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ABSTRACT
The aeronautical transport protocol AeroTP addresses the challenges of end-to-end communication

in the highly dynamic airborne telemetry network environment. The protocol has multiple modes: reli-
able, near-reliable, quasi-reliable, unreliable connection, and unreliable datagram. We present our Python
implementation of AeroTP. The results of preliminary experiments conducted on Linux systems using
AeroTP quasi-reliable mode are comparable to previous simulation results.

I. INTRODUCTION AND MOTIVATION
Airborne telemetry networks poses many challenges to end-to-end communication across the network.

Traditional transport and network protocols do not perform well in this environment [1]. A domain-specific
solution Airborne Network Telemetry Protocol (ANTP) suite was designed to optimize performance in
this tactical environment [2]. This also aims to provide edge-to-edge compatibility with legacy TCP/IP-
based Internet architecture. The protocol suite consists of AeroTP – a TCP-friendly transport protocol [3]
with multiple QoS (quality of service) modes for the TmNS (telemetry network system), AeroNP – an
IP-compatible network protocol (addressing and forwarding), and AeroRP – a routing protocol [4] that
exploits location information to mitigate the short contact durations of high-velocity airborne nodes. The
protocol suite is designed to perform well in an environment in which rapidly-changing topology prevents
global routing convergence, as well as those in which persistent stable end-to-end paths do not exist. The
protocols have been verified using the ns-3 simulator and analysis has shown significant performance
improvement compared to traditional transport protocols [5]. Having verified these protocols, the next
step towards deployment of the ANTP suite is developing a cross-platform implementation of protocols.
The software architecture and implementation of the ANTP suite in Python was presented previously [6].

This paper presents the implementation architecture of AeroTP (aeronautical transport protocol) with
emphasis on the reliability modes providing end-to-end error control. Closed-loop retransmission is pro-
vided by the ARQ (automatic repeat request) mechanism in reliable and near-reliable modes. Reliable
mode preserves end-to-end acknowledgment semantics from source to destination as the only way to
guarantee delivery. Near-reliable mode is highly reliable, but does not guarantee delivery since the gate-
way [7] uses split ARQ and immediately returns TCP ACKs to the source [3]. An open-loop error recovery
is achieved using the FEC (forward error correction) mechanism in quasi-reliable mode. We also present
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preliminary analysis of quasi-reliable mode in an emulated environment. AeroTP provides two additional
modes that do not provide any reliability: unreliable connection and unreliable datagram. Unreliable con-
nection mode does not use any error correction mechanism at the transport layer and relies exclusively on
reliability at the link layer if available. Unreliable datagram mode is intended to pass UDP traffic transpar-
ently to maintain edge-to-edge compatibility. In this paper, we only consider operational modes providing
error control that are applicable to the telemetry network.

The rest of the paper is organized as follows: Section II introduces the background on AeroTP with
previously conducted tests using simulation techniques and related work. Section III presents the Python
implementation of the AeroTP protocol focusing on the ARQ and FEC based reliability modes. In Sec-
tion IV, performance analysis of quasi-reliable mode using FEC is presented. Section V concludes and
gives future directions for this work.

II. BACKGROUND AND RELATED WORK
AeroTP is a TCP-friendly domain-specific transport protocol designed to meet the needs of the air-

borne network environment: dynamic resource sharing, QoS support for fairness and precedence, real-
time data service, and bidirectional communication [2, 3]. AeroTP has several operational modes that
support different service classes: reliable, nearly-reliable, quasi-reliable, unreliable connection, and unre-
liable datagram. The first of these is fully TCP compatible, the last fully UDP compatible, and the others
TCP-friendly with reliability semantics matching the needs of the mission and capabilities of the network.
AeroTP uses opportunistic connection establishment as an alternative to the three-way handshake used by
TCP.

AeroTP has been designed and evaluated previously using the ns-3 simulator [8, 5]. In a lossy network
environment, AeroTP reliable-mode performs significantly better compared to traditional TCP. With a
higher BER (bit error rate), end-to-end delay in TCP increases by orders of magnitude whereas AeroTP
has less than an order of magnitude increase. AeroTP quasi-reliable mode has much less loss due to the
FEC recovery mechanism compared to UDP that drops packets with increasing error rates. Furthermore,
AeroTP reliable mode has less overhead compared to TCP, while quasi-reliable mode does not cause
increased delay but has significant overhead.

