionality to create
the XORP configuration based on sliver interfaces
and to write this configuration in the corresponding
sliver file system. The integration component is use-
ful to researchers to run routing applications with a
XORP configuration file on each sliver of a slice in the
GpENI-VINI testbed. This removes the burden from
researchers to write the configuration information
for each and every interface and protocol. For exam-
ple, if a researcher has an N nodes fully connected
network in his/her slice for a project, she would need
to write N configuration files with each N � 1 inter-
faces, which can be time consuming. Our integration
tool has automated this phase.

– Integrating automation with routing softwares: We
have also extended the IIAS functionality to auto-
mate the routing process in virtual network topolo-
gies on GpENI-VINI resources. When the client side
IIAS program is running, it will create the XORP
and Quagga installation and startup programs, and
write them into the sliver file system. This is helpful
to researchers by making it easy to install and start
XORP or Quagga for their experimentation by run-
ning our automation toolkit. We will explain the
automation process in the subsequential section.

5.3.4. Routing software auto-initialization in GpENI
To automate the routing process, we also added the fol-

lowing features to the IIAS tools: (1) With our customized
IIAS tools at the client side, a XORP installation and Quagga
installation program were written into the sliver’s file
system. (2) we created the program automation that
takes user choices, such as credentials, slice name, routing

Fig. 8. XORP configuration file generating time with only one slice.

Fig. 9. XORP configuration file generating time with multiple slices.

Table 2
Run time of routing automation.

Nodes Average (s) StdDev

3 204.6 22.075
4 468.0 37.543
5 890.0 39.592
6 1034.2 69.941

D. Medhi et al. / Computer Networks 61 (2014) 51–74 61
software, version, and protocol. This triggers routing dae-
mons in all the slivers of a slice at a time with the help
of codeploy [4].

To make the routing processes automated, we have cre-
ated XORP and Quagga local repository files at the GpENI-
VINI server. Hence, these installation programs point the
GpENI-VINI server to get XORP and Quagga software. The
experiment code is now made available from the GpEN-
I-VINI server [13] so that researchers can readily download
and use it for their experimental work. The callout box in
Fig. 5 shows what the extended IIAS tools and the automa-
tion tool of the GpENI-VINI node contains.

5.4. Measurements and validation

We evaluated the robustness of the customized IIAS
programs for XORP integration on the client side, by
reporting the measurement time taken using two XORP
programs. These two programs generate a XORP configura-
tion file for the OSPF routing protocol and a XORP installa-
tion script for the automation process.

To study the robustness of the client-side IIAS feature,
in terms of the XORP configuration and installation script
generation time, we varied the number of virtual links to
an individual sliver from 1 to 21, and measured the
XORP integration time on three slivers that reside on dif-
ferent physical nodes. In this study, we aimed to find out
the dominant factor to the generating time, which could
be either the number of virtual links or the number of
slices.

� Case I – Single Slice Case: We measured the XORP con-
figuration file generating time on three different slivers
from KSU, UMKC, and ETH Zürich (ETHZ). On each sli-
ver, we varied the number of virtual links from 1 to
21. Fig. 8 depicts the average generating time. We
observed that the time increased linearly with the
increment of the number of the virtual links to the sli-
ver. On the other hand, the physical machine’s hard-
ware configuration was another factor to the overall
performance.
� Case II – Multiple Slice Case: In this case, we chose one

physical GpENI-VINI node from KSU, and measured the
XORP configuration file generating time on one sliver
when its physical host has 1, 3, 5, and 11 slivers.
Fig. 9 shows that the number of slices has less influence
on the XORP configuration file generating time than the
number of virtual links.

We also created a routing study automation program to
make it easy to start a routing application simultaneously
without logging onto each sliver. The researcher can use
this program from their system or laptop to start the rout-
ing application on each sliver of the slice with their SSH
key. To measure the total running time of this application,
we took some sample slices with a different number of
nodes.

Table 2 shows the average time and the standard devi-
ation to start the XORP routing application on each slice
(measured over five instances). Note that the variation
can be attributed to network conditions such as link speeds
and the physical location of the virtual nodes (slivers) from
the GpENI-VINI server as the nodes need to download the
XORP software from the GpENI-VINI server.

Our sample nodes were located in physically diverse re-
gions. We took four nodes from the Midwest region of the
USA and two additional nodes from the European region.
Results up to four nodes were based on the fours nodes
in the Midwest region; with these nodes the average auto-
mation time was less because of physical proximity. Re-
sults beyond four nodes include European nodes. With
these added, the average automation time increases, which
is affected due to the physical distance between the
regions.

62 D. Medhi et al. / Computer Networks 61 (2014) 51–74
6. Dynamic circuit creation in the regional network
testbed

The GpENI testbed also supports dynamic circuit crea-
tion at the optical layer. To enable dynamic circuit network
(DCN) in a regional network testbed, we need to make nec-
essary changes to the current infrastructure. In this section,
we first introduce some background knowledge on the
DCN, then discuss how to establish DCN across the GpENI
testbed and how to establish DCN across two testbed
domains.

6.1. Background

We first give a brief description on the background
knowledge on Dynamic Circuit Network’s relevant tech-
nologies before presenting our effort on deploying DCN
on GpENI testbed.

6.1.1. Dynamic circuits
Dynamic Circuit Network (DCN)/Interoperable On-de-

mand Network (ION) [17] is a networking service in
Internet2 that provides researchers the ability to create
short-term circuits of large bandwidth across the network.
These circuits are created for bandwidth-intensive applica-
tions that are run over the Internet2 backbone network.
This service uses both the software components of the
OSCARS [7] and DRAGON [5] projects to create dynamic
circuits across various domains and across various network
technologies. The circuits are created and deleted using the
Web User Interface provided by the OSCARS software com-
ponents. The Inter Domain Controller (IDC) is basically the
entity managing the circuit creation and deletion along
with user authentication and authorization mechanisms
in an Autonomous System (AS) or local domain. Internet2
uses the ION service to transfer large scientific data for pro-
jects such as Large Hadron Collider (LHC) and Compact
Muon Solenoid (CMS).

6.1.2. DRAGON
Dynamic Resource Allocation via GMPLS Optical Net-

works (DRAGON) [5] was a NSF funded project to dynam-
ically provision network resources across various domains
and across heterogeneous networking technologies.
GMPLS [38] is the key protocol used to create circuits span-
ning across both optical and Ethernet domains and hence,
DRAGON creates a Layer 1 virtual circuit. A set of software
components has been developed to leverage this capability
across a testbed over the Washington, D.C. area. The major
components of DRAGON software are VLSR (Virtual Label
Switched Router), NARB (Network Aware Resource Broker),
ASTB (Application Specific Topology Builder), and RCE (Re-
source Computation Engine). As DRAGON provides the
capability to create circuits that span across various do-
mains the NARB acts as the entity that represents a local
domain or Autonomous System (AS). In each domain each
switch needs to be configured separately for creating a cir-
cuit and hence, VLSRs act as the entity controlling the
switches. The RCE and ASTB are used for computing the re-
sources required for creating circuits. Hence a particular
DRAGON domain will have a NARB and one or more VLSR,
depending upon the number of switches in the domain.

6.1.3. OSCARS
On-Demand Secure Service and Advance Reservation

System (OSCARS) is a networking service deployed in the
DoE ESnet to create dynamic, deterministic, and secure cir-
cuits across the ESnet network. MPLS [55] and RSVP [43]
are the key protocols used to create advance reservations
of bandwidth using the software components developed
as part of the OSCARS project. The Label Switched Path
(LSP) s are created using MPLS both in Layer-2 and Layer-
3 using OSCARS software. The circuits are created and de-
leted using a web interface provided by OSCARS and hence,
this method is adopted in the DCN/ION project as the inter-
face for managing virtual circuits. The major software com-
ponents of the OSCARS are Reservation Manager (RM), Path
Setup Subsystem (PSS) and Bandwidth Scheduler Subsys-
tem (BSS), Authentication, Authorization, and Audition
Subsystem (AAA). The RM, PSS, BSS are used for reserving
resources and creation and deletion of actual circuits in
the network, and AAA is used to provide authentication
mechanisms using X.509 certificates.

