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Abstract—We propose two heuristics for solving the path
geodiverse problem (PGD), in which the calculation of a number
of geographically separated paths is required. The geodiverse
paths can be used to circumvent physical challenges such as large-
scale disasters in telecommunication networks. The heuristics
we propose for solving PGD have significantly less complexity
compared to the optimal algorithm we previously used while
still performing well by returning multiple geodiverse paths for
each node pair. The geodiverse paths contribute to providing
resilience against regional challenges. We present the GeoDivRP
routing protocol with two new routing heuristics implemented,
which provide the end nodes with multiple geographically diverse
paths and demonstrates better performance compared to OSPF
when the network is subject to area-based challenges.

Index Terms—path geodiversitiy; physical topology; survivable
routing heuristics; network resilience; diversity routing; multi-
path routing;

I. INTRODUCTION AND MOTIVATION

Telecommunication networks rely heavily on physical in-
frastructure such as optical fibers, amplifiers, routers, and
switches to maintain normal operation, and their resilience to
various faults and challenges is important to be analysed [1].
The geolocation of network components and their relative dis-
tance between each other affect the network survivability since
a significant number of challenges affect a wide range of nodes
and links. Most previous work considers only random link and
non-correlated failures [2], [3]. In contrast, we are modelling
correlated failures and attacks [4]. It has also been observed
that a large number of failures in a geographical region can
cause catastrophic damage to the network communications [5].
We study the geodiversity characteristics of the network graph
to understand how regional challenges affect connectivity of
the network and how to mitigate its impact. Many area-based
challenges can be modelled as a circular area with a certain
challenge radius. For example, an earthquake or hurricane
that has a challenged radius of 0 to 500 miles impact zone
can cause failed links and nodes with substantial impact on
network communications [6].

We have proposed a two-step optimal algorithm for solving
the path geodiverse problem (PGD). The algorithm begins

with the Suurballe’s algorithm [7], [8] in which a shortest-path
algorithm (SPA) is iteratively applied. After each iteration of
the SPA, the weight of the edges from the constructed path is
adjusted by adding a penalty factor. Once the algorithm has
identified k paths, it selects the path with distance d separa-
tion (in which any two nodes on disjoint paths are separated by
greater than d distance) by iteratively comparing the distance
between each and every node pair from all the candidate paths.
Based on our algorithm, we have designed a geodiverse routing
protocol (GeoDivRP) that uses the geographic location of
nodes and routes traffic around the challenges by exploiting the
diversity in the underlying physical topologies [5]. This mech-
anism reaches optimality in choosing the best d-separation
paths assuming a large number of candidate paths. However,
as SPA is applied k times for generating the candidate paths
before selecting the qualified ones, its time complexity is large
and the computation is slow. To reduce the complexity of
the optimal algorithm, we propose two heuristics, iterative
WayPoint Shortest Path heuristic (iWPSP) and Modified Link
Weight heuristic (MLW). We approach these two heuristics
from different perspectives: iWPSP selects one waypoint node
and performs SPA twice between the waypoint node and
source neighbor node, and then the waypoint node and destina-
tion neighbor node, respectively. On the other hand, our second
heuristic MLW linearly or exponentially increases the links’
weight within distance d from the straight line connecting
source and destination node. SPA is then used to calculate the
paths based on the modified link weights. We use Dijkstra’s
shortest path algorithm [9] for both heuristics.

Our GeoDivRP fits in the protocol stack as shown in
Figure 1. Knobs K are used by higher layers to influence
lower layer operation while dials D are the mechanisms for
lower layers to provide feedback to higher layers [10]. The
application layer passes a service specification and threat
model down to our resilient transport layer protocol ResTP.
Upon receiving these parameters, ResTP determines the type
of transport service needed (including error control and mul-
tipath characteristics) and requests that GeoDivRP calculate
geodiverse paths that meet the requirement tuple (k, d, [h, t]),
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Fig. 1. Layered block diagram of GeDivRP and ResTP

where k is the total number of geodiverse paths requested, d is
the distance separation criteria, [h, t] are the desired constraints
on path stretch h and temporal skew across paths t. ResTP then
establishes a multiflow with error control needed for meet the
service spec, including the per-subflow control (ARQ, hybrid
ARQ, FEC, or none) and flow bundle (e.g. 2-of-3 erasure code
for real-time critical service, or 1+1 redundany with a hot-
standby for delay and loss tolerant service) taking advantage
of k d-geodiverse paths [P ] provided by GeoDivRP. We apply
the multipath algorithm in the context of several real-world
service provider networks to analyse the diversity gain and
packet delivery ratio when routing protocol is considered.
We further extend this routing mechanism to our geo-diverse
routing protocol GeoDivRP.

