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Abstract—Software Defined Networks (SDNs) have gained
prominence recently due to their flexible management and
superior configuration functionality of the underlying network.
SDNs, with OpenFlow as their primary implementation, allow for
the use of a centralised controller to drive the decision making
for all the supported devices in the network and manage traffic
through routing table changes for incoming flows. In conventional
networks, machine learning has been shown to detect malicious
intrusion, and classify attacks such as DoS, user to root, and
probe attacks. In this work, we extend the use of machine
learning to improve traffic tolerance for SDNs. To achieve this, we
extend the functionality of the controller to include a resilience
framework, ReSDN, that incorporates machine learning to be
able to distinguish DoS attacks, focussing on a neptune attack
for our experiments. Our model is trained using the MIT KDD
1999 dataset. The system is developed as a module on top of
the POX controller platform and evaluated using the Mininet
simulator.

Index Terms—Resilience, survivability, traffic tolerance; Fu-
ture Internet; SDN, OpenFlow; Machine learning; Network
security, DoS attack, SYN flood

I. INTRODUCTION

Software defined networks (SDNs) have risen in prominence
owing to their flexible network management and monitoring
abilities. This has primarily been driven by the use of a
logically central controller that manages a set of “dumb”
switches and modifies flow table entries on demand. The
controller, using a custom protocol such as OpenFlow [1],
interacts with the switches to monitor statistics, and upon
the detection of an event of interest, pushes forwarding table
changes to the underlying SDN infrastructure through a Secure
Sockets Layer (SSL) encrypted channel. The approach of
SDNs, aided by the presence of the centralised controller, has
enabled applications that aim to improve network actions such
as routing, network management, and security.

Resilience of a network is defined as the ability of the
network to maintain operational state in the face of challenges
or faults to normal operation [2]. The heightened dependance
on cyber-physical systems, incorporated in the Internet, has
contributed to the increase in vulnerabilities resulting for ex-
ample in denial of service (DoS) attacks resulting in monetary
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loss. In more extreme cases, crackers have gained access to
sensitive government information resulting in privacy breaches
and possibly loss of life. A resilient system must be able to
address such challenges using mechanisms that minimise the
level of damage incurred due to the challenge.

The ability to tolerate traffic anomalies is a major aspect
of providing resilience to a network. Traffic tolerance is a
subdomain of challenge tolerance [2], depicted in Figure [I}
Traffic tolerance is defined as the ability to tolerate an
unpredictable traffic load on the network and encompasses
challenges such as SYN flooding [3] or smurf attacks [4]. Such
attacks can potentially operate in low-rate scenarios and focus
on exhausting the resources of the victim and drive the service
offline. Any resilient network must have the ability to handle
such DoS attacks that aim at bringing down infrastructure.
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Machine learning has been extensively used in the area of
network anomaly detection, primarily in a classifier role dis-
tinguishing legitimate traffic from malicious, for conventional
networks [5], [6]. Algorithms such as decision trees (DT) [7],
naive Bayes (NB) [8], and support vector machines (SVM) [9]
have been employed on traffic datasets, trained using historical
information, and deployed for real-time traffic classification.
These algorithms, when trained using historical data, have the
ability to accurately predict and classify real-time network



traffic such as DoS and non-malicious traffic [10]], [[L1].

Our work aims at extending the functionality of the con-
troller in an SDN environment to implement a real-time system
that better achieves traffic tolerance using machine learning
algorithms. The proposed system would allow the controller
to decide what packets are attack-based and drop the respective
flow accordingly. The main advantage of the usage of the
machine-learning alorithms in an SDN is its ability to have a
network-wide drop rule for the attack as opposed to a local rule
addition. To report the performance of the real-time system, we
compare well known machine learning algorithms, DT, SVM,
and NB. The different algorithms are chosen to cover three
different types of machine learning algorithms: a probabilistic
classifier (NB), a support vector based classifier (SVM) and
finally a tree-based classifier (DT). The prediction accuracy is
verified both theoretically in addition to the real-time system
and reported.

