
Transactional Traffic Generator Implementation in ns-3

Yufei Cheng, Egemen K. Çetinkaya, and James P.G. Sterbenz
Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science
The University of Kansas, Lawrence, KS 66045, USA

{yfcheng, ekc, jpgs}@ittc.ku.edu

ABSTRACT
Traffic generators have been essential for representing real-
world traffic in network simulation studies. Furthermore,
Internet-like traffic is a necessity when analysing the impact
of different kinds of traffic on the network. In this paper,
we present the implementation details of our HTTP traf-
fic generator in the ns-3 network simulator. It is able to
generate Internet-like as well as user-defined HTTP traffic.
We further verify the correctness of the traffic distribution
function generation module as well as the transaction han-
dling mechanisms in this model. Based on different network
characteristics from previous work, we are able to generate
similar simulation results and carry out more detailed HTTP
simulations.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and Analysis; C.2.2 [Computer-
Communication Networks]: Applications— HTTP traf-
fic model

General Terms
Implementation, Analysis, Testing, Verification

Keywords
HTTP persistent, pipelined implementation, traffic distri-
butions, ns-3 simulation, Internet traffic

1. INTRODUCTION
A transactional traffic generator is an essential part for

network simulation of the Internet. It is responsible for in-
jecting synthetic traffic into the simulation according to a
model of how application users would behave in certain cir-
cumstances. As the major contributor of transactional traf-
fic, Hypertext Transfer Protocol (HTTP) [4, 11] is a perva-
sive application protocol and consumes a significant share of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wns3 2013 March 5, Cannes, France.
Copyright 2013 ACM ...$15.00.

application flow in the Internet. Web traffic has transformed
from plain-text Web pages to large size pages with embed-
ded objects. An HTTP traffic model is needed to accurately
represent and simulate Web traffic with the sustaining influ-
ence of HTTP over the Web.

Simulation has become the backbone for network traffic
research, since the simulation environment provides easily
accessible resources to study new protocols and models. As
an open-source simulator, ns-2 [1] has been widely employed
in the academic research community. However, in response
to a number of deficiencies, the ns-3 discrete event network
simulator [2] is proposed as its successor and is still under
development. The ns-3 network simulator provides greater
flexibility, evolvability, modularity, and the support of het-
erogeneity including hybrid wired and wireless models.

Despite its advantages, ns-3 is relatively new with some es-
sential models missing from its release distribution [24]; ex-
isting built-in traffic generators are limited to BulkSendAp-
plication for bulk data transfer and OnOffApplication for
constant bit rate (CBR) application. To have a fairly com-
plete set of traffic generators for simulations, we implemented
this HTTP traffic generator [22] and contributed to a more
complete ns-3 protocol list. There are a set of different
methodologies supporting the development of network Web
traffic generators: page-based, behavior-based, and connection-
based [5, 9]. We chose the connection-based model for our
traffic generator implementation. We extend and modify the
source variable generation model from the Packmime-HTTP
traffic generator [5] in ns-2 to work with ns-3. Furthermore,
we add an extra working mode to our generator, which is
the user-defined mode. In this working mode, users will be
able to provide source variables to the HTTP transactions
and be able to analyse the simulation scenarios they intend
to test.

In this paper, we present our ns-3 implementation of the
HTTP traffic generator and analyse its performance under
different network characteristics. The rest of the paper is
organised as follows: We present related work about appli-
cation traffic models in Section II. Section III presents the
implementation details of the HTTP traffic generator. We
present validation results and performance results in Sec-
tion IV. Finally, we conclude the paper in Section V.

2. BACKGROUND AND RELATED WORK
The HTTP protocol is now the de facto content delivery

protocol, analysing its unique characteristics as well as its
requirement on the network systems is required. However,
to be able to develop an accurate HTTP traffic generator,

we must first understand Web traffic characteristics. In the
following section, we introduce the Web traffic features and
the methodologies we use to develop our HTTP generator.