6.1.4. VLAN
Virtual LAN is a networking technology used to provide

secure and reliable transport between hosts that are not
physically connected to each other. IEEE 802.1Q is the most
commonly used standard for VLANs and it has been imple-
mented in most of the commercially available switches.
VLAN tag is a 32-bit field added to the Ethernet frame,
which has a 12-bit field called VLAN ID specifying the
VLAN number of the packet transmitted over the network.
The VLAN number is the entity which differentiates pack-
ets of different virtual circuits over a network. There are
two approaches to assign VLAN membership, static VLANs
and dynamic VLANs. An Ethernet packet carrying a (non-
default) VLAN tag is said to be a ‘‘tagged’’ packet and the
one carrying a default VLAN tag is said to be an ‘‘untagged’’
packet. The static vlans are created by assigning ports to
VLAN and dynamic vlans are created using software such
as CiscoWorks 2000 in Cisco managed switches, and it
can also be created using SNMP. VLANs are mostly used
by corporate networks to separate traffic of various appli-
cations that share the same network infrastructure. The
VLAN tags are added when the packet enters the corporate
network and they are removed when they leave the
network.

6.1.5. Q-in-Q
Q-in-Q or Double tagging is a method to add one more

outer VLAN tag to already tagged packets. This is used by
Internet Service Providers to separate network traffic be-
tween different user groups so that one user group will
be isolated from another group. However, each member
in a group can have their packets tagged differently so that
they can protect their packets from other members of the
same group. IEEE 802.1ad is the standard specifying this
method of double tagging the packets sent over the net-
work. Similar to VLAN tagging, the outer tags are added
once the packets with an inner tag enters the corporate

D. Medhi et al. / Computer Networks 61 (2014) 51–74 63
network and the outer tag alone is removed when the
packets leave the network.

6.2. DCN in GpENI

In the following section, we first explain the current
network infrastructure of the GpENI and the changes
needed in the current infrastructure to establish DCN
across GpENI.

6.2.1. Current GpENI network configuration
GpENI’s basic connectivity (see Fig. 10) is designed as a

single Ethernet broadcast domain capable of transporting
arbitrary VLANs. All the four GpENI universities (UNL, KSU,
KU, and UMKC) are connected to their own interface at the
GPN Cisco 6509 Ethernet switch (GPN Switch) in Kansas City
PoP and all these interfaces are configured to the same VLAN
number 125. UNL has a direct fiber connection of capacity
1 GigE to the GPN switch transported through Ekinops
DWDM equipment. UMKC connects to the GPN switch using
L2TP tunneling through MOREnet infrastructure. KSU and
KU form a single MPLS domain in the KanREN network infra-
structure and are connected to the GPN switch through VPLS.
The CoreDirector CI switch, which connects to Internet2 at
the Kansas City PoP is also connected to the GPN switch
using a 10 GigE link. Each university has a Netgear
GSM7224 switch and a node cluster connected to the switch.
We have modified the DCN software suite to support the
Netgear GSM7224 switch. Hence, we can create dynamic cir-
cuits between the universities with DCN software running
over these switches if the infrastructure in Kansas City PoP
supports it. The limitation is, that as these Netgear switches
do not have the per-VLAN bandwidth policing feature, they
do not have the capability to create circuits of a specific
bandwidth as requested by the user.

6.2.2. Option 1: GpENI network connectivity with DCN (using
GPN switch)

The GPN switch is a production switch that carries traf-
fic between the four GpENI universities and is also not sup-
ported by the current DCN/ION software suite. This option
(see Fig. 11) analyzes the possibility of using the GPN
switch for creating DCN circuits between GpENI universi-
ties. There are two ways in which the GPN switch can be
configured to enable DCN circuits between GpENI
universities:

� The first way is to configure static VLANs over the GPN
switch so that DCN circuits can be created between uni-
versities only with the pre-configured VLAN tags. Hence
this involves creating a table of VLAN tags for all possi-
ble sources and destinations of DCN circuits between
GpENI universities and configuring them appropriately
in the GPN switch. In the case of the IDC and two VLSRs,
one VLSR is for controlling the Ciena CoreDirector CI
switch in UNL and the other one is for controlling all
the Netgear GSM7224 switches in all the GpENI univer-
sities. The IDC and the two VLSRs will be located in the
UNL. Hence we will be able to create, delete and modify
dynamic circuits over the web interface provided by the
DCN/ION software suite between these universities.
� The second way is to configure a Q-in-Q cloud in the
GPN 6509 switch with VLAN 125 so that it acts as a pass
through for packets of any VLAN tag generated by any of
the GpENI universities. Hence, in this case also, the IDC
and two VLSRs will be placed at UNL. The only differ-
ence is that we will be able to create circuits of arbitrary
VLAN tags between the GpENI universities. Though the
advantage of this method over the previous one is the
freedom of choice of VLAN tags, the drawback is that,
because of the Q-in-Q cloud, the packet transmitted
by any university will be broadcasted to all four GpENI
universities.

6.2.3. Option 2: GpENI network connectivity with DCN (using
GpENI switch)

This option (see Fig. 12) requires acquiring a new Ether-
net switch (GpENI switch), which is already supported by
the DCN/ION software suite and in replacing the existing
GPN switch with the GpENI switch. Hence this option re-
quires all four GpENI universities to have a Layer-2 connec-
tivity to the GpENI switch and one interface of the GpENI
switch will be connected to the GPN switch. For this op-
tion, the dedicated switch in Kansas City could also be a
switch placed by the ProtoGENI group at this location.
The IDC of the DCN/ION can be placed at UNL or Kansas
City PoP and two VLSRs, one for controlling the CoreDirec-
tor CI and another for controlling the Netgear switches, can
be placed in UNL or Kansas City PoP. Hence, we will be able
to create dynamic circuits of desired bandwidth of arbi-
trary VLAN tags between any of the GpENI universities
with this network infrastructure. The Ciena CoreDirector
in Kansas City is shown as connected to the GpENI switch
because this will be the Connector for GpENI universities to
connect to the Internet2 infrastructure.

6.2.4. Decision
We have chosen option 1 mentioned in Section 6.2.2

after considering the cost factors involved in Option 2.

6.3. DCN between GpENI and MAX

We explored different options to connect the GpENI
network with MAX across the Internet2 backbone at
Layer-2.

6.3.1. Option 1: GpENI network connectivity with MAX (using
GPN switch)

This option (see Fig. 13) discusses using the existing
GPN switch for creating the DCN network within GpENI.
It further discusses the two ways, static VLAN and Q-in-
Q, to achieve this goal.

� In the first method, static VLANs are configured in the
GPN switch so that DCN circuits can be created between
universities with predefined VLAN tags. Hence this
involves creating a table of VLAN tags for all possible
sources and destinations of DCN circuits between
GpENI universities and configuring them appropriately
at the GPN switch. Hence, in this method, to connect
to MAX we need to configure one more VLAN tag for
each university or configure a VLAN tag so that all uni-

Fig. 11. Option 1: DCN in GpENI (using GPN switch).

Fig. 10. GpENI current network connectivity. Source: https://wiki.ittc.ku.edu/gpeni/Image:GpENI-L2.png.

64 D. Medhi et al. / Computer Networks 61 (2014) 51–74
versities use DCN to MAX only with this VLAN tag. This
is primarily a choice between individual circuits from
each university to MAX or to have a single broadcast
domain to MAX. These VLAN tags need to be configured
to the interface of GPN in which the CoreDirector of
Kansas City PoP is connected to the GPN switch. In this
method, we need to have an IDC controlling the
creation of circuits with the predefined tags from each

http://https://wiki.ittc.ku.edu/gpeni/Image:GpENI-L2.png

Fig. 12. Option 2: DCN in GpENI (using GpENI switch).

D. Medhi et al. / Computer Networks 61 (2014) 51–74 65
university. Thus, the IDC could be placed in UNL and we
need a VLSR for controlling all the Netgear switches of
all the GpENI universities and a VLSR for controlling
the CoreDirector. We can configure one of the PCs to
act as a web server and configure the OSCARS software
in it so that each university can create and delete cir-
cuits using the web interface of OSCARS software.
� In the second method, Q-in-Q is configured in the GPN

switch so that it acts as a pass through for packets of
any VLAN tag generated by any of the GpENI universi-
ties. Hence to connect to MAX in this method we need
Fig. 13. Connection to MAX using
to just include the interface of the GPN switch, which
is connected to the CoreDirector of the Kansas City
PoP in the Q-in-Q cloud. In this manner, we can create
circuits of any VLAN tag from any of the GpENI univer-
sities to the MAX. Also, the IDC placement and VLSR
placement are similar to the method above but the only
difference is that users can create circuits with an arbi-
trary VLAN tag to MAX.