The paper is organised as follows: we summarise relevant
literature to our work in Section [l Section [II] provides a
detaied overview of our system, covering system design and
a detailed account of its various components. We follow this
with an evaluation of our model provided in Section high-
lighting the accuracy of our individual classification models,
followed by the evaluation of our real-time system. Finally,
we conclude summarising our findings in Section

II. BACKGROUND AND RELATED WORK

Traffic classification using machine learning has been exten-
sively researched for conventional networks. Numerous works
have been surveyed [S]] covering various learning approaches
such as supervised learning, unsupervised learning or clus-
tering, and hybrid. As an example of unsupervised learning,
flow clustering using expectation maximisation was used to
cluster flows to generate different traffic labels [12]. Attributes
such as packet size statistics, byte counts, and interarrival
statistics are used as features for this approach. Alternately, in
the domain of supervised learning, multiple approaches such
as Bayesian neural networks [[13] and genetic algorithms [14]
based classification techniques have been researched. Bayesian
neural networks are seen as an enhancement to traditional
neural networks with the integration of the Bayes theorem
used to assign weights to the neural network during the
training phase [13]. A semi-supervised learning approach was
proposed [15]] using k-means clustering to aid in forming the
unsupervised clusters, and labeled data available in the clusters
is used to map the unlabeled samples in the same cluster.

There has been recent work done in the domain of resilience
for SDN networks. A resilience framework has been proposed
for SDNs to improve network management [16]. This work
highlights the use of management patterns, a set of rules or
resilience mechanisms that are used in the event of a challenge.
A detailed survey of the state of the art of resilience mech-
anisms for SDNs [17], summarises research in the various
domains of resilience, including traffic tolerance. Scalability of
the controller and resilience of the underlying SDN network
are important, comparing HyperFlow, Onix, and FlowVisor

aiming to solve performance and scalability by modifying
the controllers. Techniques include path-based protection and
controller replication strategies to support resilience [18].

Traffic management through the use of OpenFlow ap-
plications have been widely proposed. Traffic can be bet-
ter engineered through the use of fully-polynomial time-
approximation schemes for incrementally deployed SDNs,
especially in a multi-controller environment [19]. A load bal-
ancer solution enabled by flow admission control that depends
on the number of physical requested blocks of data [20] is
reported to have a 237% resource gain for per flow allocation.
Plug-n-Serve, a load balancer for unstructured SDNs [21],
relies on the LOBUS algorithm that aims at minimising the
average response time to decide to which particular server
the request gets routed. Existing traffic anomaly algorithms
have been ported from coventional networks to SDN home
networks [22]. A set of 4 anomaly detection algorithms are
ported as part of the controller and the performance of each
of these investigated in various DDoS attack scenarios.

III. SYSTEM DESIGN

In this Section, we provide a detailed overview of our
model. We outline the design of the system, describe the
specifics of the challenge profiler component, provide details
on the learning engine, and introduce the resilience engine
component.

A. System Architecture

The main goal of our system is to increase resilience of
the Internet in the face of challenges to normal operation,
focussing on traffic-based anomalies in the network. We aim to
accompalish this for SDN networks by extending the controller
functionalities, taking advantage of the central nature of the
controller. In order to be able to negate DoS attacks, our
system must be able to learn the unique characteristics of the
attack that help distinguish it from non-malicious traffic.

Thus, our system is implemented as an application module
sitting on top of the controller and consists of three main com-
ponents: the challenge profiler (CP), learning engine (LE), and
resilience engine (RE), depicted in Figure 2] The entire module
is built as part of the application layer and is implemented as
a POX [23] controller module.

B. Challenge Profiler

The main function of the CP is to profile challenges. The
CP, via its connection to the underlying SDN infrastructure,
gets notified of all new packets arriving in the network via
packet—in events. Using this information, it then takes
appropriate action when a network anomaly occurs through its
consultation with the LE (learning engine). The CP consists
of three main components: a flow aggregator (FA), feature
extractor (FE), and flow inspector (FI).

1) Flow Aggregator: The FA is used to hold flow level
information for every packet. A flow is defined as a five
tuple (source IP address, destination IP address, source port,
destination port, protocol). Every time a packet arrives at the
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controller, these fields are checked to determine whether the
packet is from a new or an existing flow. Once checked, the
flow features pertaining to every flow are saved as a dictionary
with the key being the flow information (the 5-tuple flow
parameters) and the value being the features of the flow.

2) Feature Extractor: The FE extracts features from every
packet and provides to the FA. The different features such
as checksum (IP checksum is correct or wrong), source bytes
(number of data bytes sent by source), and destination bytes
(number of data bytes received by destination) are all made
available to the FA, which in turn updates its feature values
upon the receipt of multiple packets pertaining to the same
flow.

3) Flow Inspector: The FI passes the flow information ob-
tained from the FA for classification to the LE. Once the flow
has been classified, good traffic is allowed through the network
whereas bad traffic is sent to the RE (resilience engine) for
appropriate action. Thus the FI forms the interconnection
between the LE and the RE.