Many designs and implementations of network and transport protocols have been carried out. A trans-
port layer protocol that relies on end-to-end mechanisms to detect network state was implemented in the
Linux kernel and results were also verified with simulations [9]. The significant impact of a wireless
multihop channel on TCP throughput and loss gives insight why TCP cannot be used in wireless net-
works [10]. A survey of many real-world experiments conducted in ad-hoc networks with emphasis on
MANET (mobile ad-hoc network) routing protocols has been done [11]. Our work is different as AeroTP
is a domain-specific transport protocol designed for end-to-end communication in airborne telemetry net-
works. The implementation of the AeroRP routing protocol and AeroNP network protocol upon which
AeroTP is designed to run is presented in our companion paper [12].

III. IMPLEMENTATION OF AEROTP
The development and testing of AeroTP is carried out in the high-level scripting language Python.

It provides a number of data structures and libraries, in particular, networking libraries such as sockets,
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packing binary data, and CRC (cyclic redundancy check). Python-based implementations require less
programming time leading to fast prototyping of applications [13].

AeroTP is implemented using a centralized top-level controller module that guides the flow setup, ter-
mination, and data transfer as shown in Figure 1, and employs supplemental modules designed for specific
services. The controller runs independently on a POSIX operating system environment as a dæmon on
both source and destination nodes to provide services to the application layer for end-to-end communi-
cation. The current implementation uses UDP sockets for compatibility with the security restrictions in
PlanetLab testbed [14] systems, which is one of the emulation environments using the GpENI testbed.
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Figure 1: AeroTP implementation architecture

The controller flow at the source begins with connection setup that uses the state machine in connection-
oriented modes. During the connection establishment, the overhead of a three-way handshake is eliminated
by an opportunistic connection approach that overlaps data with control. Segmentation is followed with
optional FEC error-correcting codes added to the payload. Header processing involves the application
layer QoS and error control requirements embedded into the AeroTP Header object. Depending on
the class of service used by the application, error controlling mechanisms are employed in the subsequent
steps. These functions are complimented appropriately at the destination by decomposing the segment
based on service mode, maintaining state, and aggregating ACKs followed by the connection teardown.
In addition to these modules, a consistent and efficient buffer-handling mechanism augments the main
controller using sender and receiver buffers.

A. End-to-end Reliability with ARQ mechanism
AeroTP reliable and near-reliable mode use ARQ mechanisms to provide full reliability within the

TmNS [8]. MACK (multiple ACK) is used as the acknowledgement mechanism. It dynamically aggregates
a number of ACKs hinging upon the transmission rate and loss rate. The source and destination use control
messages (ASYN, ASYNACK, AFIN, AFINACK) for connection establishment and termination as shown
in Figure 2. The source initiates an end-to-end connection by sending the ASYN AeroTP Header object
with the SYN flag set. A piggyback flag is set to provide options to use traditional three-way handshake or
opportunistic connection establishment. Once the ASYN is received from the source, the connection state
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is set to ESTABLISHED (Figure 5) at the destination and the sequence number of the ASYN is recorded
in a MACK control message to be sent back to the source. The first acknowledged sequence number is
inserted in the MACK header and the following acknowledged sequence numbers are appended as the
payload. The structure of a MACK control message is shown in Figure 3 where n and m are the first and
last acknowledged TPDU sequence numbers, respectively.

data segment

data segment
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TmNS

MACK
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ASYNACK

CLOSED
ASYN-SENT

ESTABLISHEDESTABLISHED

LISTEN
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Figure 2: ARQ connection management

… Seq n ……... n+2 n+4 ... … n+2m

MACK header MACK Payload

Figure 3: MACK header and payload

After the source sends out the ASYN, it moves to the ESTABLISHED state immediately. The source
appends TPDUs (transport protocol data units) to the transmission buffer and sends them to the destination
in FIFO (first in, first out) order. The AeroTP protocol employs a selective-repeat ARQ mechanism to
provide a reliable edge-to-edge connection. Whenever the source sends out a TPDU, the sequence number
and TPDU are stored in an additional buffer used for possible retransmission, implemented by using a hash
table (dict() data structure in Python) with the sequence number as the keys. Figure 4 is an example
showing the retransmission procedure. By checking the next MACK from the destination, the source will
remove the sequence number with its counterpart TPDU sequence numbers (2, 6, 8, 10, and 12) in the
retransmission buffer and append the unacknowledged TPDUs (sequence number 4) to sender buffer.