In both of the above methods we can also have a sepa-
rate VLSR in each GpENI university creating individual
GPN Switch and Internet2.

66 D. Medhi et al. / Computer Networks 61 (2014) 51–74
DRAGON domains in each GpENI university. Instead, if we
have a VLSR for controlling all the Netgear Switches then
we have only one DRAGON domain representing all the
GpENI universities.

6.3.2. Option 2: GpENI network connectivity with ProtoGENI
(using GPN switch)

ProtoGENI has a 10 Gbps backbone in the Internet2 net-
work and it has already deployed its nodes (which includes
HP 5400 switches, NetFPGA cards, and 2 PCs) at three
Internet2 sites (Kansas City, Salt Lake City and Washington,
D.C.). Currently, in the HP Procurve switch deployed at
Kansas City, there are no free 10 GigE ports available.
Hence, in this option (see Fig. 14), we created a 1 GigE con-
nection between the GPN switch at Kansas City and the HP
procurve switch in the ProtoGENI node and used this con-
nection to connect to MAX.

Currently, in the GpENI network, all the universities de-
liver untagged packets to the GPN switch. Since ProtoGENI
requires the packets to be tagged with a specific VLAN, the
Q-in-Q cloud needs to be setup in the GPN switch and each
university is required to transmit packets to the GPN
switch with a predefined outer VLAN tag that is agreed
with ProtoGENI. Q-in-Q would be used on the GPN switch
to alleviate the need for the VLAN number coordination
within GPN. The component manager of the ProtoGENI
needs to be setup so that we could request dynamic cir-
cuits from GpENI to any node of ProtoGENI. In this case,
we will be using the client software of ProtoGENI instead
of DCN to create dynamic virtual circuits. However the cir-
cuits can only be created from and to the ProtoGENI nodes
and hence, the traffic inside GpENI will remain as a broad-
cast domain.

6.3.3. Option 3: GpENI network connectivity with MAX (using
GpENI switch)

This option (see Fig. 15) discusses acquiring a new
Ethernet switch (GpENI switch), which is already sup-
ported by the DCN/ION software suite and replacing the
existing GPN switch with the GpENI switch. The MAX net-
work can be connected in this method by just connecting
the CoreDirector of Kansas City PoP to the GpENI switch.
We can have a dedicated IDC controlling the GpENI switch
and 1 VLSR controlling all the Netgear switches and a VLSR
controlling the CoreDirector at the UNL campus. In this
case, only the dynamic circuit from or to the UNL need to
be in the order of 50 Mbps as CoreDirector is in the path.
Otherwise, dynamic circuits between other universities
could be of any bandwidth capacity supported by the inter-
face of the GpENI switch. Having the CoreDirector partici-
pate in the dynamic circuit is just a choice, and hence, if we
want to create dynamic circuits of any bandwidth to the
UNL we could remove the VLSR controlling the CoreDirec-
tor switch and make it as a pass through switch, simply
passing the traffic to another end, irrespective of the pack-
ets VLAN tag. In this method, the IDC needs to be located in
the Kansas City PoP and the VLSRs could be in each univer-
sity or we could have one VLSR controlling all the Netgear
Switches located in the UNL. The GpENI switch can be con-
nected to Internet2 with the DCN or it can also be con-
nected to the ProtoGENI backbone if we have a
connection between the GpENI switch and the HP Procurve
switch of the ProtoGENI node.
6.3.4. Decision
We have chosen both options 1 and 2, and so far, we

adopted the second method of option 1 configured in the
Kansas City PoP. We have shown demos of options 1 & 2
at GENI conferences, and we plan to pursue option 3 in
the future.
7. GpENI federation deployment

The GpENI testbed has achieved federation on three
sub-aggregates: the MyPLC sub-aggregate, the GpENI-VINI
sub-aggregate, and the DCN sub-aggregate.

Currently, the federation on the MyPLC sub-aggregate
and the GpENI-VINI sub-aggregate are running the Planet-
Lab implementation of the slice facility architecture (SFA).
There are three interfaces: registry, slice manager (SM),
and aggregate manager (AM). These GENI interfaces are
accessible via the slice facility interface (SFI) implementing
functions to get slice details, node details, and user
accounts.

� MyPLC federation: MyPLC has federated with the public
PlanetLab, which means that GpENI resources are avail-
able for authorized PlanetLab researchers using the
public PlanetLab interface. The SFA deployment on
MyPLC follows the tutorial available on the GENI
website.
� GpENI-VINI federation: GpENI-VINI has federated with

both public PlanetLab and public VINI, and it needed
additional configurations on the SFA at the server side
to provision network resources like virtual links infor-
mation, besides the regular procedures. According to
our survey, we are the first to configure SFA on MyVINI
to support federation. Therefore, we communicated
with Princeton researchers who have done federation
on the public VINI for technical support and debug
issues. In general, there are two steps to configure SFA
on MyVINI:
– Create a copy of the VINI schema at the GpENI-VINI

server. This VINI schema is the same as the copy
from the public VINI server, and it is an XML-based
file that is a resource specification for the VINI-based
testbed.

– Edit two items in the SFA configuration: (1)
SFA_AGGREGATE_TYPE and (2) SFA_AGGRE-
GATE_RSPEC_SCHEMA. The first item is set as vini to
add GpENI-VINI as an aggregate in the SFA. The sec-
ond item is to set the file path of the VINI schema at
the GpENI-VINI server.

A Layer-2 federation deployment was done with the
DCN software suite. Currently, the GpENI has been able
to implement dynamic circuits with the MAX testbed to
establish an inter-domain DCN. Section 6.3 provides detail
descriptions on the inter-domain DCN between the GpENI
and MAX.

Fig. 14. Connection to MAX using GPN switch,ProtoGENI and Internet2.

Fig. 15. Connection to MAX Using GpENI Switch.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 67
For our long-term goals, there are plans for federations
among GENI, as well as for other Future Internet testbeds
such as OneLab [24].
8. Experimentations on GpENI Testbed

The GpENI infrastructure [68] is in the process of
expanding to 38 to 40 clusters with 200 nodes worldwide,
federated with the larger GENI PlanetLab control frame-
work and interconnected to several ProtoGENI facilities.
This enables users to perform resilience and survivability
experiments at scale, both in terms of node count and with
the geographic scope needed to emulate area-based chal-
lenges such as large-scale disasters.

8.1. Resilience research with GpENI testbed

In our own research efforts, we are using these facilities
to enable experiments that cross-verify the analytical and
simulation-based resilience research currently underway
at The University of Kansas [66]. It is leveraging topology
and challenge generation tools (KU-LoCGen [67] and KU-
CSM [45]) developed for this purpose, with emphasis on

68 D. Medhi et al. / Computer Networks 61 (2014) 51–74
resilience metrics [57] and multi-path, multi-realm diverse
transport (ResTP) [64,63] developed as part of our NSF
FIND research in the PostModern Internet Architecture
project [40].

Resilient topologies generated by KU-LoCGen and ana-
lyzed by KU-CSM are used to generate Layer-2 topologies
that configure the topology of GpENI experiments. We
evaluated performance when slice topologies are chal-
lenged by correlated failures of nodes and links, measuring
connectivity, packet delivery ratio, goodput, and delay,
when subject to CBR, bulk data transfer, and transactional
(HTTP) traffic [60,61]. Large scale resilience experiments
are run over interconnected aggregates using the DCN
(within the GpENI) and OpenFlow configured paths, with
VINI/PlanetLab Layer-3 topologies, to emulate both the
existing ISP and synthetic topologies. Over these topolo-
gies, we ran our multipath-aware transport protocol ResTP
to evaluate its performance under varying application and
traffic loads. Based on the output of our challenge genera-
tion simulations, we selectively disabled node slivers and
links to emulate correlated network failures and attacks.
In the future, we plan to use the wireless emulator under
the ProtoGENI framework to emulate jamming attacks to
wireless access networks. Each challenge set is classified
as a single scenario and each scenario is run multiple times
to establish reasonable confidence in the results.

