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Abstract

With the increasing frequency of natural disasters and intentional attacks that challenge communication networks, vulnerability
to cascading and regional-correlated challenges is escalating. Given the high complexity and large traffic load of communication
networks, these correlated challenges cause substantial damage to reliable network communication. In this work, we extend the
GeoDivRP routing protocol to consider delay-skew requirement when using multiple geographically diverse paths for telecommu-
nication networks under area-based challenges. We present a flow-diverse minimum-cost routing multicommodity flow problem.
Furthermore, we present a nonlinear delay-skew optimization problem to balance between delay and traffic skew on paths. We
investigate the tradeoff between the delay and skew in choosing multiple geodiverse paths. We implement GeoDivRP in ns-3 to
employ the optimized paths given by the two optimization solutions and demonstrate their effectiveness compared to OSPF Equal-
Cost Multi-Path routing (ECMP) in terms of overall link utilization. It guarantees the delay-skew constraint provided by the upper
layer while satisfies the traffic demand imposed by multiple routing commodities in the telecommunication networks.
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1. Introduction and motivation

Survivability of communication networks under random link
and non-correlated failures has been a popular research do-
main [1, 2]. Recently, the research community has become
more concerned about the potential damage caused by large-
scale challenges and intentional attacks; efficient mechanisms
have been proposed to mitigate their impacts [3, 4, 5, 6]. How-
ever, none of these works considers traffic allocation for re-
gional challenges or attacks with a large impact zone, i.e., an
earthquake or hurricane can have a challenged radius of up to
500 miles, which can cause failed nodes and links in the vicin-
ity with substantial damage to the normal network communica-
tions [7].

It has been observed that a large number of failures in a
geographical region can result in catastrophic damage to net-
work communications [6]. When regional challenges or attacks
occur, a series of nodes and links in the vicinity can be dam-
aged and removed from the network; these are geographically
correlated challenges. Since the challenge effect is frequently
long-term [7], a set of backup paths are required for survivable
routing. The single location physical challenge scenario has
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been analyzed [3, 5, 8], while physical challenges of correlated
and simultaneous challenges have been discussed [9]. A ran-
dom line-cut mechanism has been used to assess the vulnera-
bility to regional-based challenges [4]. Both correlated failures
and targeted attacks with simulation results have been mod-
eled [10]. Our previous work has studied different vulnerability
area identification mechanisms and routing algorithms to route
around the impact zone with a provided threat model [6]; two
heuristics were proposed for solving the d-distance separation
paths (in which any two nodes on disjoint paths are separated
by greater than d distance) problem and demonstrated its effec-
tiveness under regional challenges [11]. However, traffic alloca-
tion and delay-skew minimization have not been considered; it
is important to understand the mechanism to statistically direct
the rerouted traffic onto multiple d-distance separated paths and
to better cope with network congestion when large-scale chal-
lenges occur.

Multipath routing has been accepted to be advantageous
for small networks for the all-commodity traffic scenario.
ECMP (Equal-Cost Multipath) is proposed as a multipath rout-
ing strategy, which uses equal cost multiple paths for better
load-balancing in OSPF (Open Shortest Path First) [12]. Opti-
mization has been done to maximize the flow on each path in an
ECMP routing algorithm [13]. Another optimization problem
has been formulated by a weighted multipath routing based on
ECMP, and its objective function is to minimize the maximum
link utilization [14].
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However, the multipath gain diminishes as the network be-
comes large [15]. A distributed traffic engineering heuristic,
TeXCP, has been proposed and uses four paths for each de-
mand [16]; however, a near-optimal solution may have con-
tributed to the conclusion since at optimality more than one
path is rarely needed at any instant as shown in [15] for large
networks. An optimization problem has been formulated to
model the routing issues in a multi-source-destination multi-
path routing environment, and it leads to a pseudo-polynomial
algorithm based on linear programming in the network with a
bounded buffer size and jitter constraint [17, 18]. A multipath
flow optimization problem has been formulated with two objec-
tives, total link utilization and bandwidth fairness, and has been
solved with a nonlinear programming solver [19]. However,
most previous work has focused on multipath routing without
challenges. With increasing importance of network resilience
under large-scale challenges or attacks, it is imperative to ana-
lyze multipath routing efficiency and understand the traffic al-
location requirements under these challenges.