2.1 Web Traffic Characteristics
Web access is frequent, short request-response transac-

tions based on bursts of many small Web requests and re-
sponses. Response messages are small to keep transmis-
sion time down; embedded objects per Web page and the
frequency of smaller objects are increasing [21]. Although
there are some very large responses, 85% of all responses
are 10,000 bytes or less [12]; over 90% of the requests are
between 100 and 1,000 bytes in size. There is also a year-
to-year increase in the number of embedded objects on each
Web page [21]. To make the burstiness worse, Web users
tend to switch rapidly from site to site, as can be verified
from both client [10] and server side traces [3]. In addition,
there are other user interactions such as clicking the browser
stop or reload buttons while one page is loading [21]. All
these characteristics contribute to the bursty nature of Web
traffic.

Several works have shown that Web traffic is statistically
self-similar [9, 16, 19], that is bursty on several or all time
scales. To be able to accurately represent Internet traffic,
we need to generate traffic that carries self-similarity fea-
tures. We choose the source variable generation model from
PackMime-HTTP [5], which has been verified to be able to
generate self-similar traffic that matches real trace data.

2.2 HTTP Protocol
HTTP is a stateless application protocol using the client-

server paradigm. Its operation is transactional as the client
sends one or a series of requests to the server, and the server
responds to the request with response messages. HTTP is
an application layer protocol and presumes a reliable TCP
transport layer for end-to-end data transfer. The original
version HTTP 1.0 [4] uses a separate connection for each
request-response transaction. HTTP 1.1 [11] introduces three
major performance enhancement mechanisms, with the first
one using persistent connections to reduce the latency by al-
lowing several request-response messages over a single TCP
connection. The second performance enhancement in HTTP
1.1 is the pipelining of a series of requests on a persistent
connection without waiting for responses for the previous re-
quests. Note that the pipelining option can only be enabled
when the persistent connection option is used. Thirdly, the
parallel connection option is another important enhance-
ment. It allows multiple transport connections opened for
one Web page transaction and further lowers the loading la-
tency. Our model does not support this later option in this
release. We plan to incorporate it in the next release and
compare its performance with that of other options.

2.3 Transactional Traffic Generators
There are mainly three types of transactional traffic gen-

erators: page-based, behavior-based, and connection-based.
Page-based traffic generators only focus on the Web page
details and fail to represent other major characteristics of
HTTP traffic [21], such as the server delay time and Web
request gap time. On the other hand, behavior-based gener-
ators [8] simulate the ON/OFF states in which the ON state
represents active Web-request and OFF state represents the
silent period after all objects are retrieved. However, these

models fail to accurately represent the transport connection
characteristics, such as the gap time among opening new
transport connections.

Connection-based models [5] provide a better alternative
and their advantages have been shown [13, 23]. A connection-
based implementation models TCP connections in terms of
connection establishment rates, request/response data sizes,
and gap time among objects within the connection. Syn-
thetic traffic is injected into the simulation according to
the distribution models of how users would behave in Web
browsing activities. We developed our HTTP traffic model
based on TCP connections between Web servers and clients,
with each node acting as either server, client, or both. The
model can run over both wired and wireless networks simu-
lated with node mobility.

Scalability is another major factor for HTTP traffic gener-
ation to cope with ever-changing Web traffic characteristics.
The page-based model [15] successfully captures Web traf-
fic behavior when the model was implemented; however, it
focuses on user-browsing behavior and constructs detailed
Web pages. As Web traffic continues to change, the model
fails to represent new Web browsing behavior as well as in-
creasing size of embedded objects in Web pages. Therefore,
a traffic model with scalability is necessary to capture Web-
browsing behavior, as well as to predict its behavior in the
future. Furthermore, peer-to-peer traffic is gradually tak-
ing a leading role in network traffic. The connection-based
model [5] is scalable to Web traffic evolvement and and can
incorporate a peer-to-peer traffic model when needed.