The remaining sections of the paper are organised as fol-
lows: Section II presents the background and related work.
Section III introduces our two routing heuristics and the
evaluation methodology. Section IV presents the simulation
results and demonstrates the performance gain from our
routing heuristics in real-world physical networks. Section V
concludes the paper and suggests future work.

II. BACKGROUND

The transportation network community has been studying
geographically diverse path algorithms [11]–[13] to reduce
danger to populated areas when transporting hazardous mate-
rials. However, similar to our optimal algorithm [5], their work
requires the calculation of k shortest paths. One exception is
the gateway shortest path algorithm [12]. It selects one gate-
way node for a path gateway when calculating shortest path,

but has a couple of drawbacks. For example, it can easily form
loops, and when calculating more than two geodiverse paths,
the later calculated paths are less separated from the previous
established path. This is because the gateway node is always
chosen based on the distance to the absolute shortest path.
Another work has presented a performance comparison of the
existing geodiverse algorithms in transportation networks [14].

The telecommunication network community has long been
studying edge/vertex-disjoint paths and many previous works
have presented survivable network routing design using dis-
joint paths [7], [8], [15]–[17]. However, those works are
generally concerned with ensuring that components and links
do not share the same location, rather than considering the
d distance between them needed for a specified separation
for path geodiversity (PGD). As area-based challenges are
important to analyse, an efficient algorithm is required to
solve the PGD problem. We have proposed one path diversity
mechanism for qualifying the reliability of network flows
to characterise the network resilience [18], [19]. We have
extended this work to the analysis of geodiversity in physi-
cal network topologies and proposed cTGGD (compensated
geographical graph diversity) to characterise the geodiversity
of different network topologies [5]. We have also proposed a
routing protocol that takes advantage of the geodiversity in the
network topology and achieve resilience by providing multiple
geodiverse paths to different application scenarios.

III. MODEL DESCRIPTION

In this section, we define path geodiversity and propose
two heuristics for efficiently calculating geographically diverse
paths. Specifically, we consider the path geodiverse prob-
lem (PGD), which involves obtaining a set of paths that are
d distance separated from each with every vertex in different
disjoint paths (d-separation). The proposed heuristics return
a path tuple of (S,D) paths from the graph G = (V,E,w),
where V is the vertex set, E is the edge set, and w is the link
weight set. Dijkstra(G,n) is the standard Dijkstra algorithm
we use to provide the shortest path.

A. Path Geodiversity

We define the geodiversity as how far two paths are sep-
arated from each other in terms of geographic distance. We
present some necessary definitions as follows.

Path is defined as a vector that contains all the links L and
intermediate nodes N from source S to destination D

P = L ∪N (1)

GeoPath diversity D(Pa) is defined as the distance between
any node member of the vector Pa and that of the shortest path.
As shown in Figure 2, node 0 is the source and node 2 is the
destination. The shortest path consists node 0-1-2. The green
dotted line shows the path P1 and the diversity D(P1) equals
d, which is the shortest distance between any node pairs on
the disjoint paths (except for the source and destination). The
blue dotted line shows path P2 and its geodiversity D(P2) is
zero since P2 shares node 1 with the shortest path.
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Fig. 2. Geographic diversity: distance d