After the transmission buffer is empty, the source will send out an AFIN immediately to signal the end
of the current connection. However, it is possible that some of the last sent several TPDUs are lost during
the transmission. Therefore, an alternative retransmission mechanism is exploited. When the last MACK
arrives at the source, if all the sequence numbers of the last set of TPDUs are acknowledged, the source
will just wait for AFINACK to terminate the connection; if some sequence numbers are missed, it triggers a
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Figure 4: AeroTP ARQ retransmission mechanism

time-out mechanism for the retransmission of the last set of TPDUs. In this case, the destination will send
an ACK back to the source immediately for each single TPDU so that each TPDU is acknowledged indi-
vidually. A time-out thread is employed for each TPDU by using the Python class threading.Timer,
and when the timer expires it will trigger automatic retransmission of that TPDU. When AFINACK reaches
the source and no TPDUs are in the retransmission hash table, the source moves to the CLOSED state
and the destination moves to the LISTEN state. The state management module described next, is used for
effective event transitions.

The state management module is a FSM (finite state machine) based module [15] that effectively man-
ages the state transitions in the case of AeroTP connection-oriented modes. The state transition diagram
is shown in Figure 5. The module maintains AeroTP states and possible event transitions with action han-
dlers. A set of tuples each representing event transitions (input symbol, current state, action,
next state) with optional input symbol are initialized that vary depending on the AeroTP re-
liability mode. Then, based on an event occurrence, the state transitions from current state to
new state and takes corresponding action. The events are listed in Table 1.

B. Quasi-Reliability with FEC mechanism
Due to the inherent behavior of bit-errors resulting from noise and interference in wireless links with

dynamic mobility, relying alone on retransmissions to efficiently provide reliable data transfer is not suf-
ficient. An open-loop error recovery mechanism such as FEC achieves an arbitrary level of statistical
reliability. This also means it does not guarantee absolute delivery of data, while eliminating the need
of ACKs and ARQ completely. We use the RS (Reed-Solomon) class of error correcting codes that are
predominantly used in applications such as RAID-like systems, optical disk storage devices, and optical
communication technologies. Quasi-reliable mode also manages a subset of the state transitions discussed
earlier.

RS error correcting codes are linear block codes that can detect and correct multiple burst of errors.
They represents data as polynomials and oversample them. An (n, k) code encodes k source data bytes
into n codewords, with the ability to correct at most (n − k)/2 errors. We use the publicly available RS
error correcting Python library [16] for our FEC mechanism.
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Figure 5: AeroTP state machine

A widely used RS code uses 8-bit symbols as it facilitates byte-oriented systems and is computationally
less intensive. This corresponds to the number of symbols in the encoded block to be n = 28 − 1 = 255.
To provide different error correcting capabilities, k can be varied. To account for a higher payload size in
the TPDU, a mechanism to iteratively encode and decode codewords is incorporated.

• During encoding at source, chunks of codewords are computed with specified FEC strength and the
default n being 255. Two conditions are possible: the sum of the lengths of codewords computed
exceeds the length of the maximum payload size, or the length of the codewords is less than the
block size of 255. In the former, n is calculated based on the strength whereas k is computed for
blocks of smaller size in the latter case.

• During decoding at the destination, each chunk of the payload is decoded individually which in-
volves computation of k. To simulate different noise levels in the network during analysis stage, a
user-specified BER based RateBasedErrModel is developed. This introduces burst errors into
the payload calculated using its length and BER.

An object of RS based error correcting class is created using a constructor with n and k arguments
computed as discussed previously. FEC adds redundancy for error correcting capability that overcomes
the necessity of retransmissions.

C. Supplemental modules
While the centralized controller provides the main functionality, supplemental modules serve as utili-

ties to simplify operations and provide reusable modules across different AeroTP modes. These modules
make use of the object-oriented features of Python. They act as independent libraries, instantiated by the
centralized controller.