Flow-diverse routing mechanism has been proposed to solve
the optical network diversity problem. Shared Risk Link Group
(SRLG) is a set of links that share a common physical resource,
and it has been proposed to address single or multiple physical
failures [20]. Minimum-cost diverse SRLG routing is proven
NP-complete and an integer linear programming formulation
is used to solve the routing problem [21]. Path protection has
been proposed to provide two SRLG-disjoint paths using graph
transformation techniques [22]. Furthermore, an integer nonlin-
ear programming (INLP) has been proposed to solve the prob-
lem of finding two disjoint paths with minimum joint path fail-
ure probability in the face of probabilistic physical failures [23].
However, most of the work focused on diverse routing in op-
tical networks with two-diverse path calculation. We extend
the flow-diverse routing mechanism into a generic network with
three- or more-diverse path calculation considering the geodi-
versity concept introduce in Section 2.

In this work, we formulate two optimization problems in
physical networks under regional challenges to either minimize
the traffic cost or the delay-skew of the multiple paths calcu-
lated for each node pair. Skew is the difference in time delay
across multiple paths. The optimization solution provides bet-
ter link utilization compared to OSPF with ECMP. With the
optimized geodiverse paths from the iWPSP (iterative Way-
Point Shortest Path) heuristic [11], our GeoDivRP routing pro-
tocol [24, 25, 11, 6] improves the overall link utilization com-
pared to ECMP under large-scale network challenges. Our
heuristic does not restrict the maximum path length since it may
lead to no usable skew-bounded paths.

We do, however, introduce a trade-off parameter δ to control
the path stretch, outage risk, and skews among multiple paths
calculated for the same node pair. It balances between short
path stretch with high outage risk and the long path stretch with
low outage risk. Furthermore, it controls the skew value be-
tween multiple geodiverse paths, which is achieved by control-
ling the d-distance separated paths provided by the GeoDivRP
using the iWPSP heuristic. In controlling the delay variation or
skew, δ can be either increased or decreased to provide paths

with the required skew value and route around the challenged
area.

For various applications, the requirement for path delay or
skew is different. For example, data traffic is more sensi-
tive to delay while multimedia traffic is more so to skew.
ResTP [26, 27, 28] determines the best combination of delay
and skew for a specific application and passes that information
down to GeoDivRP through the [h, t] requirement tuple, where
h is the desired stretch limit in number of additional hops, and
t is the skew target. GeoDivRP calculates the geographically
diverse path sets that satisfy the delay-skew requirement using
the nonlinear optimization algorithm if permitted. Otherwise,
GeoDivRP provides the best path sets returned by the optimiza-
tion process.

It is rarely feasible to conduct network experiments on a pro-
duction network, especially at a national scale. Network re-
searchers resort to simulations to study their ideas and pro-
posals. In this paper, we use ns-3 [29] simulation software
to study our protocol. As for traffic optimization, we use the
OpenOpt optimization toolkit [30] for solving the two optimiza-
tion problems and use real-world network topologies from KU
TopView [31, 32]. The same physical challenge can cause dif-
ferent damage levels to the network if it occurs at different lo-
cations; therefore, we choose the failure regions identified from
the previous work [6].

We extend our GeoDivRP routing algorithm to provide d-
distance separated paths as well as the optimal traffic allocation
information on the multiple paths for all the source-destination
node pairs or commodities1. We formulate a minimum cost
routing problem using a linear programming (LP) model and
a delay-skew minimization routing problem using a nonlinear
programming (NLP) model. The paths for both of the problems
are provided by a modified iWPSP routing heuristic explained
in Section 2. When the network is under regional challenges,
the rerouted traffic has a limited number of backup paths to se-
lect from, which raises the potential danger for the network to
get congested. The congestion will further cause higher end-
to-end delay. We consider the problem of establishing multiple
bounded delay-skew geodiverse paths with a given demand ma-
trix when the challenge occurs. We have formulated both of our
problems as multicommodity flow problems and solved them.

In the following sections, we introduce our optimization
models and problem formulations in Section 2. We present
our model implementation details and simulation results in Sec-
tion 3. Section 4 concludes the paper and suggests future work.

2. GeoDivRP-based multicommodity flow approach

We start our multicommodity optimization discussion with
our geodiverse path generation algorithm using our GeoDivRP
routing protocol.