C. Learning Engine

The main objective of the LE is the classification of network
traffic using prediction algorithms. We use a special class
of prediction algorithms called supervised learning that uses
historical information along with a ground truth of labels to
train the classification model. The algorithm that needs to
be used undergoes training and testing phases; if performing
well, the model is saved for use with the real-time system
classification.

Typically, the classification model is trained using cross
validation [24], a technique that splits the training data into
multiple complementary subsets. Training is carried out on a
subset of the training data, the training set, while validation
is done against a different validation set, with accuracy of
the selected model as the primary metric. Independent testing
can also occur with a dataset that is different to the training
dataset. Once an acceptable accuracy is obtained, the model is
selected for use in the real-time system. The model is saved
for this purpose in order to avoid delays in classification. The

psuedocode for this procedure and the real-time system is
provided in [T}

Algorithm 1 ML Based Real-time Classification System
1: procedure MACHINE LEARNING
for given dataset
: Training phase:
preprocess data
split training data(80, 20)
: Testing phase:
test algorithm(20%o fdata)
if accuracy > threshold then
save model for real-time use

10: procedure REAL-TIME SYSTEM

11: for every packet:

12: evaluate the pertaining flow

13: deduce the features of the packet
14: for each flow:

R I AN A S ol

15: classify flow according to saved model
16: if flow is a DoS attack then

17: drop flow

18: else

19: allow flow

D. Resilience Engine

The RE’s main function is to decide and install resilience
mechanisms depending on the traffic flow type decided by the
LE. Legitimate traffic is allowed to flow through the network,
whereas DoS classified traffic is blocked through the push
of the dropFlow resilience mechanism. The dropFlow
mechanism utilises the 5-tuple flow identifiers to match the
particular flow to be dropped.

IV. EVALUATION

In this section, we present insight into the dataset that
was used, theoretical results showing the performance of
the various algorithms, and evaluation of our model. Firstly,
we provide an overview of the dataset used, then provide
information about the metrics used for our evaluation, and
finally detail performance of various algorithms using the
dataset. We further present the evaluation our real-time system,
using Mininet [25] as the simulation platform and POX [23]
as the controller.

A. DoS dataset characteristics

The dataset DoS classification is originally part of the MIT
Intrusion Detection Evaluation Dataset [4]. This data has been
processed and available as part of UCI Machine Learning
repository [26]]. The dataset contains of a total of 494021
flows as its training data. A total of 41 features exist for this
dataset, such as protocol_type representing the type of
the protocol, src_bytes representing the data bytes sent by
the particular sender, and num_failed_logins that shows
the number of failed logins into the system. The features are



classified into three different classes: features of individual
TCP connections, content features, and traffic features.

The final column of the dataset consists of 22 attack labels,
clustered into three attack types: u2r depicting user-to-root,
probe for probe attacks, r21 for remote-to-local attacks, and
finally dos for denial of service attacks. User-to-root attacks
invariably start with the cracker already having access to user
permissions on a particular system and attempt to get root
access to the same system. Probe attacks aim at scanning a
set of computers in a network using probes, discovering the
network topology, and looking for vulnerabilities that can be
exploited. On the other hand, remote-to-local attackers try to
gain access to a system that can be accessed remotely. Finally,
a DoS attack is one in which the cracker tries to exhaust
the resources owned by a system thus, disabling it from
handling any further requests, making it slow and eventually
unresponsive [27]]. In addition to the attack labels, there is also
a distinguisher label for non-malicious traffic called normal.
Thus, a total of 23 labels exist for our dataset.

As part of dataset preprocessing, we cluster all labels
into three main classes: normal representing non malicious
traffic, DoS, and other including all other attack types. In
addition to the above post processing, all non-numeric data
is converted into numeric values. In order to visualise the
dataset, principal component analysis (PCA) [28]] is performed
allowing for the projection of the high dimensional dataset to
lower dimensions, specifically two dimensions for our case.
For this purpose, the first two principal components, ordered
from high to low variance, are considered and plotted for all
three attack labels. Figure 3] shows a random subset of the data
samples for each attack label. We observe a clear difference
between normal traffic and other attacks; DoS attacks are in
the middle.
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Fig. 3. PCA component visualization of dataset

Additionally, to simplify classification, we further group
the other attacks and normal traffic together and label them
non-DoS traffic. This allows us to use a binary SVM for

classification purposes.

