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ABSTRACT
The poor performance of conventional TCP protocols in er-
ror prone channels is a well studied issue. Numerous opti-
mizations to TCP to address this problem have been pro-
posed. TCP Westwood is one such protocol engineered for
use in wireless networks and employs a novel bandwidth es-
timation algorithm to determine the amount of data sent
into the network in the presence of packet drops. In this pa-
per, we present the implementation of the TCP Westwood
and Westwood+ protocols in ns-3 and compare them against
other existing ns-3 TCP implementations, TCP Tahoe, Reno,
and NewReno. We validate our implementation by compar-
ing performance of our implementation to the original work
that introduced the Westwood protocols. In addition to val-
idation, this paper also contributes as a performance evalua-
tion of all existing ns-3 TCP protocols over selected network
conditions.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and Analysis; C.2.2 [Computer-
Communication Networks]: Network Protocols — trans-
port protocols

General Terms
Implementation, Analysis, Testing, Verification

Keywords
TCP Westwood, Westwood+, transport protocols, ns-3 net-
work simulator, Tahoe, Reno, NewReno, performance eval-
uation, congestion and corruption loss

1. INTRODUCTION
TCP (Transmission Control Protocol) has been the dom-

inant protocol for the Internet since the inception of the
Internet. It had evolved for wired networks and with the
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emergence of wireless networks, been extended for use to
the wireless domain. However, the sporadic wireless channel
characteristics come with unique challenges such as frequent
disconnects in the presence of mobile nodes and high errors.
Temporary disruptions result in disconnecting existing TCP
connections and the consumption of extra Round Trip Time
(RTT) delays for new connection establishments. In cases
of short duration disconnects, TCP consumes a much larger
time to return to normal operation [17, 19] depending on
the delays experienced by the networks. The high BER
(bit error rate) environments of wireless channels also im-
pose a major challenge to the functioning of TCP. Due to
the inability of the protocol to distinguish between corrup-
tion based losses and losses due to network congestion [12],
packet drops due to bit errors are incorrectly classified as
congestion losses causing TCP to incorrectly invoke its con-
gestion control algorithm. These factors cause a decrease
in end-to-end goodput and the throughput of the network
resulting in performance loss.

Over the years, numerous modifications have been added
to the TCP protocol addressing how the protocol would re-
act to packet losses caused by corruption. This has resulted
in the emergence of multiple variants of TCP specifically en-
gineered for wireless networks such as TCP Jersey [18], TCP
Illinois [13], TCP Peach [2], TCP Veno [7], and TCP West-
wood [14]. Techniques such as bandwidth estimation have
been an integral part of most of these optimizations used to
accurately estimate the bandwidth of the wireless channel
in case of packet drops. Various mechanisms have been pro-
posed in the literature that accurately estimate bandwidth.
One such algorithm is the packet pair algorithm that relies
on the difference in the inter-arrival times between a pair of
packets sent during the same time interval to estimate band-
width [5]. A second method calculates bandwidth based on
the time of ACK receptions. Data is then transmitted as
a function of the estimated bandwidth resulting in much
higher performance when compared to the conservative na-
ture of conventional TCP protocols.

A popular protocol specifically engineered for wireless net-
works is TCP Westwood [14]. TCP Westwood is a sender
side modification that intelligently estimates the bandwidth
and uses the calculated bandwidth to set the congestion win-
dow and the slow start threshold in case of packet losses.
TCP Westwood+ is a modification of Westwood to han-
dle overestimation of bandwidth in the presence of conges-
tion [15]. This paper presents our implementation of the
TCP Westwood and Westwood+ protocols in ns-3. The mo-
tivation behind choosing the protocols was to simulate pro-



tocols that tackle corruption based losses (TCP Westwood)
and congestion (TCP Westwood+) in ns-3. This contributes
to transport protocol simulation analysis in ns-3. The West-
wood family are one of the early proponents of sophisticated
techniques for higher performance such as bandwidth esti-
mation.