2.1. GeoDivRP and geodivere path generation
We first start with a brief description of GeoDivRP, which

fits in the protocol stack as shown in Figure 3 [11]. Con-

1We use source-destination node pair and commodity interchangeably
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Figure 1: Geographical diversity: distance d

sider Knobs K that are used by higher layers to influence lower
layer operation while dials D are the mechanisms for lower
layers to provide feedback to higher layers [33]. The appli-
cation layer passes a service specification and threat model
down to our resilient transport layer protocol ResTP (resilient
transport protocol) [26, 27, 28]. Upon receiving these param-
eters, ResTP determines the type of transport service needed
(including error control and multipath characteristics) and re-
quests that GeoDivRP calculate geodiverse paths that meet the
requirement tuple (k, d, [h, t]), where k is the total number of
geodiverse paths requested, d is the distance separation criteria,
[h, t] are the desired constraints on path stretch h (number of
additional hops for diverse paths) and the temporal skew (delay
difference) across paths, t. ResTP then establishes a multiflow
with error control needed to meet the service spec, including the
per-subflow error control (ARQ, hybrid ARQ, FEC, or none)
and flow bundle (e.g., 2-of-3 erasure code for real-time criti-
cal service or 1+1 redundancy with a hot-standby for delay and
loss tolerant service) taking advantage of k d-geodiverse paths
P = p1...pk provided by GeoDivRP.

All the candidate paths provided to the optimization prob-
lems (presented below) are geodiverse. Geographical diversity
D(pa) such that D ≥ d is defined as the minimum distance be-
tween any node members of vector pa and that of the shortest
path ps. Consider Figure 1 in which node v0 is the source and
node v2 is the destination node. The red dotted line shows the
shortest path ps consists of nodes 0–1–2. The green dashed line
shows path p1 and its geodiversity D(p1) (with respect to ps)
d. The blue solid line shows path p2 and its geodiversity D(p2)
d′ since the minimum distance is d′ between node 1 and node
3. There are three paths in total for the commodity (v0, v2) in
Figure 1. If the requested geodiversity is between d′ and d, the
returned path set includes ps and p1.

All the geodiverse candidate paths for the multicommod-
ity optimization problem are provided by the modified iWPSP
routing heuristic shown in Algorithm 1. The paths returned
from iWPSP are all simple paths, with δ controlling the path
skew for different geodiverse paths. The skew constraint t is
passed down along with the other parameters from ResTP. As
shown in Figure 2, when k = 2, iWPSP first selects neighbor
nodes vs1 and vd1 that are d-distance separated from source node
vs and destination node vd, respectively (for simplicity in this
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Figure 2: Iterative waypoint shortest path heuristic

presentation we assume that such nodes exist; otherwise the
nodes with the greatest distance will be chosen, iterating until
nodes d apart are located). Assuming the shortest path connect-
ing vs and vd is ps, iWPSP selects waypoint nodes m′ and m′′

in the opposite direction that are distance d + δ apart from the
middle node m in the shortest path, where the segment m′mm′′

intersects the shortest path. Dijkstra’s algorithm is performed
for the two branches vs1 m′ and vd1 m′. By connecting the short-
est path returned from the two branches, the heuristic obtains
the first geodiverse path. The same mechanism repeats for way-
point node m′′ for the second geodiverse path. The variable d
is a user-chosen parameter based on the threat model, and δ is
experimentally chosen for different network topologies to in-
crease the probability of the heuristic to return a d-separated
path. The δ parameter is also useful in preventing the links of
the two geodiverse paths from interleaving and creating rout-
ing loops. By tweaking the value of δ, the heuristic can select
a nearby waypoint node if the previous one fails running Dijk-
stra’s algorithm. When the heuristic cannot select paths within
the skew bound t, the model increases or decreases δ accord-
ingly. The pseudo code of iWPSP is shown in Algorithm 1.

This heuristic naturally affects the skew for different paths in
different commodities with the introduction of δ. By slightly
increasing or decreasing δ along each direction of the path cal-
culation, we can indirectly alter the skew value of the returned
geodiverse paths. If the returned path set is not bounded by the
provided skew requirement, iWPSP uses a different δ value to
calculate another set.

2.2. Flow-diverse optimization with minimum cost objective

The problem formulation discussed below is executed in
the optimization engine shown in Figure 4. The formulation
is based the link-path approach [34, 35] for multicommodity
flows. It incorporates the geodiverse candidate paths provided
by GeoDivRP discussed above for each commodity in the mul-
ticommodity flow formulation.