B. Performance Metrics

We consider three performance metrics for our comparison
throughout this paper: accuracy, precision and recall. To
remain consistent, we use the notation below:

e TP — True positives are DoS attacks that have been

correctly identified as a DoS attack.

o FN - False Negatives are DoS attacks that have falsely
classified as legitimate traffic.

« FP —False positives are legitimate traffic falsely classified
as DoS attacks.

o TN - True negatives are legitimate traffic being correctly
classified as legitimate traffic.

Accuracy (A) is defined as the ratio of accurate results

returned by a classifier:

A= TP+TN
~ TP+EN+FP+TN

In some cases, the accuracy metric is not precise in re-
flecting true classifier performance. For instance, when true
positives are incorrectly classified as true negatives, the above
equation would still hold and hide the misclassification.
Furthermore, accuracy can be manipulated and be made to
improve by always predicting the existence of one class and
ignoring the other. For example, assuming the notation {TP,
EN, FP, TN}, a score of {9700,150,50,100} has an accuracy
of 0.98 whereas a score of {9850,0,150,0} has a higher value
of 0.985. This is called the accuracy paradox [29]. In order to
better represent the actual performance, we make use of two
more metrics: precision and recall.

Precision (P) is defined as the percentage of retreived
results that are relevant. For example, when an intrusion
detection system returns 40 that are labeled as DoS attacks
but only 20 are actual DoS attacks, the precision is 0.5. In
other words, precision provides an insight into how useful the
classification results are.

_ _TP
P = TP+FP

Recall (R) is defined as the percentage of relevant instances
that have been retreived. Using the simlar intrusion detection
system example, if the IDS fails to detect 60 attacks while
accurately detecting 20 DoS attacks, the recall value for this
scenario is R = 0.25. As opposed to precision, recall provides
information about how complete the results are.

_ _TP
R= TP+4-FN

C. Algorithm Comparison

As part of our first experiment, we compare the performance
of the various algorithms of interest: SVM, DT, and NB.
The comparison is done over the entire dataset, consisting of
494021 rows and 41 features used as training, and a separate



TABLE I
TCP/IP HEADER FEATURES USED

Feature Name Description
duration duration of TCP connections
protocol protocol used for connection

service used for connection
bytes transferred in one connection
bytes received in one connection

service
src_byteCount
dst_byteCount

land 1 if src = dest IP/port, else 0
wrong_checksum # of wrong checksums for connection
urgent # packets with Urgent flag set

testing dataset corrected consisting of 311029 rows and
41 features used for testing. The dataset is split into 80% for
training and 20% for testing. Once the model is trained, the
testing dataset is used to test the performance of the system
using the metrics accuracy, precision and recall.
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Fig. 4. Performance metrics comparison over 41 features for dataset analysis

The performance of all three algorithms are presented
in Figure @] DT performs best with an accuracy value of
0.996, and precision and recall greater than 0.99 showing
the robustness of the accuracy metric. NB follows with an
accuracy of 0.83 and precision and recall greater than 0.80.
SVM, armed with the radial basis function, performs the worst
in this scenario with an accuracy of 0.72 and a high precision
of 0.99 and a low recall of 0.61.

1) Effects of Varying Features: As part of our second
experiment, we reduce the number of features and check its
performance effects for each algorithm. A reduced number of
features in turn helps in the implementation of the real-time
system by reducing the scope of the implementation process.
The reduced feature space is selected if the performance of the
particular algorithm is good. To achieve this, we concentrate
on the features derived from the TCP/IP header of the packet,
summarised in Table [

From Figure [5] we notice that similar to the previous case:
DT scores the best in terms of accuracy at 0.994 with precision
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Fig. 5. Performance metrics comparison over 8 features for dataset analysis

TABLE I
ACCURACY VS. SAMPLE SIZE
10000 | 50000 | 100000 | 200000
SVM 0.52 0.53 0.54 0.55
DT 0.85 0.85 0.86 0.86
NB 0.80 0.80 0.82 0.77

and recall values > 0.99, showing the proficiency of the
accuracy metric. SVM scores second for this scenario with
an accuracy of 0.79 with precision of 0.996, and recall of
0.72. NB scores worst with an accuracy of 0.76, precision of
0.75, and high recall of 0.996.