The performance of the implemented protocols are com-
pared with existing TCP protocols in ns-3, namely TCP
Tahoe [9], TCP Reno [10], and TCP NewReno [6]. Valida-
tion with the original Westwood work [14, 15] is also carried
out to verify the ns-3 implementation of our protocols. Fur-
thermore, the effects of various network characteristics such
as error rates, bottleneck bandwidth, and propagation delay
are studied using throughput as our performance metric for
the protocols.

The remainder of the paper is organized as follows: Sec-
tion 2 provides a brief background on the various TCP pro-
tocols that are implemented in ns-3. Section 3 provides the
algorithms and the implementation details of our TCP West-
wood and Westwood+ protocols in ns-3. Section 4 presents
the ns-3 simulations along with the validation of the im-
plementation and a performance comparison of these TCP
protocols in ns-3.

2. BACKGROUND AND RELATED WORK
In this section, we summarize the various TCP variants

that are used in our simulations. Except for TCP Westwood
and Westwood+, the implementations of TCP Tahoe, Reno,
and NewReno already exist in the standard ns-3 release dis-
tribution.

2.1 TCP Tahoe
TCP Tahoe is the earliest version of TCP that introduces

the well-known congestion control mechanism developed by
Van Jacobson consisting of three main algorithms: slow-
start, congestion avoidance, and fast retransmit [9]. The
idea is for a TCP source (sender) that has no knowledge
about the network status to probe the path by gradually
increasing its sending rate dictated by the congestion win-
dow. At the beginning of a connection, the source employs
the slow-start phase in which the congestion window is in-
creased exponentially. Once the window reaches a certain
threshold known as the slow start threshold, to prevent con-
gestion, the TCP source transfers from the slow-start phase
to the congestion avoidance phase during which the window
is increased linearly. The source continues to stay in its con-
gestion avoidance until a timeout occurs or a certain number
of duplicate acknowledgments (DUPACK) are received that
is interpreted as a signal for congestion over the path. Upon
such an event, the TCP source enters the fast retransmit,
halves its slow-start threshold, resets the congestion window
to one full-sized segment, and immediately retransmits the
missing segment. The source ends its congestion control cy-
cle by going back to the slow-start phase and transmits to
refilling the pipe.

2.2 TCP Reno
The TCP Reno protocol improves upon the performance

of TCP Tahoe’s congestion control algorithm, particularly
for high bandwidth × delay product networks. TCP Reno
uses a novel mechanism called fast recovery [10]. Based on
the TCP’s ACK based method, the receipt of any ACK with
the inclusion of a DUPACK on the sender’s side indicates

the arrival of data at the receiver and is interpreted as band-
width available in the network. To take advantage of the
available bandwidth, instead of reseting to the slow-start
phase after leaving the fast retransmit phase as in TCP
Tahoe, TCP Reno employs the fast recovery mechanism.
This allows the source to transmit a new segment on the
receipt of each DUPACK assuming the source is not con-
strained by the sender’s congestion window nor the receiver’s
advertised window. When a new ACK receives, the source
transfers back to the congestion avoidance phase eliminat-
ing the reseting of the congestion window and the slow start
stall times in the process.

2.3 TCP NewReno
TCP NewReno [8, 6] consists of a slight modification to

Reno’s fast recovery algorithm resulting in higher perfor-
mance, especially in the presence of multiple segment losses
per sending window. Unlike Reno, NewReno distinguishes
between a full new ACK and a partial new ACK during
its fast recovery phase. A full new ACK or a full ACK is
an ACK that acknowledges all the outstanding segments be-
fore the sender enters the fast recovery while a partially new
ACK or a partial ACK acknowledges only a fraction of the
sent data. TCP NewReno treats a partial ACK as an indi-
cation that the segment following the ACK has been lost. It
remains in the fast recovery retransmitting all of the miss-
ing segments until a full ACK is received. This optimization
allows TCP NewReno to recover from multiple losses faster
than TCP Reno by not having to wait for a retransmission
timeout or re-enter fast retransmit.