Path stretch is defined as the hop counts of a given path PA

divided by the hop counts of the shortest path Ps

S = LPA
/LPs

(2)

where we use the same definition from [16].
In addition to these metrics and definitions, we list the graph

notations used in the paper as follows:
• G(V,E,w): input graph ‖G‖ with a set of vertices V , a

set of edges E and weight of edges w
• S: source node
• D: destination node
• Sn: neighbor node chosen by source node
• Dn: neighbor node chosen by destination node
• k: number of geodiverse path requested
• d: distance separation between each and every node in

different disjoint paths
• δ: delta distance when selecting waypoint node

B. Heuristics Introduction

In consideration of decreasing the complexity of geodiverse
path calculation, we propose two heuristics: iterative WayPoint
Shortest Path (iWPSP) and Modified Link Weight (MLW). As
shown in Figure 3 for the case when k = 3, iWPSP first selects
neighbor nodes Sk1 and Dk2 that are d distance separated
from source node S and destination node D, respectively
(for simplicity in this presentation we assume that such nodes
exist; otherwise the nodes with the greatest distance will be
chosen, iterating until nodes d apart are located). Assuming
the straight link connecting S and D is L, iWPSP selects
waypoint nodes m′ and m′′ in the opposite direction that are
distance d + δ apart from the middle node m in the shortest
path, where the segment m′mm′′ interleaves with the shortest
path. Dijkstra’s algorithm is performed for the two branches
Skm′ and Dkm′ . By connecting the shortest path returned from
the two branches, the heuristic obtains the first geodiverse
path P1. The same mechanism repeats for waypoint node
m′′ for the second geodiverse path. The variable d is a user-
chosen parameter based on a threat model for a challenge
of distance d, and δ is experimentally chosen for different
network topologies to increase the probability of the heuristic
successfully returning a d-separation path. The δ parameter is
also introduced to prevent the edges in each of the two paths
from interleaving and creating routing loops. By tweaking the
value of δ, this heuristic can select a nearby waypoint node if
the previous one fails running Dijkstra’s algorithm. The code
of iWPSP is shown in Algorithm 1.

Functions:
Calculate k paths from S to D separated by distance d
Input:
Gi:= input graph
S:= source node
D:= destination node
k:= number of requested geodiverse path
d:= separation distance between the paths
δ:= delta distance when selecting waypoint node
Output:
k number of geographically d distance separated paths
begin

segment L connecting S and D, with its middle
point m;
choose neighbor node Sk, Dk that is at least d
distance from Sk−1, Dk−1, respectively;
if k is odd number then

choose two nodes m1 and m2 that are separated
by d+ δ on each direction of L, where m1mm2

is perpendicular bisector of L;
P1 = SourceTreeDS ← Dijkstra(D,S);
k− = 3;

else
choose two nodes m1 and m2 that are separated
by d/2 + δ on each direction of L, where
m1mm2 is perpendicular bisector of L;
k− = 2;

end
pm1S1

= SourceTreeS1m1
← Dijkstra(m1, S1);

pm2S2
= SourceTreeS2m2

← Dijkstra(m2, S2);
pm1D1 = SourceTreeD1m1 ← Dijkstra(m1, D1);
pm2D2 = SourceTreeD2m2 ← Dijkstra(m2, D2);
while k > 0 do

segment L = newest established path;
choose one node mk that is separated by distance
d+ δ from L on the farther direction from the
absolute shortest path;
pmkSk

= SourceTreemkSk
← Dijkstra(mk, Sk);

pmkDk
= SourceTreemkDk

← Dijkstra(mk, Dk);
k− = 1;

end
if k is odd number then

P2 = pm1S1 + pm1D1 ;
P3 = pm2S2 + pm2D2 ;
...
Pk = pmk−1Sk−1

+ pmk−1Dk−1
;

else
P1 = pm1S1

+ pm1D1
;

P2 = pm2S2 + pm2D2 ;
...
Pk = pmkSk

+ pmkDk
;

end
return (P1, P2, ..., Pk)

end
Algorithm 1: Iterative waypoint shortest path heuristic
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Fig. 3. Iterative waypoint shortest path heuristic

Fig. 4. Geodiverse paths by MLW heuristic in Grid network

Our second heuristic MLW statistically modifies the link
weights and performs Dijkstra’s algorithm to calculate the
geodiverse path with the modified link weights in the network.
The heuristic begins by increasing, linearly or squarely, the
weight in one direction based on the perpendicular distance
to the line L connecting source node S and destination node
D. The weight incremental ratio is inversely proportional to
the distance from L. Dijkstra’s algorithm is applied on the
graph with modified link weights. The heuristic repeats the
process for the other perpendicular direction to L. This way
the heuristic can generate two paths that are geographically
separated. If more diverse paths are required, the heuristic
selects one of the geodiverse paths established as the starting
line for modifying link weights and iteratively generates k
geodiverse paths.