Segmentation and header processing modules are a prerequisite for processing related to size and
alignment of control and payload data during network communication. The segmentation module ac-
cepts application data and segments into chunks for transmission. In contrast, the destination side de-
capsulates the segment from the receiver buffer RECV BUFF. Segmentation also provides the sequence
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Table 1: State transition definitions

State Description
CLOSED State in which no connection exists and no data is transferred
LISTEN State in which a destination is ready to listen to any incoming data
ASYN SENT ASYN message sent by the host initiating connection
ESTABLISHED Steady state in which data transfer takes place
AFIN SENT AFIN message sent to indicate no new data being sent
AFIN RECEIVED AFIN message received and AFINACK is sent as an acknowledgement
APP CONN Request issued by the application to initiate connection by sending ASYN
APP LISTEN Request issued to the receiving host to move to the LISTEN state
APP CLOSE Request to initiate closing a connection by sending AFIN
ASYN RX ASYN received, indicating a connection has been requested
ASYNACK RX ASYNACK received, indicating connection request has been granted
MACK RX Single or multiple packet ACK received
AFIN RX AFIN received, indicating end of any new data, initiating connection close
CLOSE TO A timeout allowing outstanding retransmissions before going to CLOSED state
LISTEN TO A timeout to go to LISTEN state so that the destination can receive all data packets

numbering mechanism, which numbers each TPDU to permit resequencing. Header processing at the
source helps in constructing the header in network byte order using the binary packing library method
struct.pack(format, v1, v2, ...), which can easily be decomposed at the destination. The
arguments v1,v2,.. representing header fields are packed according to format. This module provides
extensive support in terms of handling header field attributes.

Various other modules serve as tools to validate and analyze the overall implementation. A utility
module converts values between different numerical base formats and provides time related functions
using the datetime library. A traffic generator module generates CBR (constant bit rate) application
traffic at a specified rate, which emulates end-to-end application layer protocol behavior. The CRC protects
the integrity of data end-to-end across the network. It can be used in conjunction with FEC to detect errors.
The HEC (header error check) is a 16-byte strong CRC whereas the payload has a 32-byte CRC performed
by the Python library module binascii.

IV. PERFORMANCE ANALYSIS
Functional testing of all AeroTP modes is initially conducted on the GpENI testbed [17, 18]. In this

section, we analyze the performance of AeroTP quasi-reliable mode in a lossy environment. In order to
test the accuracy of the FEC mechanism, we have simplified the testing on two systems operating with the
Debian Linux distribution. 1 MB application data is transmitted from one of the systems to another during
a single scenario. FEC strengths provided by RS codes ranging from (255, 254) to (255,74) are tested.
Note that the higher the difference between n and k, the higher the strength. We measure the cumulative
goodput and overhead of using different FEC strengths that provides statistical reliability. Emulation of
errors with varying rates is done at the destination end receiving interface.
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Figure 9: Cumulative overhead

Figure 6 shows the amount of data correctly delivered as BER increases with varying FEC strength. At
the error rates tested, except for high strength RS (255,74) code, the total amount of correctly delivered data
decreases as the error rate increases. The AeroTP quasi-reliable mode eliminates the need for ACKs and
retransmissions in the case of lossy links that cause bit errors at the cost of not guaranteeing reliability. Due
to increased noise and interference in the wireless channel, more bit errors reduce the amount of correctly
delivered data. This can be compensated by error correction with sufficient FEC strength. Figure 7 shows
the amount of data correctly delivered for different FEC strength with lower error rates. Each FEC strength
has a threshold BER that can deliver entire data correctly. An FEC strength of RS (255,128) code is able
to correct errors occurring at rate ≤ 5.0× 10−5.

The next set of plots indicate the overhead added by the FEC mechanism. Figure 8 shows that as the
FEC strength is increased, the overhead added by the RS codes increases (note the log y-axis scale). This
means more packets are required to carry the application data. The reliability induced in quasi-reliable
mode comes at the cost of additional FEC codewords added to the packet, reducing the application data
in each packet. Note that error rate does not affect the overhead for a given strength. Figure 9 shows
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the increase in the overhead with increased FEC strength, quantified by the number of packets sent. The
results are comparable to the simulation results [5]. Significant overhead is added that can influence the
FEC strength value to be used in AeroTP. The strength value can be adapted based on the error-rates, by
cross-layering link characteristics with link and MAC (media access control) layer.

V. CONCLUSIONS AND FUTURE WORK
The implementation of AeroTP protocol extends the previous work of simulation to real-world sys-

tems. The performance analysis of quasi-reliable mode that is based on an open-loop error recovery
mechanism shows comparable results to simulation results. Cross-layer optimizations can be considered
in order to effectively use quasi-reliable mode, given the overhead of FEC. Future work includes deploy-
ment and performance analysis of ANTP suite on mobile devices in a mobile ad-hoc network environment.
Furthermore, a hybrid protocol that uses ARQ mechanism as an extension to FEC mechanism [19] in the
case of loss of packets and/or high error rates is being considered.
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