Another project on resilience research with autonomic
management is described later in Section 8.4.

8.2. Graph algorithm evaluation on GpENI

We develop a heuristic algorithm that improves the
connectivity of a graph in terms of the algebraic connectiv-
ity metric by adding links [35]. Algebraic connectivity is
defined as the second smallest eigenvalue of the Laplacian
matrix and it is widely used for topological optimization. A
secondary objective of our algorithm is to select the links
that improve the algebraic connectivity of the graph in
the least costly fashion in which we capture the cost of net-
work as the total link length. The heuristic to increase alge-
braic connectivity in a graph is based on adding links to the
nodes that have the fewest incident links (i.e., minimal de-
gree nodes).

Large scale resilience experiments are run over inter-
connected PlanetLab clusters using tinc VPN tunneling
software [32]. The tinc project allows creation of arbitrary
topologies while preventing broadcast storms. We create
sample topologies consisting of five GpENI PlanetLab nodes
(i.e., KSU, KU, Cambridge, KIT, Bern) as shown in Fig. 16.
The sample binary-tree topology as shown in Fig. 16(a)
has the root node in Cambridge. The KU node is the high-
est-degree node in the partial-mesh topology shown in
Fig. 16(b).

We measure the network performance in terms of flow
robustness, which quantifies resilience as the fraction of
node pairs that remain connected in a network after it
has been subjected to a number of node failures. Simulta-
neous ping traffic between every pair of node in each
topology is generated. We pause tinc processes to emulate
challenges against critical nodes in each scenario topology.
Flow robustness is measured on the sample topologies
with and without our optimization algorithm being ap-
plied as shown in Fig. 17.

We plot the flow robustness of the binary-tree scenario
as shown in Fig. 17(a). The scenario represents an attack
against the highest betweenness node (Cambridge) in this
tree topology as shown in Fig. 16(a). The optimized topol-
ogy performs better since additional link (between KSU
and Bern) provide alternate path between node pairs. Flow
robustness of the partial-mesh scenario is shown in
Fig. 17(b). In this scenario the highest degree node (KU) is
attacked in a partial-mesh topology as shown in Fig. 16(b).
The optimized topology (with additional link between
KSU and KIT) has a flow robustness of 0.6, where as non-
optimized topology has a flow robustness of 0.3. The flow
robustness of non-optimized partial-mesh topology is bet-
ter than the non-optimized binary-tree topology when crit-
ical nodes are attacked because nodes are more connected
in the partial-mesh topology. This resilience experiment
demonstrates creation of arbitrary topologies and applica-
tion of our heuristic algorithm on the GpENI testbed.

8.3. Protocol emulation on GpENI

We developed the ANTP (airborne network and trans-
port protocols) suite that operates in this highly-dynamic
environment while utilizing cross-layer optimizations be-
tween the physical, MAC, network, and transport layers
[62]. We showed how each component in the ANTP suite
outperforms the traditional TCP/IP and MANET protocols
through simulation using ns-3 [46]. Having verified these
protocols through simulation and analysis, the next step
towards deployment of the ANTP suite is developing a
cross-platform implementation of the protocols. Moreover,
we emulated the ANTP suite implementation on GpENI
PlanetLab nodes. Mobility of the nodes was emulated using
the GPS emulator that uses a mobility model such as 3D
Gauss-Markov, random waypoint, or random direction to
generate the location and velocity of a given node [44].
The visualization system is added to ease the development
and debugging phase of the implementation as well as to
provide logging data for performance analysis [34]. It is
implemented as a web-based interface with integration
of the Google Maps API to show the nodal locations and
velocity in real time [33]. Emulating the ANTP suite on
the distributed GpENI PlanetLab nodes eases the develop-
ment of the implementation code.

8.4. Autonomic management experiments on GpENI-VINI

The GpENI-VINI allows researchers to design experi-
ments at the network layer. First, researchers can create
multiple kinds of virtual topologies in their slices. Second,
researchers can install either Quagga or XORP to the slivers
to make them routers. Third, network events such as link
failures or node failures could be triggered on the GpENI-
VINI testbed. In other words, researchers have full control
on the virtual routers in their slices to conduct research
experiments.

Our recent work regarding dynamic network reconfigu-
ration with autonomic management [56] was an experi-
mental study conducted on the GpENI-VINI testbed. We

Fig. 16. Visualisation of experimental scenario topologies.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 69
designed the experiments in a virtualized network environ-
ment, triggered router failures in the virtual topology and
recovered the failure by replacing the failed router with a
standby router. Since each virtual router ran XORP, we were
able to collect the OSPF routing tables from each virtual
router in the topology and relevant timestamps to evaluate
the routing convergence time for all of the virtual networks.
In turn, we evaluated the performance of the autonomic
management method on the network reconfiguration. On
the other hand, GpENI-VINI is a testbed with nodes distrib-
uted in different countries that provides a real-network
infrastructure for researchers to analyze network perfor-
mances, instead of running simulations on a simulator.

8.5. Demonstration of transferring CMS data with DCN

We showed a demo of transferring Compact Muon
Solenoid (CMS) data using a dynamic circuit established
from UNL to MAX at the GLOBECOM 2010 conference.
In the UNL, we established a Layer-2 connection between
the Prairiefire super computer and the Netgear switch
[36]. The GPN switch in the Kansas City PoP was con-
nected to the Internet2’s Juniper switch via a static VLAN.
We established a dynamic circuit of this VLAN from the
Internet2 switch to a PlanetLab node in the MAX domain
using MAX IDC. We used UNL’s IDC to create the circuit
of this VLAN id from Netgear to the GPN switch which
completes the experimental setup for transferring CMS
data to the PlanetLab node via these dynamic circuits.
These configurations enabled the Prariefire node to have
a Layer-2 connection to the PlanetLab node in the MAX
and we transferred the CMS data over this circuit. A re-
searcher in the MAX domain or anywhere in the Inter-
net2’s site, can use this service to perform experiments
over the Prarifire node cluster and transfer the results
to his place.

Fig. 17. Performance of optimized and non-optimized topologies.

70 D. Medhi et al. / Computer Networks 61 (2014) 51–74
9. GpENI extension: KanREN-GENI deployment plans
and topology

KanREN-GENI (Fig. 18) is a GENI mesoscale OpenFlow
deployment underway in KanREN (the Kansas Research
and Education Network) as well as selected deployment
into GPN (the Great Plains Network). This deployment
heavily leverages on the existing GpENI infrastructure.
We are deploying Brocade OpenFlow-enabled switches
co-located with the production KanREN switches that will
provide full opt-in for any users accessing KanREN infra-
structure at its PoPs (Kansas City, Lawrence, Manhattan,
Ft. Hays, Wichita, Emporia, Pittsburg, Overland Park, and
Internet2). Furthermore, OpenFlow switches are being de-
ployed at selected GPN (Great Plains Network) institutions
(such as UMKC).

The phase 1 deployment includes switches in the KU
GpENI cluster and at the KanREN KU and Internet2 PoPs.
The GpENI OpenFlow switch is located between the GpENI
node cluster and KanREN backbone interconnection link.
All other KanREN OpenFlow switches are collocated and
directly connected via 1 Gb/s fiber to production KanREN
Brocade switches. This permits arbitrary flow manipula-
tion through KanREN and the KU GpENI cluster. The first
OESS OpenFlow controller is being deployed within the
GpENI node cluster. The plan for Phase 2 is to deploy addi-
tional switches throughout KanREN, a K-12 institution, and
selected GPN GpENI institutions. We will additionally seek
to interoperate the OpenFlow and PlanetLab/VINI sub-
aggregates and integrate with other GpENI institutions
that have OpenFlow capabilities.
10. Summary

The GpENI testbed is an international Future Internet
research testbed centered in the Midwest region of the
United States and in Europe. We are now making an effort
to expand to Asian countries as well. The main goal of the
GpENI testbed is to provide all-layer programmability in
the network. In particular, as a part of the GENI control
framework cluster B, GpENI runs a private instance of
PlanetLab for application-layer and transport-layer pro-
grammability, and runs a customized private instance of
VINI for network-layer programmability. Moreover, estab-
lishing the DCN across the GpENI testbed enables Layer-2
programmability.