2.4 TCP Westwood
TCP Westwood [14] is a sender side modification to TCP

Reno that adjusts the sending rate based on a novel band-
width estimation algorithm to improve performance in het-
erogeneous networks. The bandwidth estimation algorithm
constantly monitors the rate of ACK reception while keep-
ing an account on the number of DUPACKs and new ACKs.
TCP Westwood allows the inclusion of DUPACKs in the
calculation as each DUPACK indicates some data segments
have reached the receiver. The amount of data acknowl-
edged between ACK receptions is then used to compute the
bandwidth of the link for the considered ACK interval. The
calculated bandwidth is then passed through a Tustin ap-
proximation low pass filter to filter out the high frequency
components. A simplified form of the filter [14] that is used
in the implementation of the protocol is given as:

b̂k = ab̂k−1 +
1 − a

2
[bk + bk−1] (1)

where a is a weighting parameter set to 0.9 and b̂k is the
filtered measurement of the available bandwidth at time in-
stant tk.

2.5 TCP Westwood+
TCP Westwood+ [15] is a modified version of Westwood

with a slightly different bandwidth estimation algorithm to
reduce Westwood’s aggressiveness in the presence of ACK
compression. ACK compression is an Internet phenomenon
in which ACKs arrive at a much closer spacing than when
they were generated due to queuing delay in the network [16].
Because Westwood estimates the network’s bandwidth based
on ACK inter-arrival times, ACK compression causes West-
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Figure 1: TCP class diagram

wood to overestimate the bandwidth, resulting in fairness
problems in the existence of multiple TCP flows. To allevi-
ate the effect of ACK compression, Westwood+ modifies the
bandwidth estimation mechanism to perform the sampling
every RTT instead of every ACK reception. The result is
a more accurate bandwidth measurement that ensures bet-
ter performance when comparing with Reno or NewReno,
but still be fair when sharing the network with other TCP
connections.

3. WESTWOOD IMPLEMENTATION
In this section, we first explain the basic TCP structure

in ns-3 on which our implementation of TCP Westwood
and Westwood+ is based. We follow this with the ns-3 im-
plementation details of the Westwood and Westood+ algo-
rithms.

3.1 TCP Class Interaction
Residing in the Internet module along with network proto-

cols such as IPv4 and IPv6, the implementation of TCP con-
sists of multiple classes communicating with each other to
accomplish its designed goal – interacting with the network
layer to offer reliable data transfer to applications. The main
classes concerning the TCP implementation of ns-3 are listed
below and their interaction is illustrated in Figure 1 [1].

• TcpSocketBase: This class provides key TCP features
and a sockets interface for the application layer. In-
herited from TcpSocket, TcpSocketBase serves as the
base for all TCP variants.

• TcpSocket: This abstract class contains the essential
attributes for a TCP socket.

• TcpHeader: This class implements the header for a
TCP segment.

• TcpTxBuffer: This class provides a buffer for the sender
to buffer any data received from the application before
sending and acknowledgment.

• TcpRxBuffer: This class implements a buffer for the
receiver to buffer data received from the network layer
before passing it onto the application.

• TcpL4Protocol: Serving as an interface between the
TCP socket and the network layer, TcpL4Protocol

class is responsible for sending and receiving packets
to and from the network layer. It is also responsible
for checksum validation for incoming data.

Given the above main TCP classes, ns-3 contains multi-
ple TCP variants implemented as child classes of TcpSock-

etBase. The existing variants are TCP Tahoe, TCP Reno,
and TCP NewReno that we use in this paper to compare
our TCP Westwood and Westwood+ implementation.

3.2 Westwood/Westwood+ Implementation
Similar to other existing TCP variants, both Westwood

and Westwood+ are implemented in the same class that is
inherited from TcpSocketBase.

3.2.1 Global Variables
The implementation consists of the following key global

variables as information holders that assist the congestion
control algorithm and the bandwidth estimation procedure:

• m cWnd is a variable of type uint32_t to represent
the congestion window. It is used by the sender to



determine the number of bytes that can be placed into
the network without overloading the pipe. When a
loss occurs, m cWnd is determined using the estimated
bandwidth.

• m ssThresh is a variable of type uint32_t to represent
the slow start threshold that marks the end of the slow
start phase and the start of the congestion avoidance
phase. Similar to m cWnd, the value of m ssThresh
depends on the estimated bandwidth upon a loss.

• m initialCWnd is an uint32_t variable that specifies
the initial value of m cWnd.