Based on the connection-based model [5], the PackMime-
HTTP model in the ns-2 network simulator has been vali-
dated at packet-level by comparing synthetic traffic gener-
ated from simulation with measured. However, the model
is problematic in that it treats a collection of clients as a
single client and a collection of servers as a single server.
For example, a campus network that contains 100s of clients
and tens of servers will be abstracted to one server and one
client in this model. This is a useful simplification in the case
of wired network since it can easily replicate a campus local
network connecting to the Internet. However, when simulat-
ing wireless network, especially after introducing mobility to
the hosts, the simplification in this model is too restrictive.

Therefore, we use the connection-based model from the
Pack-
Mime-HTTP generator with one modification to take indi-
vidual Web servers and clients into consideration. One node
can act as either server or client based on the start-time con-
figuration of the simulation. This is advantageous as we can
simulate both wired and wireless networks, with or without
node mobility. For example, we can install the HTTP traffic
generator in some of the nodes in the network, while running
other traffic types in the remaining nodes, which gives the
traffic generator more flexibility in simulation process.

3. TRAFFIC MODEL IN ns-3
This section describes the traffic model in our implemen-

tation of the HTTP traffic generator. This model is able
to generate HTTP 1.0 traffic as well as HTTP 1.1 traffic
with persistent connection and pipelining. The only feature
lacking for HTTP 1.1 is the parallel TCP connection option
planned the next code release. All the major attributes used
in this implementation are listed in Table 1. The relation-
ships among all of the classes implemented for this model

Table 1: HTTP model attributes and their default values
Attribute Defaults Summary

MaxSessions 10 Number of Web sessions for the http simulation
InternetMode true Working mode is Internet-like or user-defined
Persistent true Connection is using persistent or not
Pipelining true Connection is using pipelining or not
UserNumPages 2 User defined number of Web pages for each Web session
UserNumObjects 2 User defined number of Web objects for each Web page
UserServerDelay 0.1 s User defined server delay time to send out the Web response
UserPageRequestGap 0.2 s User defined request gap time between two adjacent Web page requests
UserObjectRequestGap 0.01 s User defined request gap time between two adjacent Web object requests
UserRequestSize 100 B User defined Web request size
UserResponseSize 2048 B User defined Web response size

are shown in Figure 1. The two major operations of our
model are source variable generation and transactions han-
dling, which we will discuss later in this section.

The model is capable of generating both Internet-like traf-
fic and user-defined traffic, which are the two working modes
of this generator. The difference between them is how the
source variables are provided. In the Internet-like mode,
we generate each source variable automatically based on its
relative stochastic distribution function. Furthermore, all
the distributions are calculated to represent two real-world
packet traces [6, 21]. By following the source variable gener-
ation module [5], this generator can simulate network traffic
that replicates real-world Internet traffic.

The user-defined mode is designed for the users who want
to generate specialised network traffic, in which all the source
variables in this model can be provided as parameters. The
mode is designed to run simulations with detailed scenario
settings controlled by the users. For example, users can test
how different Web object sizes affect the network perfor-
mance by tuning them while fixing all the other parameters.
The two working modes are designed to suit most of the
traffic generation requirements.

3.1 Source Variable Generation
The source variable generation model is responsible for

generating HTTP parameters for the Internet-like mode.
MaxSessions is a user-defined value that specifies the number
of Web sessions in the entire simulation process. The other
major variables are: NumPages, ObjectsPerPage, ServerDe-
lay,PageRequestGap, ObjectRequestGap, RequestSize, and Re-
sponseSize. We use source variable generation functions to
sample them, with each function for one of the parameters.
NumPages and ObjectsPerPage are the number of pages for
each Web session and the number of objects within one Web
page, respectively. Both of them are modeled by the Dis-
crete Weibull distribution [5] but with different distribution
parameters. PageRequestGap is the inactive interval between
two intermediate Web pages, while ObjectRequestGap is the
interval for intermediate Web objects within a page. Both
of them are fitted well by a combination of Normal and
Gamma distributions [5]. ServerDelay is the time for the
Web server to process the request, modeled by the Inverse
Weibull distribution [5]. The maximum server delay is set
as 10 s to avoid generating large delay values. For the same
reason, we set the maximum request gap time as 100 ms.