In this paper, we presented an overall description on
the network infrastructure and node cluster of the GpENI
testbed and the status of federation deployment on the
GpENI. We also discussed our recent effort on the Layer-
3 (GpENI-VINI) and Layer-2 (DCN) programmability on
the GpENI testbed. With the GpENI-VINI, researchers are
allowed to create arbitrary virtual topologies in their slices
and start the routing automation process to deploy the
routing software (i.e., Quagga or XORP) to all the slivers
in the virtual topology and run routing experiments. On
the other hand, the creation of a dynamic circuit network
enables researchers to transfer large scientific data for
short durations of time reliably and quickly, without going
through the current best effort traffic nature of the Inter-
net. Enabling a regional network for dynamic circuit net-
work needs changes to the configurations in the
production switches used to connect participating institu-
tions as well as design the control plane and data plane for
their network domain. We also discussed the experimenta-
tions we have done so far to explain a variety of research
directions that the GpENI testbed can support.

There are a number of lessons learned building the
GpENI testbed. First, dividing the key responsibilities
among the initial partners along clear boundaries was
helpful in executing the project; this way, UNL took the
lead on DCN, UMKC on network layer programmability,
and KSU on PlanetLab functionality at the application
layer, with KU heading the overall coordination. Second,
building such a wide-area testbed required tremendous
knowledge and expertise below Layer-3 on physical or tun-
nel connectivity—this was possible because of dedicated
support from the campus IT staff at each institution, Kan-
REN, and MORENet. Third, taking software built by others
(such as VINI and PlanetLab) and customizing for our pur-
pose on GpENI turned out to be a non-trivial exercise. As an
example, as we worked on GpENI network programmabil-
ity, we were able to identify a number of issues using VINI
in the GpENI environment that required a significant
amount of troubleshooting and fixes. Last but not the least,
as a whole, we gained knowledge and understanding about
many issues that came up with the testbed deployment at

Fig. 18. KanREN-GENI.

D. Medhi et al. / Computer Networks 61 (2014) 51–74 71
a much deeper level that would not have been possible to
know otherwise.

Acknowledgments

This work is funded in part by the US National Science
Foundation GENI program (GPO Contract No.
9500009441), by the EU FP7 FIRE programme ResumeNet
project (Grant Agreement No. 224619), and in large part,
by the participating institutions. GpENI is made possible
by the involvement of many people in the participating
institutions. We particularly acknowledge the following
people: Tricha Anjali, Torsten Braun, Richard Becker,
Baek-Young Choi, Kent G. Christensen, Riddhiman Das, Jo-
seph Evans, Robert Fines, Dale M. Finkelson, Brad Fleming,
Don Gruenbacher, Ajita Gupta, Sam Hays, Mary Lou Hines
Fritts, David Hutchison, Michael Hulet, Parikshit Juluri,
Can Kanli, George Koffler, Sean Korzdorfer, Yunzhao Li,
Lin Liu, Wesley Mason, Rick McMullen, Greg Monaco, An-
drew Moore, Bernard Plattner, Adam Pullen, Haiyang Qian,
A. Scott, James Schonemann II, John Sherrell, Mukesh Sube-
dee, Ali Sydney, Tim Sylvester, Nidhi Tare, David Wolfin-
barger, and Dongsheng Zhang.

Appendix A. Glossary

IIAS: Internet In A Slice. It is a tool kit to facilitate users
to create virtual resources on GpENI-VINI testbed.
L2TP: Layer 2 Tunneling Protocol.
MyPLC: A portable PlanetLab central (PLC) software to
make private PlaneLabs [53].
MyVINI: A private VINI implementation within the
GpENI nodes, permitting full control of virtual topology.
Node: Any dedicated physical system that runs Planet-
Lab and VINI components in the GpENI testbed.
SFA: Slide Facility Architecture.
Site: Any geographical location (ex: a University or an
Organization) where GpENI nodes are located.
Slice: It is a group of resources (nodes) allocated from
distributed nodes across the GpENI testbed to a project.
Each slice has a finite lifetime and must be renewed
before it expires.
Sliver: Sliver is a slice running on a specific node. It is a
virtual host on a node that is participating in the slice. A
sliver (virtual host) is created with the slice name on
participating nodes.
Trellis: A software system that combines host and net-
work virtualization technologies. For host virtualiza-
tion, Trellis uses a container based virtualization
technology called the Linux VServer and NetNS to sup-
port virtual nodes, virtual interfaces, and virtual links
inside a node.
Quagga: It is another open source routing software.
XORP (eXtensible Open Router Platform): It is an open
source routing software.

72 D. Medhi et al. / Computer Networks 61 (2014) 51–74
References

[1] Active Networks Program. <http://www.darpa.mil/sto/strategic/
an.html>.

[2] Cacti. <http://www.cacti.net/>.
[3] The Click Modular Router Project. <http://www.read.cs.ucla.edu/

click/click>.
[4] CoDeploy. <http://codeen.cs.princeton.edu/codeploy/>.
[5] DRAGON – Dynamic Resource Allocation via GMPLS Optical

Networks. <http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/
Network>.

[6] Emulab: Network Emulation Testbed. <http://www.emulab.net/>.
[7] ESnet’s On-Demand Secure Circuits and Advance Reservation System

(OSCARS). <http://www.es.net/services/virtual-circuits-oscars/>.
[8] eXtensible Open Router Platform (XORP). <http://www.xorp.org/>.
[9] FIRE: Future Internet Research Experiment. <http://cordis.europa.eu/

fp7/ict/fire/>.
[10] Firestarter. <http://www.fs-security.com/>.
[11] FP6 Situated Autonomic Communications. <http://cordis.europa.eu/

fp7/ict/fire/future-internet-projects_en.html>.
[12] GENI: Global Environment for Network Innovations. <http://

www.geni.net/>.
[13] GpENI-VINI. <http://geni-myvini.umkc.gpeni.net/>.
[14] GpENI wiki <http://www.gpeni.net/>.
[15] IIAS: Internet In A Slice. <http://svn.planet-lab.org/wiki/

ViniInternetInASlice>.
[16] Internet2 DCN/ION Software Suite. <https://wiki.internet2.edu/

confluence/display/DCNSS/DRAGON+Supported+Switches>.
[17] Internet2 ION. <http://www.internet2.edu/ion>.
[18] JGN2plus Testbed. <http://www.jgn.nict.go.jp>.
[19] Linux-VServer. <http://linux-vserver.org/Welcome_to_Linux-

VServer.org>.
[20] Magic Gigabit Testbed. <http://www.magic.net/>.
[21] Nagios. <http://www.nagios.org/>.
[22] NetNS: Network NameSpace. <https://lists.linux-foundation.org/

pipermail/containers/2007-September/007290.html>.
[23] NSF NeTS FIND Initiative. <http://www.nets-find.net>.
[24] OneLab: Future Internet test beds. <http://www.onelab.eu/>.
[25] OpenFlow Switch Consortium. <http://www.openflowswitch.org/>.
[26] PlanetLab. <http://www.planet-lab.org/>.
[27] Quagga Routing Suite Software. <http://www.nongnu.org/quagga/>.
[28] Supercharged Planetlab Platform (SPP) Hardware Components.

<http://wiki.arl.wustl.edu/index.php/SPP_Hardware_Components>.
[29] VINI: Virtual Network Infrastructure. <http://vini-veritas.net/>.
[30] XORP.CT Branch. <http://www.candelatech.com/xorp.ct/>.
[31] Zenoss. <http://www.zenoss.com/>.
[32] Tinc wiki, 2010. <http://www.tinc-vpn.org/>.
[33] ANTP Visualizer, January 2011. <http://experiment-1.ku.gpeni.net/

antp/aerorp/common/www/map.php>.
[34] M.J. Alenazi, E.K. Çetinkaya, J.P. Rohrer, J.P.G. Sterbenz.

Implementation of the AeroRP and AeroNP protocols in python, in:
Proceedings of the International Telemetering Conference (ITC), San
Diego, CA, October 2012.