• m inFastRec is a bool variable signaling the start and
the end of the fast recovery phase.

• m prevAckNo is of type SequenceNumber32 that holds
the last received ACK number.

• m accountedFor is a variable of type uint32_t that
keeps track of the number of DUPACK segments when
a loss occurs and is used in the bandwidth estimation
process.

• m lastAck is a variable of type double that specifies
the arrival time of the previous ACK.

• m currentBW is a variable of type double that holds
the current estimated bandwidth.

• m minRtt is a variable of type Time that specifies the
minimum RTT.

• m lastBW is a variable of type double that holds the
last estimated bandwidth after passing through the
Tustin filter.

• m lastSampleBW is a variable of type double that holds
the value of the last sample of the measured band-
width.

• m ackedSegments is a variable of type int that holds
the total number of acknowledged segments during the
current RTT.

• m IsCount is a bool variable signaling the beginning of
m ackedSegments counting process.

• m bwEstimateEvent is a variable of type EventId that
specifies a bandwidth sampling event.

3.2.2 Main Methods
Figure 2 depicts the flow of the Westwood and West-

wood+ algorithms through the following main methods:
ReceivedAck: Taking the segment and its header as the

two arguments, this method is invoked when an ACK is
received by the sender. In the Westwood/Westwood+ class,
it is responsible for calling the CountAck method. The
CountAck call is followed by an EstimateBW call if it is
TCP Westwood or by an UpdateAckedSegments call if
it is Westwood+. The control is then transferred back to
the ReceivedAck method in the TcpSocketBase in which
the ACK is classified and corresponding functions such as
DupAck or NewAck are invoked.

CountAck: As mentioned in the previous section, in or-
der to estimate the bandwidth, the sender has to keep a
count of the amount of data bytes that have been received by
the receiver in consecutive ACK receptions for Westwood or
during the last estimated RTT for Westwood+. The count-
ing is accomplished by the CountAck method. It inspects
incoming ACKs to infer the amount of data received and
stores the value in a local variable cumul ack that is further
used in the bandwidth estimation process. At the begin-
ning of the method, cumul ack is set to the number of seg-
ments acknowledged by the current ACK. It is computed by
subtracting the m prevAckNo from the current ACK num-
ber retreived from the header. The CountAck procedure
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W+  

yes 

no 
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Figure 2: Westwood/Westwood+ flow chart

needs to keep track of the number of DUPACKs and makes
sure they are correctly accounted for in the ACK count-
ing process. If the cumul ack is 0, the incoming ACK is
a DUPACK, and cumul ack is set to 1 indicating one seg-
ment counted towards the bandwidth estimation. The total
number of DUPACKs, m accountedFor is also incremented
by 1. If the incoming ACK acknowledges more than one
segment, the cumulative ACK is then compared against the
DUPACK count. If the ACK acknowledges more segments
than the DUPACK count, the difference is passed to the
bandwidth estimation algorithm and the DUPACK count is
reset to zero. Otherwise, all segments acknowledged by the
ACK were already counted towards bandwidth calculation ,
and they should not be accounted again.

UpdateAckedSegments: In TCP Westwood+, the Es-
timateBW is only called when the RTT timer expires indi-
cating the end of an RTT. While the timer is still running,
upon the receipt of an ACK, the number of acknowledged
segments (cumul ack) returned by CountAck will be ac-
cumulated in m ackedSegments. At the end of a sampling
event (m bwEstimateEvent), m ackedSegments is reset back
to zero to prepare for another event.

EstimateBW: This method uses the cumul ack returned
from the CountAck to estimate the bandwidth by employ-
ing Equation 2 for Westwood and Equation 3 for West-
wood+:

m currentBW =
cumul ack×m segmentSize

Simulator::Now() −m lastAck
(2)

m currentBW =
m ackedSegments×m segmentSize

m lastRtt
(3)

In Equation 2, m segmentSize is defined in TcpSocketBase

and holds the size of each TCP segment. The method Sim-



ulator::Now() is invoked to measure the time of current
ACK reception. In Equation 3, m lastRtt specifies the last
estimated RTT and is calculated using the EstimateRtt
method in TcpSocketBase.