Formally, a network is represented by a connected directed
graph G(V, E), where V is the set of nodes (vertices) and E is
the set of links (edges), where each edge allowed to have the
maximum flow ue, e ∈ E (for example, due to capacity), and
where there are W commodities defined by Ww = (sw, tw, hw),
where sw and tw are the source and destination of commodity w
in the graph G(V, E), and hw is their traffic demand.
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Functions:
Calculate k number of geographically d-distance separated
skew-bounded paths
Input:
vsk := source node
vdk := destination node
δ:= delta distance when selecting waypoint node
[k, d, [h, t]]:= requirement tuple
begin

shortest path ps connecting vs and vd, with its middle
point m;
choose neighbor node vsk , vdk that is at least d distance
from vsk−1 , vdk−1 , respectively;
if k is odd then

choose two nodes m1 and m2 that are separated by
d + δ on each direction of S , where m1mm2 is
perpendicular bisector of S ;
p1 = SourceTreevdvs ← Dijkstra(vd, vs);
k− = 3;

else
choose two nodes m1 and m2 that are separated by
d/2 + δ on each direction of ps, where m1mm2 is
perpendicular bisector of S ;
k− = 2;

end
pm1vs1

= SourceTreevs1 m1 ← Dijkstra(m1, vs1 );
pm2vs2

= SourceTreevs2 m2 ← Dijkstra(m2, vs2 );
pm1vd1

= SourceTreevd1 m1 ← Dijkstra(m1, vd1 );
pm2vd2

= SourceTreevd2 m2 ← Dijkstra(m2, vd2 );
while k > 0 do

shortest path ps = newest established path;
choose one node mk that is separated by distance
d + δ from ps on the farther direction from the
absolute shortest path;
pmkvsk

= SourceTreemkvsk
← Dijkstra(mk, vsk );

pmkvdk
= SourceTreemkVdk

← Dijkstra(mk, vdk );
k− = 1;

end
if k is odd then

p2 = pm1vs1
+ pm1vd1

;
p3 = pm2vs2

+ pm2vd2
;

...
pk = pmk−1vsk−1

+ pmk−1Vdk−1
;

remove path that fails the skew requirement.;
else

p1 = pm1vs1
+ pm1vd1

;
p2 = pm2vs2

+ pm2vd2
;

...
pk = pmkvsk

+ pmkvdk
;

remove path that fails the skew requirement.;
end
return (p1, p2, ..., pk)

end
Algorithm 1: Iterative waypoint shortest path heuristic
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Figure 3: Layered protocol diagram of GeDivRP and ResTP
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Figure 4: Block diagram of GeoDivRP and optimization engine

A network is represented by a connected directed graph
G(V, E), where V is the set of nodes (vertices) and E is the set of
links (edges). Each path p for commodity w (that is generated
by the procedure described above) has an associated cost cw(p)
that denotes its cost per unit flow.

For each commodity w, let Pw denote the collection of all
GeoDivRP-compatible paths from the source node sw to the
destination node tw. We use variable xw

p as the flow on path
p for commodity w. Link-path indicator variable is defined as
ηe(p); it is one if link(e) is contained in the path p, and is zero
otherwise. We list the important variables used in this optimiza-
tion model in Table 1.

The GeoDivRP multicommodity linear optimization prob-
lem can now be stated as follows:

min
∑
w∈W

∑
p∈Pw

cw(p)xp (1)
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Table 1: Notations used in Problem Formulation

Description
G(V, E) input graph ‖G‖ with a set of nodes V

Pw candidate number of paths to be considered for commodity w
cw(p) cost per unit flow on path p for commodity w

ue flow upper bound on link e
vs source node
vd destination node
vsk neighbor node chosen by source node
vdk neighbor node chosen by destination node
kw number of geodiverse path requested for commodity w
d distance separation between each and every node in different disjoint paths
δ delta distance when selecting waypoint node

hw demand for commodity w
ηe(p) =1 if link e belongs to path p (p ∈ pw); 0, otherwise

xp traffic flow on path p for commodity w (variable)
ye link flow on link e (dependent on xp)

subject to ∑
p∈Pw

xp = hw, w ∈ W (2)∑
w∈W

∑
p∈Pw

ηe(p)xp ≤ ue, e ∈ E (3)

xp > hw/kw, p ∈ Pw, w ∈ W. (4)

The objective function shown in (1) minimizes the overall
cost of flows over different paths for all the commodities. (2) is
the flow conservation over all paths p ∈ Pw of traffic demand
hw for each commodity w. (3) is the link capacity constraint
for each link e requiring that the sum of the path flows pass-
ing through that link is at most at its capacity upper bound ue.
(4) requires all path flow variables to be greater than or equal
to a minimum path flow for traffic diversity, captured by the
total traffic demand divided by the minimum number of geodi-
verse paths kw to be considered for each commodity w. Note
that kw ≤ #(Pw) and typically, kw < #(Pw) (otherwise, the flow
will be equally distributed along all the paths for a commodity).
Clearly, (4) forces multipath flow, an important requirement for
our GeoDivRP approach.