[35] M.J.F. Alenazi, E.K. Çetinkaya, J.P.G. Sterbenz. Network design and
optimisation based on cost and algebraic connectivity, in:
Proceedings of the 5th IEEE/IFIP International Workshop on
Reliable Networks Design and Modeling (RNDM), Almaty,
September 2013.

[36] P. Angu, B. Ramamurthy, Experiences with dynamic circuit creation
in a regional network testbed, in: High Speed Networking (HSN)
Workshop, IEEE INFOCOM, 2011.

[37] A. Bavier, N. Feamster, M. Huang, L. Peterson, J. Rexford. In
VINI Veritas: realistic and controlled network experimentation, in:
SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, 2006, pp.
3–14.

[38] L. Berger (Ed.), Generalized Multi-Protocol Label Switching (GMPLS):
Signaling Functional Description, Internet RFC 3471, January 2003.
<http://www.ietf.org/rfc/rfc3471.txt>.

[39] S. Bhatia, M. Motiwala, W. Mühlbauer, Y. Mundada, V. Valancius, A.
Bavier, N. Feamster, L. Peterson, J. Rexford, Trellis: a platform for
building flexible, fast virtual networks on commodity hardware, in:
Proc. of 2008 ACM CoNEXT Conference, Madrid, Spain, 2008, pp.
72:1–72:6.

[40] B. Bhattacharjee, K. Calvert, J. Griffioen, N. Spring, J.P.G. Sterbenz,
Postmodern Internetwork Architecture, Technical Report ITTC-
FY2006-TR-45030-01, The University of Kansas, Lawrence, KS,
February 2006.

[41] M. Bermann, J.S. Chase, L. Landweber, A. Nakao, M. Ott, D.
Raychaudhuri, R. Ricci, I. Sesakar, A federated testbed
for innovative network experiments. Comput. Netw. 61 (2014)
5–23.

[42] B. Braden, L. Ricciulli, A plan for a scalable abone – a modest
proposal, in: Technical Report, USC – Information Science Institute,
1999.

[43] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification,
Internet RFC 2205, September 1997. <http://www.ietf.org/rfc/
rfc2205.txt>.

[44] T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc
network research, Wireless Commun. Mobile Comput. 2 (5) (2002)
483–502.

[45] E.K. Çetinkaya, D. Broyles, A. Dandekar, S. Srinivasan, J.P.G. Sterbenz,
Modelling communication network challenges for future
Internet resilience, survivability, and disruption tolerance: a
simulation-based approach, Telecommun. Syst. 52 (2013)
751–766.

[46] E.K. Çetinkaya, J.P. Rohrer, A. Jabbar, M.J. Alenazi, D. Zhang, D.S.
Broyles, K.S. Pathapati, H. Narra, K. Peters, S.A. Gogi, J.P.G. Sterbenz,
Protocols for highly-dynamic airborne networks, in: Proceedings of
the 18th ACM Annual International Conference on Mobile
Computing and Networking (MobiCom), Istanbul, August 2012, pp.
411–413 (Extended Abstract).

[47] T. Chart, S. Schmid, M. Sifalakis, A.C. Scott, Active routers in action:
evaluation of the LARA++, active router architecture in a real-life
network, Lect. Notes Comput. Sci. 2982 (2004) 215–227.

[48] R. Cherukuri, X. Liu, A. Bavier, J.P.G. Sterbenz, D. Medhi, Network
virtualization in GpENI: framework, implementation and integration
experience, in: Proc. of 3rd IEEE/IFIP International Workshop on
Management of the Future Internet (ManFI’2011), Dublin, Ireland,
May 2011, pp. 1212–1219.

[49] CNRI. The Gigabit Testbed Initiative, 1996. <http://
www.cnri.reston.va.us/gigafr/Gigabit_Final_Rpt.pdf>.

[50] DARPA Active Networks Security Working Group. Security
Architecture for Active Nets, July 1998. <http://srg.cs.uiuc.edu/
Security/seraphim/May2000/SecurityArchitecture.pdf>.

[51] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina, Generic Routing
Encapsulation (GRE). Internet RFC 2784, March 2000. <http://
www.ietf.org/rfc/rfc2784.txt>.

[52] A. Galis, B. Plattner, J.M. Smith, S.G. Denazis, E. Moeller, H. Guo, C.
Klein, J. Serrat, J. Laarhuis, G.T. Karetsos, C. Todd, A flexible ip active
networks architecture, in: Proceedings of the Second International
Working Conference on Active Networks, IWAN ’00, Springer-Verlag,
London, UK, 2000, pp. 1–15.

[53] M. Huang, T. Parmentelat. MyPLC User’s Guide. <https://svn.planet-
lab.org/wiki/MyPLCUserGuide>.

[54] A. Jackson, J.P.G. Sterbenz, M. Condell, R. Hain, Active network
monitoring and control: the SENCOMM architecture and
implementation, in: DARPA Active NEtworks Conference and
Exposition, 2002.

[55] K. Kompella, Y. Rekhter. Signalling Unnumbered Links in Resource
ReSerVation Protocol – Traffic Engineering (RSVP-TE). Internet RFC
3477, January 2003. <http://www.ietf.org/rfc/rfc3477.txt>.

[56] X. Liu, P. Juluri, D. Medhi, An experimental study on
dynamic network reconfiguration in a virtualized network
environment using autonomic management, in: Proc. of IFIP/IEEE
International Symposium On Integrated Network Management
(IM’2013): Mini-Conference, Ghent, Belgium, May 2013, pp. 616–
622.

[57] A.J. Mohammad, D. Hutchison, J.P.G. Sterbenz, Towards quantifying
metrics for resilient and survivable networks, in: Proceedings of the
14th IEEE International Conference on Network Protocols (ICNP),
November 2006, pp. 17–18.

[58] C. Partridge, B. Davie, R. Campbell, C. Catlett, D. Clark, D. Feldmeier,
R. McFarland, P. Messina, I. Richer, J. Smith, J.P.G. Sterbenz, J. Turner,
D. Tennenhouse, J. Touch, Report of the ARPA/NSF Workshop on
Research in Gigabit Networking, 1994. <http://www.isi.edu/touch/
pubs/arpansf94.pdf>.

[59] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J. Wroclawsk, S.S.T. Faber,
Slice-Based Facility Architecture, 2007. <http://www.cs.princeton.
edu/llp/arch_abridged.pdf>.

[60] J.P. Rohrer, E.K. Çetinkaya, J.P.G. Sterbenz, Progress and challenges in
large-scale future internet experimentation using the GpENI
programmable testbed, in: The 6th ACM International Conference
on Future Internet Technologies (CFI), Seoul, June 2011, pp.
46–49.

[61] J.P. Rohrer, E.K. Çetinkaya, J.P.G. Sterbenz, Resilience experiments in
the GpENI programmable future Internet testbed, in: Proceedings of
the 11th Würzburg Workshop on IP: Joint ITG and Euro-NF