Filtering: The implementation allows the user to enable
or disable the Tustin filter through the Filtering method.
There are two modes of operation defined as EnumValues.
In the default mode, the filter is disabled and the measured
bandwidth is assumed to be the current bandwidth calcu-
lated from Equations 2 and 3. In the second mode, the filter
is enabled and uses the Equation 4 for its computation. A
local variable sample bwe is used to store the measured band-
width. Using a local variable α as a weighting parameter,
the current bandwidth is calculated using the equation

sample bwe = w1× w2 (4)

where

w1 = m currentBW× α (5)

and

w2 =
1 − α

2
× (sample bwe + m lastSampleBW) (6)

NewAck: Following the same rules as in TCP Reno,
NewAck adjusts m cWnd and m ssThresh values depend-
ing on the current sender state (slow-start, congestion avoid-
ance, or fast recovery).

DupAck: Upon receiving a certain number of DUPACKs,
DupAck adjusts the m ssThresh based on m currentBW us-
ing Equation 7. In case the current m cWnd is greater than
the m ssThresh, the congestion window is set to m ssThresh.

m ssThresh = m currentBW×m minRtt (7)

Retransmit: In the case of a retransmit timeout, this
method is invoked to set the m ssThresh and m cWnd. The
m ssThresh is set in a similar manner as in the DupAck
method and follows the Equation 7. The minimal allowed
m ssThresh is 2. The m cWnd, on the other hand, is set to
one m segmentSize.

4. WESTWOOD EVALUATION
In this section, we present a performance validation of the

TCP Westwood family of protocols based on the original
work [14, 15] that introduced the protocols. The simulation
setup is discussed in detail in Section 4.1. To show the
effectiveness of the TCP Westwood family over other TCP
variants, we make use of all existing TCP variants in ns-3,
namely TCP Tahoe, Reno and NewReno1. The simulation
results are presented and analyzed in Section 4.2.

source sink 

bottleneck link access link 
router 

10 Mb/s 2 Mb/s 

45 ms 0.01 ms 

Figure 3: Corruption based simulation topology

1TCP SACK [3] is not in the standard ns-3 release but is
currently under development by the ResiliNets group [11]

4.1 Simulation Setup
For our simulation topology that concentrates on corrup-

tion based losses, we use the same setup that was used in
the original work [14] as shown in Figure 3. The topology
uses a single source and sink interconnected using a gate-
way. We refer to the source-router link to be the access link
and the router-sink link as the bottleneck link. The Point-

ToPointHelper class was used for both the access and the
bottleneck links along with the RateErrorModel class used
for error generation to simulate the wireless bottleneck link.
The bandwidths used for the access link and the bottleneck
link are 10 Mb/s and 2 Mb/s respectively. The default prop-
agation delay of the access link is 45 ms and the propagation
delay of the bottleneck link is 0.01 ms. An MTU size of 400
B is used as the segment size for our simulations to compare
to the original work [14, 15]. Errors are assumed to follow
a uniform distribution and occur over the bottleneck link.
We also use a default value of 2 as our delayed ACK count.
Later, as part of our simulation scenarios, we vary the above
parameters to observe the effects on protocol performance.
We use the BulkSendApplication class for traffic genera-
tion for our performance evaluation. A single flow of traffic
is used for simulations originating at the source and destined
for the sink with a simulation running time of 600 seconds.
Two simulation runs were performed with the standard de-
viations shown as error bars. The simulation parameters are
summarized in Table 1.

Parameter Values
Access link bandwidth 10 Mb/s

Bottleneck link bandwidth 2 Mb/s
Access link propagation delay 45 ms

Bottleneck link propagation delay 0.01 ms
Packet MTU size 400 B

Delayed ACK count 2 segments
Delayed ACK timeout 200 ms

Error model Uniform error model
Error rate 0.005

Application type Bulk send application
Simulation time 600 s

Table 1: Simulation parameters

PC 1 

server 

bottleneck link router 

0.5 Mb/s 

0.01 ms 

PC 2 

Figure 4: Congestion based simulation topology

To accurately validate TCP Westwood+, we use a dif-
ferent topology that concentrates on simulating ACK com-
pression. The topology used for our simulations is shown in