We use a 5×5 grid network to demonstrate the d-separation
paths calculated by MLW. As shown in Figure 4, MLW
calculates two paths that are separated by distance d by
statistically modifying link weights. Node 21 is the source and
node 3 is the destination. The d value is set as twice length of
edges in the grid. iWPSP heuristic generates same results when
using the same setup and the mechanism is shown in Figure 3.
The weight shown in different color is used for calculating
paths in its representative colors. For example, when MLW is
calculating the path shown in blue solid links, the link weight
is statistically modified by decreasing towards the top right
corner of the Grid network. The detailed heuristic is presented
in Algorithm 2.

Functions:
cost(L):= cost function
Input:
Gi:= input graph
Wi:= link weights
S:= source node
D:= destination node
k:= number of diverse paths requested
buffer := distance buffer to increase link weight
Output:
k number of paths that are geographically separated by
distance d
begin

straight line l connecting source S and destination D
if k is odd number then

P1 = SourceTreeDS ← Dijkstra(D,S);
modify link weight linearly or squarely on one
direction perpendicular to line l until distance d;
P2 = SourceTreeDS ← Dijkstra(D,S);
repeat the process for the other direction;
buffer = d;
k− = 3;

else
modify link weight linearly or squarely on one
direction perpendicular to line l until distance
d/2;
P1 = SourceTreeDS ← Dijkstra(D,S);
repeat the process for the other direction;
buffer = d/2;
k− = 2;

end
while k > 0 do

buffer += d;
modify link weight linearly decreasing on one
direction perpendicular to line l until buffer;
links beyond distance buffer, link weight = 1;
Pk−1 = SourceTreeDS ← Dijkstra(D,S);
repeat the process in the other direction;
Pk = SourceTreeDS ← Dijkstra(D,S);
k− = 1;

end
return (P1, P2, ..., Pk)

end
Algorithm 2: Modified link weight shortest path heuristic

We have implemented both of the heuristics in our
GeoDivRP routing protocol first introduced in [5]. The two
heuristics are implemented as different options and take a user-
provided switch to control which heuristic the routing protocol
uses. The implementation is done using ns-3 [20], a popular
network simulator to analyse network protocols and challenges
through simulation. We base this protocol on link state routing
methodology. At the beginning of the simulation, by obtaining
node locations from the link state update messages, we cal-
culate the geodiverse paths and store them in the path cache



server. When the simulation begins, our protocol sends data
traffic using the paths from the cache. When a challenge occurs
in the network, our protocol responds to the challenge faster
than OSPF (Open Shortest Path First) [21] and calculates the
paths according to the challenge estimation [5]. The distance
value d is a user-provided value, and when challenges occur,
users can modify d according to the different threat models to
ensure the traffic circumvents the challenged area.

Both of the heuristics have incorporated improvement mech-
anisms. When the calculated paths obtained fail to qualify the
d-separation criteria, iWPSP will choose another waypoint that
has a slightly larger d distance, while MLW will increase the
link weight around the avoidance line. Then the heuristics ini-
tialise another iteration of Dijkstra’s algorithm. The heuristics
fall back to the optimal algorithm if the result still does not
qualify, which ensures that both of the heuristics have a better
chance acquiring the geodiverse path while not generating
their worst case complexity. Another major component of both
heuristics is loop detection. For example, the iWPSP algorithm
can create routing loops when calculating paths for corner
nodes in the topology. We use a loop detection algorithm
so that if a previous node from one path is identified, the
algorithm deletes that part.