http://www.darpa.mil/sto/strategic/an.html
http://www.darpa.mil/sto/strategic/an.html
http://www.cacti.net/
http://www.read.cs.ucla.edu/click/click
http://www.read.cs.ucla.edu/click/click
http://codeen.cs.princeton.edu/codeploy/
http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/Network
http://dragon.maxgigapop.net/twiki/bin/view/DRAGON/Network
http://www.emulab.net/
http://www.es.net/services/virtual-circuits-oscars/
http://www.xorp.org/
http://cordis.europa.eu/fp7/ict/fire/
http://cordis.europa.eu/fp7/ict/fire/
http://www.fs-security.com/
http://cordis.europa.eu/fp7/ict/fire/future-internet-projects_en.html
http://cordis.europa.eu/fp7/ict/fire/future-internet-projects_en.html
http://www.geni.net/
http://www.geni.net/
http://geni-myvini.umkc.gpeni.net/
http://www.gpeni.net/
http://svn.planet-lab.org/wiki/ViniInternetInASlice
http://svn.planet-lab.org/wiki/ViniInternetInASlice
http://https://wiki.internet2.edu/confluence/display/DCNSS/DRAGON+Supported+Switches
http://https://wiki.internet2.edu/confluence/display/DCNSS/DRAGON+Supported+Switches
http://www.internet2.edu/ion
http://www.jgn.nict.go.jp
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://linux-vserver.org/Welcome_to_Linux-VServer.org
http://www.magic.net/
http://www.nagios.org/
http://https://lists.linux-foundation.org/pipermail/containers/2007-September/007290.html
http://https://lists.linux-foundation.org/pipermail/containers/2007-September/007290.html
http://www.nets-find.net
http://www.onelab.eu/
http://www.openflowswitch.org/
http://www.planet-lab.org/
http://www.nongnu.org/quagga/
http://wiki.arl.wustl.edu/index.php/SPP_Hardware_Components
http://vini-veritas.net/
http://www.candelatech.com/xorp.ct/
http://www.zenoss.com/
http://www.tinc-vpn.org/
http://experiment-1.ku.gpeni.net/antp/aerorp/common/www/map.php
http://experiment-1.ku.gpeni.net/antp/aerorp/common/www/map.php
http://www.ietf.org/rfc/rfc3471.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0315
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0315
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0315
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0320
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0320
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0320
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0320
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0320
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0325
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0325
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0325
http://www.cnri.reston.va.us/gigafr/Gigabit_Final_Rpt.pdf
http://www.cnri.reston.va.us/gigafr/Gigabit_Final_Rpt.pdf
http://srg.cs.uiuc.edu/Security/seraphim/May2000/SecurityArchitecture.pdf
http://srg.cs.uiuc.edu/Security/seraphim/May2000/SecurityArchitecture.pdf
http://www.ietf.org/rfc/rfc2784.txt
http://www.ietf.org/rfc/rfc2784.txt
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0330
http://https://svn.planet-lab.org/wiki/MyPLCUserGuide
http://https://svn.planet-lab.org/wiki/MyPLCUserGuide
http://www.ietf.org/rfc/rfc3477.txt
http://www.isi.edu/touch/pubs/arpansf94.pdf
http://www.isi.edu/touch/pubs/arpansf94.pdf
http://www.cs.princeton.edu/llp/arch_abridged.pdf
http://www.cs.princeton.edu/llp/arch_abridged.pdf

D. Medhi et al. / Computer Networks 61 (2014) 51–74 73
Workshop ‘‘Visions of Future Generation Networks’’
(EuroView2011), August 2011, pp. 29–30.

[62] J.P. Rohrer, A. Jabbar, E.K. Çetinkaya, E. Perrins, J.P.G. Sterbenz,
Highly-dynamic cross-layered aeronautical network architecture,
IEEE Trans. Aerospace Electron. Syst. 47 (4) (2011)
2742–2765.

[63] J.P. Rohrer, A. Jabbar, J.P.G. Sterbenz, Path diversification: a
multipath resilience mechanism, in: Proceedings of the IEEE 7th
International Workshop on the Design of Reliable Communication
Networks (DRCN), Washington, DC, October 2009, pp.
343–351.

[64] J.P. Rohrer, R. Naidu, J.P.G. Sterbenz, Multipath at the transport layer:
an end-to-end resilience mechanism, in: Proceedings of the IEEE/IFIP
International Workshop on Reliable Networks Design and Modeling
(RNDM), St. Petersburg, Russia, October 2009, pp. 1–7.

[65] N. Shalaby, L. Peterson, A. Bavier, Y. Gottlieb, S. Karlin, A. Nakao, X.
Qie, T. Spalink, M. Wawrzoniak, Extensible routers for active
networks, in: DARPA Active NEtworks Conference and Exposition,
2002.

[66] J.P.G. Sterbenz, E.K. Çetinkaya, M.A. Hameed, A. Jabbar, J.P. Rohrer,
Modelling and analysis of network resilience, in: Proceedings of
the Third IEEE International Conference on Communication
Systems and Networks (COMSNETS), Bangalore, January 2011,
pp. 1–10.

[67] J.P.G. Sterbenz, E.K. Çetinkaya, M.A. Hameed, A. Jabbar, Q. Shi,
J.P. Rohrer, Evaluation of network resilience, survivability,
and disruption tolerance: Analysis, topology generation,
simulation, and experimentation, Telecommun. Syst. 52 (2013)
705–736.

[68] J.P.G. Sterbenz, D. Medhi, B. Ramamurthy, C. Scoglio, D. Hutchison,
B. Plattner, T. Anjali, A. Scott, C. Buffington, G. Monaco, D.
Gruenbacher, R. McMullen, J. Rohrer, J. Sherrell, P. Angu, R.
Cherukuri, H. Qian, N. Tare, The great plains environment for
network innovation (GpENI): a programmable testbed for future
Internet architecture research, in: Proc. of 6th International
Conference on Testbeds and Research Infrastructures for the
Development of Networks & Communities (TridentCom), Berlin,
Germany, May 2010, pp. 428–441.

Deep Medhi is a Curators’ Professor in the
Department of Computer Science & Electrical
Engineering at the University of Missouri–
Kansas City, USA, and a honorary professor in
the Department of Computer Science & Engi-
neering at the Indian Institute of Technology–
Guwahati, India. He received B.Sc. in Mathe-
matics from Cotton College, Gauhati Univer-
sity, India, M.Sc. in Mathematics from the
University of Delhi, India, and his Ph.D. in
Computer Sciences from the University of
Wisconsin–Madison, USA. Prior to joining

UMKC in 1989, he was a member of the technical staff at AT&T Bell
Laboratories. He served as an invited visiting professor at the Technical
University of Denmark, a visiting research fellow at Lund Institute of

Technology, Sweden, and State University of Campinas, Brazil. As a Ful-
bright Senior Specialist, he was a visitor at Bilkent University, Turkey, and
Kurukshetra University, India. He is the Editor-in-Chief of Springer’s
Journal of Network and Systems Management, and is on the editorial board
of IEEE/ACM Transactions on Networking, IEEE Transactions on Network and
Service Management, and IEEE Communications Surveys & Tutorials. He has
published over 125 papers, and is co-author of the books, Routing, Flow,
and Capacity Design in Communication and Computer Networks (2004) and
Network Routing: Algorithms, Protocols, and Architectures (2007), both
published by Morgan Kaufmann Publishers, an imprint of Elsevier Sci-
ence. His research interests are multi-layer networking, network virtu-
alization, data center optimization, and network routing, design, and
survivability. His research has been funded by NSF, DARPA, and indus-
tries.
Byrav Ramamurthy is currently a Professor
and Graduate Chair in the Department of
Computer Science and Engineering at the
University of Nebraska–Lincoln (UNL). He has
held visiting positions at the Indian Institute
of Technology–Madras (IITM), in Chennai,
India and at the AT&T Labs-Research, New
Jersey, U.S.A. He is author of the book Design of
Optical WDM Networks – LAN, MAN and WAN
Architectures and a co-author of the book
Secure Group Communications over Data Net-
works, published by Springer in 2000 and

2004, respectively. He has authored over 125 peer-reviewed journal and
conference publications. He serves as Editor-in-Chief for the Springer
Photonic Network Communications journal. He was Chair of the IEEE

ComSoc Optical Networking Technical Committee (ONTC) during 2009–
2011. Dr. Ramamurthy served as the TPC Co-Chair for the IEEE INFOCOM
2011 conference to be held in Shanghai, China. He is a recipient of the
College of Engineering Faculty Research Award for 2000 and the UNL CSE
Dept. Student Choice Outstanding Teaching Award for Graduate-level
Courses for 2002–2003 and 2006–2007. He has graduated 10 Ph.D. and 40
M.S. students under his research supervision. His research has been
supported by the U.S. National Science Foundation (NSF), the U.S.
Department of Energy (DOE), the U.S. Department of Agriculture (USDA),
National Aeronautics and Space Administration (NASA), AT&T Corp.,
Agilent Tech., HP, OPNET Inc. and the University of Nebraska–Lincoln
(UNL).