Figure 4, resembling a dumbbell topology with two nodes
labeled PC1 and PC2 on the left branch of a router and
a server node to the right; this topology was used in the
original TCP Westwood+ performance evaluation [15]. One
flow is started from PC1 and destined for the server node
and a second flow starting from the server destined for PC2.
Thus, both flows share a common queue at the bottleneck
router where ACK compression is experienced. It is also
noted that the simulation parameters used for the scenario
are different as the various parameters were not provided in
detail in the original Westwood+ paper. We have an access
link bandwidth of 1 Mb/s and a bottleneck bandwidth of
500 kb/s. In our setup, the second flow is started 2 seconds
after the first flow. The various simulation parameters are
included in Table 1.

4.2 Results
For our first scenario, we evaluate the performance of TCP

Westwood and Westwood+ comparing with the other TCP
variants in the presence of varying levels of error rates over
the bottleneck link. We consider packet error rates (PER)
to vary from 0.0001 to 0.05 similar to the original work [14].
The average throughput is plotted for varying PER levels
for the TCP variants and is shown in Figure 5.
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Figure 5: Throughput vs. PER of bottleneck link

From this plot, we see a huge performance improvement
in TCP Westwood over the rest of the TCP variants. We
also observe the similarity with the plot shown in Figure
9 in the original work [14] thus validating our implemen-
tation. The performance benefit is attributed to setting
the congestion window and the slow start threshold as a
function of the estimated bandwidth instead of a static con-
servative value as in the case of the other variants when a
loss occurs. The next best performing protocol seen is TCP
Westwood+. TCP Westwood+ samples the bandwidth ev-
ery RTT period whereas Westwood performs the sampling
every received ACK. Due to the higher sampling interval,
Westwood+ takes a longer time to stabilize to the correct
bandwidth when compared to Westwood. This gets worse
in the presence of errors. If errors occurs before Westwood+
stabilizes, the low incorrect bandwidth estimate is used to
determine the congestion window, causing a much slower
sending rate. The higher the error rate, the higher the prob-
ability of bandwidth being underestimated. This is demon-
strated in our plot. The performance of Westwood+ drops
significantly starting from the error rate of 0.001. In sum-
mary, because of a shorter sampling interval, Westwood has
a more up-to-date feedback of the network condition than

Westwood+.
Another interesting observation is the similarity in perfor-

mance of TCP Reno and TCP NewReno. This is because
TCP NewReno improves on the performance of TCP Reno
only in the case of multiple errors occurring in the same
send window. The error model assumed follows a uniform
distribution in our case and thus the probability of having
multiple errors in the same window is low. A decrease in
throughput is also observed as the error rate on the channel
is increased for all considered protocols. This is intuitive as
errors are increased, a larger amount of data sent and ACKs
get lost triggering multiple retransmissions thus reducing the
throughput of the network.

As part of our second scenario, we investigate the effects
of varying the bottleneck propagation delay to our network.
For this scenario, we assume a constant PER of 0.005 to
occur over the bottleneck link. We vary the propagation
delay of the bottleneck link from 0.01 ms to 250 ms in our
simulations and compare the throughput achieved by the
TCP variants. This scenario is also based on Figure 10 of
the original Westwood work [14].
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In Figure 6, we again observe the TCP Westwood and
Westwood+ curve is comparable to the original work val-
idating our implementation. The superior performance of
Westwood and Westwood+ over the other protocols in Fig-
ure 6 is attributed again to the fact that while the other
TCP variants perform conservatively, Westwood and West-
wood+ attempt to fill up the pipe by using the bandwidth
estimation algorithm that is independent of the level of cor-
ruption on the link. The lower performance of Westwood+
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Figure 8: Throughput vs. delayed ACK aggregation count

is attributed to the longer sampling interval as mentioned in
the previous scenario. When comparing Reno performance
to the original work, we see that for minimal propagation de-
lays, there is a difference in the performance of Reno. This
difference in performance is currently being investigated and
as this concerns the performance of Reno ns-3 implementa-
tion, is beyond the scope of this paper.