2.3. Flow-diverse Optimization with Delay-Skew Objective
The minimum cost optimization presented above provides

the optimum traffic allocation ratio on a required number of
diverse paths for each of the commodities while targeting to
minimize the overall network cost. However, it does not have
a direct control over the path delay or skew; therefore, the
above optimization model cannot guarantee on the path delay
or skew requirement passed from ResTP. Thus, we propose an-
other formulation that considers both path delay and skew as
an weighted objective, which enhances the above optimization
model. Furthermore, this enhanced model also allows us to
demonstrate the difference between the optimization solutions

focused on the path delay as opposed to the one based on the
skew. In other words, it provides a flexible way to manage the
weight on either delay or skew depending on the application
scenario.

Given the capacity bound ue on link e, we use the M/M/1
queuing model [36] that states the average packet delay on link
e as

le =
1

ue − ye
(5)

where ye =
∑

w∈W
∑

p∈Pw ηe(p)xp is the link flow on link e, Then,
the average queueing delay lwp for path p for commodity w is the
sum of the average queueing delay on each link given by

lwp =
∑
e∈E

ηw
e (p)le (6)

Therefore, the average end-to-end delay for a commodity w
is given by:

lw =
1

hw

∑
p∈Pw

∑
e∈E

xw
pη

w
e (p)le (7)

Based on the delay for each path for commodity w, we formu-
late the path skew as:

tw =
∑
i∈I

|lpw
s − lpw

i
| (8)

where pw
s is the shortest path for a commodity w, and pi is the

path set I that excludes ps for that commodity. The overall path
skew for all commodities is then given by

T =
∑
w∈W

tw (9)

On the other hand, the total packet delay in the network [36] is
given by

L =
∑
e∈E

ye

ue − ye
(10)
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Based on the delay and skew, we formulate the optimization
problem as follows:

min [(1 − γ)L + γT ] (11)

subject to ∑
p∈Pw

xp = hw, w ∈ W (12)∑
w∈W

∑
p∈Pw

ηe(p)xp ≤ ue, e = 1, 2, ..., E (13)

xp ≥ hw/kw, p ∈ Pw, w ∈ W. (14)

The objective function in (11) targets minimizing the delay-
skew with a tuning parameter γ (0 ≤ γ ≤ 1), which controls
the weight on either delay or skew in the optimization process.
The constraints are the same as the ones used in the minimum
cost optimization discussed earlier.

2.4. Complexity analysis

We discuss complexity for both calculating d-distance sep-
arated paths as well as both of the optimization problems.
iWPSP has a complexity of 2c2n2 log n, where c is the average
number of neighbors for nodes, the complexity for choosing
the waypoint node is O(n), where n represents the number of
nodes equals |V |, and O(n log n) is for Dijkstra’s algorithm to
calculate the two shortest paths. Therefore, the worst case sce-
nario is O(n2 log n) while the best case scenario is O(n log n).
Most of the physical topologies have an average degree below
four [37]. This means that c in our complexity analysis is a
small constant. This reduces the best case time complexity of
iWPSP to O(n log n).

The complexity for solving the flow-diverse linear optimiza-
tion problem is polynomial. Therefore, the complexity of the
GeoDivRP routing with minimum cost optimization is domi-
nated by the complexity of geodiverse path calculation. On the
other hand, the delay-skew optimization problem is a nonlinear
optimization problem that are typically solved using an iterative
process, and thus, cannot be directly analyzed from a complex-
ity point of view. We can, however, comment on the cost of
running such a problem. In our case, we used the ralg solver
comes with the OpenOpt optimization framework [30]. The
total number of variables for the delay-skew optimization prob-
lem is the number of commodities plus the number of links for
each topology; it is represented as nVariables = W+E. The cur-
rent implementation of ralg solver stores in memory a matrix of
size nVariables2, and each iteration consumes 5 × nVariables2

multiplication operations. For example, when optimizing a net-
work with 100 commodities and 100 links for a topology, the
matrix size is 200 × 200 = 40000. Each iteration of the opti-
mization has 5 × 2002 = 200000 multiplication operations. We
set the max-iteration of the solver as 1000, which means the
worst-case complexity is 0.2 × 109 multiplication operations in
total; this is too complex for large real-world networks.

3. Model implementation and simulation results

We use ns-3 [29] to implement the GeoDivRP routing proto-
col. The geodiverse paths calculated from the routing protocol
are passed to the optimization toolkit using OpenOpt optimiza-
tion framework. After solving the optimization problems, the
paths along with their flow allocation information (Pk, Xk) are
returned to ns-3 for network simulation. These optimized paths
are used for the network data transmission to guarantee the traf-
fic demand for all the commodities. This mechanism ensures
that the paths can achieve the optimum link utilization.