Caterina M. Scoglio is Professor of Electrical
and Computer Engineering at Kansas State
University. Her main research interests
include modeling, analysis, and design of
networked systems, with applications to epi-
demic spreading and power grids. Caterina
received the Dr. Eng. degree from the ‘‘Sapi-
enza’’ Rome University, Italy, in 1987. Before
joining Kansas State University, she worked at
the Fondazione Ugo Bordoni from 1987 to
2000, and at the Georgia Institute of Tech-
nology from 2000 to 2005.
Justin P. Rohrer is currently a Research
Associate of Computer Science at the Naval
Postgraduate School (NPS) and an Adjunct
Assistant Professor of Electrical Engineering
and Computer Science at the KU Information
& Telecommunication Technology Center
(ITTC). He received his Ph.D. in Electrical
Engineering from the University of Kansas in
2011 with honors. He received his B.S. degree
in Electrical Engineering from Rensselaer
Polytechnic Institute, Troy, NY, in 2004. From
1999 to 2004, he was with the Adirondack

Area Network, Castleton, NY as a network engineer. He was also an ITTC
Graduate Fellow from 2004 to 2006. He received the best paper award at
the International Telemetering Conference in 2008 and the best graduate

student paper award at the same conference in 2011. His research focus is
on resilient and survivable transport and routing protocols. Interests also
include highly-dynamic mobile networks, and simulating network dis-
ruptions. Previous research has included weather disruption-tolerant
mesh networks and free-space optical metropolitan networks. He is a
member of the IEEE Communications and Computer Societies, ACM SIG-
COMM, Eta Kappa Nu, and was an officer of the Kansas City section of the
IEEE Computer Society for several years.

http://refhub.elsevier.com/S1389-1286(13)00440-4/h0335
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0335
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0335
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0335
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0340
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0340
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0340
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0340
http://refhub.elsevier.com/S1389-1286(13)00440-4/h0340

74 D. Medhi et al. / Computer Networks 61 (2014) 51–74
Egemen K. Çetinkaya is Assistant Professor of
Electrical and Computer Engineering at Mis-
souri University of Science and Technology
(formerly known as University of Missouri–
Rolla). He received the B.S. degree in Elec-
tronics Engineering from Uludağ University
(Bursa, Turkey) in 1999, the M.S. degree in
Electrical Engineering from University of
Missouri–Rolla in 2001, and Ph.D. degree in
Electrical Engineering from the University of
Kansas in 2013. He held various positions at
Sprint as a support, system, and design engi-

neer from 2001 until 2008. He is a graduate research assistant in the
ResiliNets research group at the KU Information & Telecommunication
Technology Center (ITTC). His research interests are in resilient networks.

He is a member of the IEEE Communications Society, ACM SIGCOMM, and
Sigma Xi.

Ramkumar Cherukuri is a software engineer
at CGI. He designs software for living and
specializes in the field of Network Systems.
His Research interests include Network
Routing, Protocol Development, Software
Design and Cloud Computing. His outside
interests include attending professional
meetups, brainstorming on new ideas with
peers and visiting foreign places. He obtained
his M.S. in Computer Science from the Uni-
versity of Missouri–Kansas City and his B.E. in
Electronics and Communication Engineering
from Andhra University College of Engineer-
ing, Visakhapatnam, India.
Xuan Liu is a Ph.D. student at the University
of Missouri–Kansas City. She received B.S. in
Communication Engineering from China Uni-
versity of Geosciences (CUG) in June 2007 and
M.S. in Computer Science from the University
of Missouri–Kansas City in December 2010.
Her research interests include network virtu-
alization, information centric networking,
computer networking modeling and optimi-
zation.
Pragatheeswaran Angu is currently an R&D
Software Developer at Epic. He received his
M.S. degree in Computer Science from the
University of Nebraska–Lincoln in May 2011.
His research interests include optical net-
working, scheduling and optimization.
Andy Bavier is a Research Scholar at Prince-
ton University. He has been building research
testbeds since 2002. He is a designer and core
developer of the PlanetLab, VINI, and VICCI
testbeds among others. He also actively par-
ticipates in the NSF GENI project and serves
on the GENI Architects board.
Cort Buffington is the Executive Director of
KanREN, Inc., The high-speed research and
education network in Kansas. Cort joined the
KanREN team in 1999 and had served the
organization in several different technical
capacities before accepting the directorship in
2008. Cort was the principle architect and
engineer of the current and previous genera-
tions of the KanREN network, and still takes
an active role in engineering/architecture
along with the administrative aspects of the
organization. Cort is an active participant in

the state, regional and national R&E networking community, participating
actively in Internet2, The Great Plains Network, The Quilt, and Kan-ed.
James P.G. Sterbenz is Associate Professor of
Electrical Engineering & Computer Science
and on staff at the Information & Telecom-
munication Technology Center at The Uni-
versity of Kansas, and is a Visiting Professor of
Computing in InfoLab 21 at Lancaster Uni-
versity in the UK. He received a doctorate in
computer science from Washington Univer-
sity in St. Louis in 1991, with undergraduate
degrees in electrical engineering, computer
science, and economics. He is director of the
ResiliNets research group at KU, PI for the

NSF-funded FIND Postmodern Internet Architecture project, PI for the NSF
Multilayer Network Resilience Analysis and Experimentation on GENI
project, lead PI for the GpENI (Great Plains Environment for Network

Innovation) international GENI and FIRE testbed, co-I in the EU-funded
FIRE ResumeNet project, and PI for the US DoD-funded highly-mobile
airborne networking project. He has previously held senior staff and
research management positions at BBN Technologies, GTE Laboratories,
and IBM Research, where he has lead DARPA- and internally-funded
research in mobile, wireless, active, and high-speed networks. He has
been program chair for IEEE GI, GBN, and HotI; IFIP IWSOS, PfHSN, and
IWAN; and is on the editorial board of IEEE Network. He has been active in
Science and Engineering Fair organization and judging in Massachusetts
and Kansas for middle and high-school students. He is principal author of
the book High-Speed Networking: A Systematic Approach to High-Bandwidth
Low-Latency Communication. He is a member of the IEEE, ACM, IET/IEE,
and IEICE. His research interests include resilient, survivable, and dis-
ruption tolerant networking, future Internet architectures, active and
programmable networks, and high-speed networking and systems.

	The GpENI testbed: Network infrastructure, implementation experience, and experimentation
	1 Introduction
	2 GpENI testbed: Motivations and overview
	3 GpENI network infrastructure and topology
	4 GpENI node cluster architecture
	4.1 GpENI management and control
	4.2 GpENI-MyPLC control framework sub-aggregate
	4.3 GpENI-VINI sub-aggregate
	4.4 DCN sub-aggregate

	5 GpENI-VINI: Architecture and implementation
	5.1 GpENI-VINI core architecture
	5.1.1 GpENI-VINI central server
	5.1.2 GpENI-VINI nodes: Programmable routers

	5.2 GpENI-VINI resources
	5.2.1 Trellis overview
	5.2.2 Virtual node
	5.2.3 Virtual link
	5.2.4 Packet flow in virtual link

	5.3 Flexible resource provisioning by GpENI-VINI
	5.3.1 Issues and challenges
	5.3.2 XORP integration with GpENI-VINI
	5.3.3 Extending IIAS features
	5.3.4 Routing software auto-initialization in GpENI

	5.4 Measurements and validation

	6 Dynamic circuit creation in the regional network testbed
	6.1 Background
	6.1.1 Dynamic circuits
	6.1.2 DRAGON
	6.1.3 OSCARS
	6.1.4 VLAN
	6.1.5 Q-in-Q

	6.2 DCN in GpENI
	6.2.1 Current GpENI network configuration
	6.2.2 Option 1: GpENI network connectivity with DCN (using GPN switch)
	6.2.3 Option 2: GpENI network connectivity with DCN (using GpENI switch)
	6.2.4 Decision

	6.3 DCN between GpENI and MAX
	6.3.1 Option 1: GpENI network connectivity with MAX (using GPN switch)
	6.3.2 Option 2: GpENI network connectivity with ProtoGENI (using GPN switch)
	6.3.3 Option 3: GpENI network connectivity with MAX (using GpENI switch)
	6.3.4 Decision

	7 GpENI federation deployment
	8 Experimentations on GpENI Testbed
	8.1 Resilience research with GpENI testbed
	8.2 Graph algorithm evaluation on GpENI
	8.3 Protocol emulation on GpENI
	8.4 Autonomic management experiments on GpENI-VINI
	8.5 Demonstration of transferring CMS data with DCN

	9 GpENI extension: KanREN-GENI deployment plans and topology
	10 Summary
	Acknowledgments
	Appendix A Glossary
	References