IV. REAL NETWORK RESULTS

In this section, we evaluate the proposed heuristics and
compare their performance with the two-step optimal algo-
rithm [5]. We present the geodiverse paths calculated by
our heuristics using the Nobel-EU (Pan-European Reference
Network) with 28 nodes and 40 links [22]. We assume a
challenge along the line from Amsterdam to Rome with a
radius of 50 km. Node Strasbourg and Frankfurt are in the
challenge circle. The result of iWPSP is shown in Figure 5.
The challenge area is shown in the red circle. The result of
MLW is shown in Figure 6 for its two paths. We only show
the two paths from Amsterdam to Rome. The first path shown
in red dashed link is Amsterdam-Hamburg-Berlin-Munich-
Vienna-Zagreb-Rome, and the second path shown in blue solid
link is Amsterdam-Brussels-Paris-Lyon-Rome. We shown a
large radius challenge in Figure 7.

A. Complexity Analysis and Evaluation

We analyse the complexity of the two heuristics compared
to the optimal algorithm. For simplicity, we examine the
complexity for obtaining two d-separation paths and assume
the Fibonacci heap for Dijkstra’s algorithm. The optimal
algorithm starts by calculating k edge-disjoint paths using
Suurballe’s algorithm, which requires k iterations of Dijkstra’s
algorithm. Dijkstra’s algorithm can be performed in time
O(m + n log n) on a graph with n vertices and m edges.
Therefore, the same time complexity applies to each path
for the Suurballe’s algorithm, which makes its complexity
O(km + kn log n). After generating k disjoint paths, the
optimal algorithm demands choice of paths that qualify the
distance separation criteria. This process requires n2 time,
which means the total complexity for the optimal algorithm is
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Fig. 5. iWPSP heuristic in Nobel-EU network

Fig. 6. MLW heuristic in Nobel-EU network

m + n log n + kn2, or O(kn2). The number of edge-disjoint
paths k is usually large to establish the algorithm’s optimality.
For most application scenarios, k is chosen to be 1000 [12].
Therefore, for a network with vertices less than 1000, the
complexity of the optimal algorithm goes up to O(n3).

iWPSP has a complexity of 2c2n2 log n, where c is the
average number of neighbors for vertices, the complexity for
choosing the waypoint node is O(n), where n represents the
number of nodes, and 2n log n is for Dijkstra’s algorithm
to calculate the two shortest paths. Therefore, the worst
case scenario is O(n2 log n) while the best case scenario is
O(n log n). Most of the physical topologies have an average
degree between two and three [23]. This means that c in our
complexity analysis is a small constant. This reduces the best
case time complexity of iWPSP to O(n log n). The complexity
of MLW is O(2n log n), which is the complexity for invoking
Dijkstra’s algorithm twice. The complexity for both of our
heuristics is much better than that of the optimal algorithm,
which is O(n3).

We present the execution time of the heuristics to demon-
strate their effectiveness compared to optimal algorithm in the



Fig. 7. MLW heuristic in Nobel-EU network with large radius

case of calculating two d-separation paths. The evaluation is
on a Linux machine with 3.16GHz Core 2 Duo CPU with
4GB memory. We use different dimensions of grid networks to
analyse the time complexity. The grid dimension ranges from
3×3 to 11×11, which means the number of nodes varies from
9 to 121. We show the time to calculate all the node pairs in
the topology. When calculating only one path pair that happens
more often in real-world scenarios, the time is exponentially
less. As shown in Figure 8, the x-axis is grid dimension and
the y-axis is the log-level algorithm execution time in seconds.
Both MLW and iWPSP algorithms show better execution time
compared to the optimal algorithm. For calculating all the
paths in 11×11 grid, MLW takes 20 s, iWPSP takes 65 s,
while the optimal algorithm takes greater than 3000 s. We can
observe that iWPSP has greater execution time compared to
that of MLW. This is because of the extra time of Dijkstra’s
algorithm and selecting qualifying waypoint nodes. However,
we observe that when calculating geodiverse paths in real-
world topologies, iWPSP is more efficient in calculating the
paths for node pair around the topology boundary. This is
because by selecting waypoints based on a distance and a delta
value, iWPSP has more control over the distance separated
from the two paths. One better algorithm might be combining
the two heuristics in calculating one topology, and this will be
analysed in future work.