The steps for the routing algorithm to calculate the geodi-
verse paths is shown as follows:

• Obtain the geodiverse paths using the iWPSP routing
heuristic for each node pair that satisfies the skew con-
straint and d-distance separation criteria.

• Solve multicommodity flow optimization using the linear
programming formulation (LP) or nonlinear programming
formulation (NLP) for the flow-diverse minimum cost or
delay-skew optimization, respectively.

• Use Geodiverse paths with flow allocation returned from
the optimization for data transmission in ns-3 network
simulation.

3.1. Simulation results
We now present the multicommodity flow optimization for

the flow-diverse minimum cost and delay-skew cases. Then we
use these flow allocations to perform ns-3 simulations over geo-
diverse paths. Solutions from both of our optimization prob-
lems are used for the physical network simulation under chal-
lenges.

3.1.1. Flow-diverse minimum cost optimization
In this study, we compare the performance of GeoDivRP-

based multicommodity flow approach with OSPF ECMP. We
use Level 3 [38] and Sprint [37] physical networks for this
study. The capacity for all the links was set to 5 Gb/s, and
we use CBR (constant bit rate) traffic, sent from each node to
all the others at a data rate varying uniformly from 1 Mb/s to
12 Mb/s as the traffic demand. The varying demand in different
networks is to evaluate and demonstrate the maximum traffic
demand GeoDivRP can support. We use the challenged area
at Kansas City identified in our vulnerability area identification
mechanism [6] with a 300 km challenge range.

We record the time for solving the optimization problem
in different physical topologies. We further include CORO-
NET [39], Internet2 [40], and TeliaSonera [40] fiber-level net-
works. We calculate when the challenge occurs around Kansas
City with a traffic demand of 10 Mb/s for each commodity. As
shown in Table 2, the maximum time for the optimization is
about 7 seconds for the Sprint network, while most of the oth-
ers take less than 1 second. The evaluation is carried on a Linux
machine with a 3.16 GHz Core 2 Duo CPU and 4 GB memory.

We further compare GeoDivRP to OSPF with ECMP in
terms of the overall link congestion factor. Recall that the link
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Table 2: Execution time for optimization algorithm

Network Number of Number of Number of Optimization
Nodes Links Failed Nodes Time (s)

CORONET 39 63 2 0.62
Internet2 16 24 1 0.04

Level 3 63 94 4 2.06
Sprint 77 114 3 6.96

TeliaSonera 18 21 1 0.02

congestion factor is defined as the percentage of the bandwidth
that has been used by the network flows. Our minimum cost op-
timization formulation is not specifically minimizing the link
congestion factor; therefore, some links are still using up to
100% link capacity. However, since we specify the capacity up-
per bound on path flows, GeoDivRP uses the network resources
efficiently and does not congest any network link. For OSPF
with ECMP, on the other hand, the model always chooses the
shortest path, and does not consider the remaining network re-
sources on the network link, which causes congestion by over-
loading some network links. In the network simulation context,
the extra traffic assigned to network links will either be dropped
or queued if router buffers are used; traffic loss or delay will oc-
cur, respectively.

In Figure 5, we present the link congestion factor for the
Level 3 network when the demand is 10 Mb/s for each node
pair. GeoDivRP does not overload any link by distributing the
traffic load among multiple paths. However, OSPF with ECMP
has used some links up to 140%, which means that for each of
the overloaded link, the data traffic for 40% of the link capac-
ity will be dropped. Since the link capacity is 5 Gb/s, 2 Gb of
traffic is dropped each second on these overloaded links. This
causes significant traffic loss to the network communication,
and it is especially damaging when the network is under large-
scale challenges. The dropped traffic could have been buffered
but the end-to-end delay would increase exponentially. Our
delay-skew optimization targets at minimizing the path delay
and skew and we present its result in the next subsection. The
network congestion factor for GeoDivRP is 100% while that for
OSPF with ECMP is 140%.

This link congestion analysis has demonstrated that
GeoDivRP with flow-diverse minimum-cost optimization can
allocate traffic to multiple paths efficiently and avoid overload-
ing any network link; while OSPF with ECMP over-utilizes
links which causes the data packets to either be dropped or
buffered with increased end-to-end delay.