Figure 7 shows the throughput achieved for different val-
ues of the bottleneck bandwidth. The bandwidth is varied
from 1 Mb/s to 8 Mb/s and a constant packet error rate of
0.005 is set over the bottleneck link. The bottleneck delay
used for this scenario is 0.01 ms. We see that TCP West-
wood and Westwood+ outperform the other TCP variants.
TCP Westwood is also observed to be comparable to the
performance reported in Figure 11 of the original Westwood
work [14]. The higher performance of TCP Westwood and
Westwood+ can be attributed to the setting of the conges-
tion window and the slow start threshold as a function of
the estimated bandwidth following a loss. We also observe
that as the bottleneck bandwidth is increased for both TCP
Westwood and Westwood+, there is a performance improve-
ment with higher throughput values noted. TCP Westwood
outperforms Westwood+ significantly for the same reason as
explained in the earlier scenarios. The performance of the
other TCP variants are unaffected by the change in band-
width. This is expected as the sending rate of these protocols
is independent of the bandwidth of the link.

The bandwidth estimation algorithms of TCP Westwood
and Westwood+ take into account the existence of delayed
and cumulative ACKs and engineer the protocols to be able
to handle these parameters. In order to test the robustness
of the algorithms against different values of delayed ACKs,
we plot the throughput of the network for different delayed
ACK counts under error prone conditions using the TCP
Westwood and Westwood+ and compare them with TCP
Reno. TCP Reno is specifically chosen for the analysis as
the Westwood family is a modification of TCP Reno.

The plot for this scenario is shown in Figure 8. The de-
layed ACK values are varied from 1 to 8 where a value of 1
ensures that every segment is acknowledged and a value of 8
means that the corresponding sink issues a cumulative ACK
for every 8 segments received. A delayed ACK timeout of
200 ms is used for the network. We vary the PER of the
bottleneck link using the same range that was employed in
the first scenario.

We observe in all of the considered protocols that the

curve showing the throughput for a delayed ACK count of
1 is seen to perform best while the throughput with a de-
layed ACK count of 8 performs worst. We observe a broader
range of throughputs in TCP Reno across the various de-
layed ACK counts when compared to TCP Westwood. The
highest difference in throughput observed for a specific error
rate for Reno was close to 1 Mb/s whereas for Westwood,
the highest difference was less than 0.4 Mb/s. This is be-
cause the TCP Reno algorithm is sensitive to the delayed
ACKs and does not account for the cumulative ACKs re-
ceived. There is also a much smaller change in throughput
for different values of the delayed ACKs for TCP Westwood
when compared to TCP Reno. The variations observed in
TCP Westwood can be attributed to the stall times experi-
enced at the source waiting for the ACKs to arrive in order
to update the congestion window and transmit segments into
the network. As the delayed ACK count increases, the sink
waits longer before sending ACKs into the network thus de-
laying ACK reception at the source. This in turn causes
a delay in the update of the sending rate thus contribut-
ing to a loss in throughput over the network. Westwood+,
on the other hand, does exhibit a drop in performance es-
pecially over higher error rates of the bottleneck link. At
higher rates, the incorrect bandwidth estimate is used with
a higher probability and thus worsens the performance of
the protocol.

Our next scenario investigates the effects of varying seg-
ment sizes on the performance of TCP Westwood and West-
wood+ compared with TCP Reno. For this scenario, we
compare various MTU sizes ranging from no payload to the
more commonly used payload sizes of 1460 B for a 1500
B MTU. We use 41 B to represent the minimum payload
case as the payload size is not allowed to be zero in the
ns-3 simulator. The packet error rates are varied similar to
the delayed ACK count case shown in the previous scenario.
The plot for this scenario is shown in Figure 9.