B. Routing Performance Comparison

We now present simulations using fiber-level topologies
including Sprint [23], Level 3 [24], Internet2 [25], and Telia-
Sonera [26]. We carry out the simulation once for each
topology since there is no randomness in a given provider
topology. We use CBR (constant bit rate) traffic, sending from
each node to all others at a data rate of one packet per second.
There are three area-based challenges we have simulated.
From 20 to 40 s, the challenge occurs around Los Angeles,
from 60 to 80 s in Kansas City, while the last challenge occurs
at New York City from 100 to 120 s. The challenge locations
come from the flow robustness analysis [5], and our challenge
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Fig. 8. Complexity analysis and comparison

duration time is set as 20 seconds. We choose these different
challenge areas so that the most vulnerable area is around
Kansas City, due to its high betweenness as a major fiber
exchange point for the US. The next damage level is around
New York City. While it does not have many high-betweenness
nodes, the network is dense and more nodes are challenged in
a given radius. The least vulnerable among these big cities is
around Los Angeles. The radii of the challenge areas are 300
km. By assuming the correct estimation of the challenge radius
and position, we compare our protocol’s performance with
standard OSPF in terms of PDR (packet delivery ratio) as well
as delay. Packet delivery ratio is the ratio of packets delivered
divided to total packets sent, while delay is the time it takes
for the data packet to travel end-to-end. We use all the same
challenge areas throughout the topologies for easy comparison.
The iWPSP heuristic is used in the GeoDivRP for calculating
the geodiverse paths. MLW achieves the same PDR and delay
result as iWPSP when the links are carefully modified to make
sure paths calculated are d distance separated. Since ns-3 is
an event-driven network simulator and the algorithm execution
time is not included in the simulation time, the delay in ns-3
for both iWPSP and MLW is the same.

The Sprint physical network contains 77 nodes and 114
links. The PDR result for the Sprint network is shown in
Figure 10. We compare the performance of our GeoDivRP
with standard OSPF. The second challenge at Kansas City area
happens at 60 s and GeoDivRP shows substantial performance
improvement compared to OSPF. The PDR of OSPF drops
to 75 percent and takes 10 s to converge while the time for
GeoDivRP is within one second and the PDR only drops
two percent before it converges. The paths calculated by
GeoDivRP to bypass the challenge is shown in Figure 9. The
red circle shown in this figure is the challenges area. The
last challenge occurs from 100 s to 120 s and the difference
in PDR between OSPF and GeoDivRP is small, only about
one percent. This is because the challenge at New York City
has little effect on the connectivity of this overall topology.
The PDR for OSPF drops about one percent and takes ten
seconds to recover, and there is no noticeable PDR drop for



Fig. 9. Sprint topology under regional challenges
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our protocol. The first challenge happens at 20 s to 40 s and
there is no noticeable PDR drop for both of the protocols.
This is due to the same reason as in New York City and the
damage is even less.

The delay analysis for Sprint network is shown in Figure 11.
The reason that OSPF shows lower delay when the network
is under challenge compared to GeoDivRP is because most of
the data packets during the challenge have been dropped and
the lost packets are not counted as delay; this is why there is
a delay drop for OSPF before converging. Consider the first
challenge in Figure 11, the delay for OSPF drops from 20
to 30 s due to the packet drops, while GeoDivRP converges
and calculates geodiverse paths during that period of time and
shows one second higher in delay. However, the extra delay
is caused by extra path stretch due to routing packets around
the challenged area. We also notice one delay bump for OSPF
right after the challenge is finished. For example, in Figure 11,
from 40 to 50 s, there is one increase in delay for OSPF.
The same happens at 80 to 90 s, and 120 to 130 s. This is
because OSPF needs to converge again after the topology has
recovered from the challenge. In contrast, for our protocol, the
convergence time is still one second and no noticeable delay
increase is recorded.