2) Effects of Varying Sample Sizes: As part of our third
experiment, we investigate the effects of varying the sample
size of the algorithm accuracy. Ideally, the accuracy of the
algorithm should not change much with any sample size
showing the stability of the algorithm. For this experiment,
we reduce the training sample size from the initial 494021
samples to vary between the range [10000, 200000]. For each
of the sample sizes, we first train using the reduced number
of samples and test the trained model using the corrected
testing samples. The results are tabulated in Table [[T}

We notice from the table that all three algorithms provide
reasonable stability with respect to varying sample sizes. SVM
performs the worst throughout in the range of [0.52, 0.55]
whereas DT performs best consistently in the range of [0.85,
0.86] over the varying sample sizes. NB performs second best
with the highest deviation ranging from [0.77, 0.82].

D. System Evaluation

In addition to the dataset evaluation of different learning al-
gorithms for the purpose of DoS attacks, we have implemented
a real-time system that aims to act as an intrusion prevention
system and classify DoS attacks. This system is implemented
in the controller of an SDN. Similar to the setup in our dataset
based results in Section[[V-C| we compare all three algorithms:



DT, SVM, and NB. As mentioned in Section III, the system
possesses a CP (challenge profiler) that detects challenges, an
LE (learning engine) that is responsible for the classification
of attacks, and a RE (resilience engine) that houses multiple
resilience mechanisms.

We use a SYN-flooding attack to evaluate our system,
labeled as “neptune” in the dataset considered [27]. This type
of attack affects the TCP/IP stack by taking advantage of the
3-way handshake that occurs during connection initialisation.
Multiple TCP connections are initialised through IP-spoofed
packets to the victim host and are left half-open after sending
the initial SYN packet. The half-open states eventually fill up
the TCP data structure that holds connection state and renders
the victim unresponsive [27].

For testing, we make use of 46 different services in two
stages. The first stage deals with how the system responds to
a DoS SYN-flooding attack. For this scenario, we simulate
a SYN-flood attack against every one of the services and
determine the ones that are accurately classified as a DoS
attack (TP) and ones that are not classified (FN). For the
second scenario, we simulate legitimate traffic for all services
and determine ones that have been accurately classified as
legitimate traffic (TN) and ones that are wrongly classified
as a DoS attack (FP). To simulate legitimate traffic, we make
use of the Distributed Internet Traffic Generator (D-ITG) [30]
tool. For testing, we assume all services operate on their well-
known port numbers.
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Fig. 6. Performance metrics comparison for real-time system

We first evaluate the system using the DT algorithm. The
stage-one testing scenario yields a true positive rating of
correctly classifying DoS attack to be 0.94; 3 out of the
46 tested services were misclassified to be legitimate traffic.
The misclassified services are observed to be HTTP, IRC and
X11. The second scenario testing of legitimate traffic yields
a true negative value of 0.96 with 0.04 of legitimate traffic
being incorrectly classified to be DoS traffic and thus blocked.
Upon further investigation, it is seen that all of this incorrectly

classified traffic has a duration feature value greater than zero.
Thus, a policy is put in place to check for the duration feature
to be zero and allow for misclassified traffic that has a duration
greater than zero. This policy is correct as SYN flooding
occurs only at time zero. This claim is also supported by
the fact that all neptune attacks in the dataset occur with
the duration feature being zero. Thus these values are plotted
as accuracy, precision and recall in Figure [6f SVM, on the
other hand, misclassifies 5 out of the 46 services to achieve a
0.896 true positive rate, while classifying all legitimate traffic
services to achieve a 1 true negative rate. The services that
are misclassified in the first scenario are HTTP, tftp_u,
X11, ntp_u, and IRC. Finally, NB performs extremely well
with classifying all services accurately for DoS attacks to
achieve a 1 true positive rate. For the second scenario, initially
NB incorrectly blocked all other class of traffic affecting the
default signaling port of 9000. Blocking port 9000 meant
that no DITG native signaling went through thus bringing all
communications to a halt. To negate this, a policy is put in
place to allow for other type of traffic. Once allowed, NB
performs well, accurately classifying 1 of legitimate traffic.

V. CONCLUSIONS

In this paper, we detect and predict DoS attacks, specifically
SYN flood, through the use of machine learning. To aid
our analysis, we make use of a real-world dataset and use
the machine-learning algorithms DT, SVM, and NB to help
classify traffic. In addition to a detailed dataset analysis of the
performance of the various algorithms, we use the reduced
feature space discovered through this analysis to implement
a real-time system that is implemented in the controller and
classifies packets. The performance of the system is reported
with DT consistently performing best throughout our dataset
analysis, while NB performs best during our real-time system
analysis. As part of future work, we plan to implement
various other DoS attacks and evaluate the system under these
challenges.
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