We observe that the throughput achieved by an MTU size
of 1500 B performs best and the MTU size of 41 B per-
forms worst for all considered protocols. As the MTU size
decreases, a decrease in performance is noted over the dif-
ferent error rates. Smaller segment sizes contribute to a
lower rate of congestion window updates thus contributing
to lower throughputs. Furthermore, smaller segment sizes
require more packets to be transmitted over the network
for the same amount of data. We see a much steeper de-
crease in throughput for Reno for the different MTU sizes
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Figure 9: Throughput vs. MTU sizes

when compared to TCP Westwood. Similar to the previous
scenario, for any given error rate, we notice a much higher
difference in throughput for TCP Reno with a maximum
difference of approximately 1.4 Mb/s observed at a packet
error rate of 0.001. The maximum difference in through-
put observed for TCP Westwood is seen to be smaller than
1 Mb/s but observed at a much higher packet error rate
of 0.01. The maximum difference for TCP Westwood+ is
seen to be close to 1.2 Mb/s at an error rate of 0.01. As
expected, TCP Westwood+ performs poorly at high error
rates (greater than 0.001) as seen in the plot.

Our next scenario looks at the variation of the congestion
window of TCP Westwood, Westwood+ and Reno in the
presence of errors. The default simulation parameters with
an access link of 10 Mb/s and a bottleneck link of 2 Mb/s
are used in the presence of a 0.005 PER. The congestion
window is traced and plotted for the entire simulation time
of 600 s and the instantaneous values are sampled every 3 s
over a single run. The plot is shown in Figure 10.
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Figure 10: Congestion window comparison plot

As expected, we see that the congestion window of TCP
Westwood is shown to be the highest in Figure 10. This is
attributed to its bandwidth estimation process resulting in
much higher throughputs as shown in the previous plots.
As long as no congestion is experienced in the link, the
high congestion windows or sending rates result in higher
throughputs across the network. TCP Westwood+ performs
second best for the given simulation parameters as expected
and TCP Reno performs worst for the given scenario. It
should be noted that although Westwood+ performs worse
that Westwood for the above scenarios, there is no overes-

timation of bandwidth in congestion based scenarios. This
allows Westwood+ to eliminate the aggressive behavior of
Westwood thus being fairer to other TCP flows.

To validate TCP Westwood+, we consider a congestion
related scenario that simulates ACK compression and trace
the estimated bandwidth. The estimated bandwidth is traced
out for a total simulation time of 20 s and is compared to
the estimated bandwidth of TCP Westwood. The estimated
bandwidth is sampled every microsecond of the simulation
time and the plot is shown in Figure 11.

We observe in the case of Westwood that the estimated
bandwidth fluctuates to a very high extent in the case of
ACK compression. In a few cases, we see that the band-
width is greatly overestimated to 8 Mb/s when the bottle-
neck bandwidth is only 500 kb/s. In the case of Westwood+,
we observe a smoother estimation of the bandwidth around
the expected value of 500 kb/s with slight fluctuations no-
ticed between 8 and 14 s. During this fluctuation period, the
maximum estimated bandwidth is only slightly higher than
500 kb/s and the minimum estimated bandwidth is approx-
imately 300 kb/s. The advantage of Westwood+ is clearly
shown in the presence of multiple flows where ACK com-
pression is prevalent. Thus, TCP Westwood+ would be a
better choice in the case of multiflow bidirectional networks
in the Internet whereas Westwood would be a better choice
for wireless links in the absence of congestion.

5. CONCLUSIONS
In this paper, we have presented our implementation of

the TCP Westwood and Westwood+ protocols. Our imple-
mentation was validated using similar simulation scenarios
as the original work. In addition to validation, we have
also compared the Westwood family of protocols to other
existing TCP implementations namely, TCP Tahoe, Reno
and NewReno. From simulation results, we clearly saw the
difference between the two protocols and the tradeoffs be-
tween TCP Westwood and Westwood+ in terms of conges-
tion and aggressiveness. TCP Westwood could be used in
over-provisioned cases in which there is no congestion and
losses happen only due to corruption. TCP Westwood+ is
better for congested scenarios in which ACK compression is
prevalent and the usage of Westwood might further congest
the network. Our simulation studies looked at the effects of
parameters such as varying propagation delays, bandwidths,
delayed ACK counts, and varying MTU sizes.

For future work, we plan to extend our study to include
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Figure 11: Estimated bandwidth in the presence of ACK compression

additional scenarios for our performance analysis. We will
also compare to TCP SACK [3] and TCP Vegas [4], currently
under development by [11]. We also plan to use real world
protocols with the help of the Direct Code Execution (DCE)
framework available as part of ns-3.
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