The Level 3 physical network contains 99 nodes and 132
links. The PDR for the Level 3 network is shown in Figure 12.
Since Level 3 shares geographical similarities to the Sprint
network, we observe a similar PDR result. The challenge at
Kansas City area reduces the PDR for OSPF significantly; it
is even greater than for Sprint. This is because the Level 3
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network lacks some of the nodes and links from Seattle to the
Chicago area and the challenge around the Kansas City area
causes more damage to the PDR. As shown in Figure 13 using
Level 3 network. The similar challenge location as from the
Sprint network has caused more nodes and links to fail. We
are not showing the delay case for the Level 3 network as they
are similar to those of the Sprint network.

The Internet2 physical network contains 16 nodes and 24
links. The PDR for the Internet2 network is shown in Fig-
ure 14. The challenged PDR and delay show a similar trend.
The first challenge does damage to the network connectivity

Fig. 13. Level 3 topology under regional challenges
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and GeoDivRP converges within one second. The second
challenge in Kansas City area causes OSPF to drop around ten
percent in PDR and takes 10 s to converge and return the PDR
to normal. The Los Angeles challenge has small impact on the
network similar to the Sprint case. The delay analysis for the
Internet2 network is shown in Figure 15. For the same reason,
OSPF shows a lower delay compared to that of GeoDivRP
during challenges from 20 to 30 s, 60 to 70 s, and 100 to
110 s.

The TeliaSonera physical network contains 18 nodes and
21 links. The PDR for TeliaSonera is shown in Figure 16.
The second challenge at Kansas City area drops the PDR for
OSPF to around 50 percent. This significant drop is caused
by two reasons. First, the Kansas City node is connecting
multiple nodes between the east and west coast. Second, the
TeliaSonera network is very sparse so the damage from Kansas
City node is greater than that for the other networks. However,
GeoDivRP recovers from the damage in only one second and
limits the PDR drop within one percent. The PDR case for both
the second and third challenges are similar. At the same time,
OSPF drops about one percent of total packets and recovers
only after 10 s. The delay analysis is shown in Figure 17. The
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Fig. 17. TeliaSonera delay under regional challenges

delay for OSPF is lower during challenges since the dropped
packets are not counted in delay analysis. We notice that the
delay increase after the challenge for OSPF at 80 to 90 s
is larger than other challenge locations as well as the same
challenge location in other topologies. This is because OSPF
is using a path with more path stretch before convergence.

V. CONCLUSION AND FUTURE WORK

We have proposed two geodiverse heuristics for efficiently
solving the path geodiverse problem (PGD): iWPSP (iterative
WayPoint Shortest Path) and MLW (Modified Link Weight).
We have implemented both of the heuristics in ns-3 and
verified their effectiveness in providing reliable paths in the
face of area-based challenges. We have demonstrated the
effectiveness of the heuristics in calculating and choosing
different geographically diverse paths to meet the requirements
from higher layers and its efficiency in routing the data
traffic around the failure area. GeoDivRP shows significant
improvement in both packet delivery ratio compared to OSPF
and has comparable delay. The two heuristics for GeoDivRP
use different mechanisms to calculate geodiverse paths. By
carefully modifying the link weights, MLW is capable of
providing one geodiverse path using one iteration of Dijkstra’s



algorithm. However, it is difficult to provide solutions when
the paths required are for node pairs around the topology
boundary, and the choice of link weight need to be carefully
considered for different networks. On the other hand, iWPSP
requires one extra Dijkstra’s algorithm for each geodiverse
path than MLW, therefore, it takes a bit greater time to execute
and solve the PGD problem. However, by carefully selecting
waypoint node and the parameters d and δ, different topologies
are similar and iWPSP works better than MLW when dealing
with node pairs in topology boundaries.

For future work, we will implement these two heuristics
in a testbed to emulate its effectiveness in real-world routers
and examine the mechanisms to incorporate our geodiverse
routing protocol into the current Internet. We will extend this
work to analyse how the geographic multi-path mechanism
improves flow robustness. We will further extend this work
to wireless networks and wired-wireless hybrid networks. We
will incorporate our protocol with ResTP to test the protocol
stack and analyse the protocol performance with multiple geo-
diverse paths. We will fully analyse the relative benefits of the
two heuristics and their combination, and enable GeoDivRP to
automatically choose different heuristics in different network
topologies.
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