3.1.2. Delay-skew optimization
For the delay-skew optimization scenario, we set the link ca-

pacity at 500 Mb/s, with demand at 10 Mb/s. The total num-
ber of commodities is 9. We choose the source nodes in the
west coast sending to destination nodes in the east coast. This
way the paths calculated represent the highest delay scenario.
The geodiverse paths provided by iWPSP are the geodiverse

Figure 5: Link utilization in Level 3 network

paths calculated based on the current network topology with
area-based challenges. The failure region is the same as that for
the minimum-cost optimization: the center of the US around
Kansas City. For each commodity, we calculate three geodi-
verse paths for optimization.

We use a standard nonlinear optimization framework,
OpenOpt [30], to achieve a local optimum solution, which is an
optimization framework using Python and can choose a range
of nonlinear programming solvers to solve the nonlinear prob-
lem. We use the ralg heuristic solver that comes with OpenOpt;
it is based on the r-algorithm with adaptive space dilation [41].

The topologies considered are the structural physical
graphs [37] with their properties shown in Table 3. The number
of nodes and links are in the same range, and the average node
degree for all the topologies are between two and three.

We record the time for solving the optimization problem in
different physical topologies for the delay-skew optimization,
as shown in Table 4. All the physical topologies show a reason-
able optimization time for both the single pair and nine node
pair cases. For the nine-node-pairs case, it takes five seconds
to solve the problem for Sprint, which is the maximum time
among all the topologies since it is the largest one considered.
The time for a single traffic pair are all below one second for
all the physical topologies. This means that a distributed al-
gorithm for delay-skew optimization is necessary for real-time
computation, and we leave the detailed implementation of the
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Table 3: Physical topology analysis

Network Nodes Links Degree Diameter Radius Path Length
CORONET 39 63 3.23 9 5 4.08

Internet2 16 24 3.00 6 3 2.63
Level 3 63 94 2.98 14 7 5.68

Sprint 77 114 2.96 16 9 6.47
TeliaSonera 18 21 2.33 7 5 3.58

Table 4: Time for delay-skew optimization algorithm

Network Number of Number of Number of Number of Single Pair Nine Pair
Nodes Links Failed Nodes Commodities Time (s) Time (s)

CORONET 39 63 2 9 0.87 4.13
Internet2 16 24 1 9 0.51 3.62

Level 3 63 94 4 9 0.53 8.30
Sprint 77 114 3 9 0.81 5.04

TeliaSonera 18 21 1 9 0.52 3.63

distributed algorithm for future work.
We carry out simulations with varying traffic demand and

study the largest demand that GeoDivRP can deliver in a given
physical topology. We present the variation of delay and skew
when the demand increases for the five physical topologies. We
do not include the delay and skew result for OSPF ECMP; the
network becomes congested with low demand and the delay be-
comes too large to present in the same plot with GeoDivRP; γ
is set as zero for delay optimization. As shown in Figure 6a, the
demand curves for all the topologies begins with a low value
around 15 ms and increases slowly when the demand increases.
However, when the demand increases beyond the demand col-
lapse point, the delay starts increasing exponentially until the
optimization cannot provide solutions. For example, if we con-
sider the delay curve for the CORONET network, when the de-
mand increases from 180 Mb/s to 190 Mb/s, the delay increases
from 35 ms to over 200 ms, and the network becomes too con-
gested to provide normal service beyond the demand collapse
point, which is 190 Mb/s for this case. With the different de-
mand collapse points for the topologies provided to ResTP, bet-
ter flow allocation decisions can be made and the application
can use network resources more efficiently.

In Figure 6b, we present the skew minimization result with
physical topologies; γ is set as one to focus on skew optimiza-
tion. For the low demand case, the skew decreases as the traf-
fic load increases for the demand below 100 Mb/s; each link
has low delay and the number of hops for each path in one
commodity contributes more to the end-to-end delay. However,
when the demand increases past 100 Mb/s, the link delay for the
topologies except CORONET begins increasing exponentially.
Therefore, the path skew increases exponentially as well.

We continue our simulation with the link congestion analy-
sis with the five physical topologies. The link capacity is set
as 500 Mb/s, and the demand is 50 Mb/s; the number of com-

modities is 100. The reason for the demand and number of
commodity choice is to have a reasonable amount of traffic go-
ing through the network to better demonstrate the effectiveness
of GeoDivRP. Before presenting the link utilization result, we
present the physical topology of Sprint and Level 3 under the
Kansas City area challenge.

The Sprint physical network contains 77 nodes and 114
links. We use the same challenge scenario as our previous
work [11, 6, 24]. The red circle shown in Figure 7a is the chal-
lenge area around Kansas City, and the green solid lines are the
paths calculated by GeoDivRP.

As shown in Figure 8a, the x-axis presents the link utilization
in percentage, and the y-axis shows the number of links with
that link utilization level. For example, for 100% link utiliza-
tion, OSPF with ECMP has five links with this link utilization,
while the number for GeoDivRP is six.

GeoDivRP guarantees that the link utilization for any link is
not over 100% and keeps lower link usage whenever possible
specified by the objective function from the formulation. On
the other hand, OSPF with ECMP simply distributes network
traffic among the calculated paths and can easily congest the
network when the demand becomes larger. As shown in Fig-
ure 8a, OSPF with ECMP congests 6 links; although this is not
a large percentage out of the 114 total links, they cause 85% of
the commodities and 59% of the paths congested. On the other
hand, GeoDivRP guarantees the optimized traffic allocation on
all the commodities and presents great performance improve-
ment.

The Level 3 physical network contains 63 nodes and 94 links.
The same failure region in Kansas City has been used. As
shown in Figure 7b, the challenge causes more damage to the
overall connectivity because the Level 3 network lacks some of
the nodes and links from Seattle to Chicago.

As shown in Figure 8b, GeoDivRP guarantees the link uti-
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Figure 6: Delay and skew with varying demand for different topologies

(a) Sprint topology under regional challenges (b) Level 3 topology under regional challenges

Figure 7: Network topology under regional challenges

(a) Sprint network link utilization (b) Level 3 network link utilization

Figure 8: Link utilization of Sprint and Level 3 networks

lization is not over 100%, yet the usage for OSPF with ECMP
goes to 160% and therefore greatly congests the network; there
are 15 congested links out of 94. Similarly, although not a large
percentage, these links cause 91% of commodities and over
71% of the paths congested. On the other hand, GeoDivRP
avoids congestion by optimizing the traffic allocation on multi-
ple paths of each commodity.

The other three topologies present similar results. Figure 9a
presents the link utilization plot for the CORONET network.
GeoDivRP statistically distributes the traffic load over the net-
work while OSPF with ECMP congests multiple links. Fig-
ure 9b presents the link utilization plot for the Internet2 net-
work. A majority of links are carrying less than 20% of the

traffic for GeoDivRP while OSPF with ECMP congests mul-
tiple links. Figure 10 presents the link utilization plot for the
TeliaSonera network.

The objective function for the delay-skew optimization for-
mulation is intended to balance the delay and skew in the opti-
mization process through the tuning parameter γ. In Figure 11,
we present the average delay and skew change for a single path
with the varying γ value using the CORONET network for a
single path. The results for the other networks present a sim-
ilar trend and are not shown. The points on the plot are the γ
values ranging from 0 to 1 with 0.1 step increment. The traffic
demand and link capacity are 50 Mb/s and 500 Mb/s respec-
tively. As we observe from the figure, when γ increases, the
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(a) CORONET network link utilization (b) Internet2 network link utilization

Figure 9: Link utilization of CORONET and Internet2 network

Figure 10: TeliaSonera network link utilization

average delay for each commodity increases while the average
skew decreases. This means that delay and skew work against
each other in this optimization process. Based on different ap-
plication scenarios, we can select different γ for better network
communication.

4. Conclusion and future work

We have evaluated the GeoDivRP routing protocol with
minimum-cost and the delay-skew requirement. We have gen-
erated a linear programming (LP) and a nonlinear program-
ming (NLP) formulation of the problems and successfully
solved them. We have incorporated the optimized geodiverse
paths in the GeoDivRP and have compared our protocol per-
formance with OSPF ECMP in terms of overall link utiliza-
tion. Our protocol shows considerably better performance than
OSPF with ECMP.

We argue that GeoDivRP performs well in the face of large-
scale challenges. First, the iWPSP routing heuristic returns
d-distance separated paths with controlled algorithm and time
complexity. Second, our previous research [11] presents im-
proved packet delivery ratio (PDR) and delay when compared
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Figure 11: Delay and skew with varying γ for CORONET

to OSPF with ECMP, and this paper presents better link utiliza-
tion. Finally, the delay-skew requirement guarantees the opti-
mized traffic allocation among different paths and satisfies the
delay-skew requirement tuple passed from the upper layer.

For future work, we plan to design a heuristic for calculat-
ing the best possible allocation result when the flow pattern
is beyond optimization. We can also formulate additional link
or additional capacity planning optimization problem. Further-
more, we plan to study different application scenarios and pro-
vide the delay-skew combination suggestion for each scenario.
The delay-skew optimization becomes complex for large real-
world networks, we plan to develop a distributed algorithm to
support real-time network communications.
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