Both distributions for RequestSize and ResponseSize are
implemented in the HttpFileSize class, and they are fitted

by Discrete Weibull distributions [5]. The mean of Respons-
eSize is larger than that of RequestSize. We assume the
parameters in our model are uncorrelated with one another
so that the generation of one parameter is independent of
the other ones; this assumption has been verified with ex-
periments in previous work [5, 8]. The distribution functions
for all the variables are shown in Table 2.

As shown in Figure 1, the HttpClient and HttpServer

applications are responsible for the major functionalities,
such as generating the transactional traffic, handling trans-
actional processes, as well as recording results. When the
HTTP model starts, the HttpClient and HttpServer appli-
cations are installed in client and server nodes, respectively.
The HttpClient application starts when a new TCP con-
nection is initiated. On the other hand, the HttpServer ap-
plication starts from the beginning of the simulation. The
HttpController class controls the source variable genera-
tions and schedules the sending events for both the client
and server. The user can define the number of clients and
servers, not restricted to one client interacting with one
server. In other words, each client can communicate with
multiple servers, and one server can respond to multiple
clients.
HttpClient starts by running HttpDistribution, which

we develop for generating HTTP parameters. This imple-
mentation of our HTTP traffic generator provides several
ns-3 RandomVariable objects for specifying distributions of
HTTP source variables. It is based on the source code pro-
vided by PackMimeHTTP in ns-2 [1] and modified to fit
into the ns-3 RandomVariable framework. HttpRandomVari-
able includes several subclasses with each one responsible
for sampling one variable. For each Web session, the client
first samples the number of objects for a specific TCP con-
nection from the distribution of HttpNumPages and HttpOb-

jsPerPage and sums up all the objects for the pages in each
Web session. There are two gap times including HttpObjec-

tRequestGap and HttpPageRequestGap as mentioned before.
For each one of the requests, the client node also samples the
HTTP request and response sizes based on HttpFileSize.

3.2 Transactions Handling
There are two types of application data units (ADUs) in

this generator, RequestAdu and ResponseAdu. After gener-
ating all the necessary source variables for both the Http-

Client and HttpServer as we mentioned previously, this
model saves the generated parameters into the respective
ADUs. For example, the HttpObjectRequestGap and HttpP-

Figure 1: HTTP class diagram

Table 2: Transactional traffic model parameters
Parameters Distributions Model class

NumPages Discrete Weibull HttpNumPages

ObjectsPerPage Discrete Weibull HttpObjsPerPage

ServerDelay Inverse Weibull HttpServerDelay

PageRequestGap Normal & Gamma HttpPageRequestGap

ObjectRequestGap Normal & Gamma HttpObjectRequestGap

RequestSize Discrete Weibull HttpFileSize

ResponseSize Discrete Weibull HttpFileSize

ageRequestGap will be saved in the RequestAdu, while the
HttpServerDelay be saved in ResponseAdu. The Reques-

tAdu and ResponseAdu are saved to the AduContainer in
sequence. After saving all the ADUs in AduContainer, we
make two copies and give both client and server one copy.
The reason for doing this is to keep track of both the sending
and receiving events. For example, when the server receives
1500 B of the Web request, it knows which response cor-
responded to this request and sends the correct response
back to the client. The HttpController is responsible for
managing the two ADU containers and scheduling the data
sending events. The AduContainer class is designed to work
with both HTTP 1.0 and HTTP 1.1, with the latter having
either persistent connection and/or pipelining. When each
ADU is sent out from the client or server, HttpController
removes it from the corresponding AduContainer and con-
tinues with the next ADU until the container for both sides
are empty, which notifies the end of one Web session. The
model continues with the next Web session.

As described before, each side of the node pair will be
installed with either the client or server application. The
server starts from the beginning of the simulation and listens
for request ADUs from the associated clients, while the client
starts when one transport connection is established. The
client first checks the HTTP version defined by the user. If
it is HTTP 1.0, the client sends the next request only after
receiving the response for the previous request; for an HTTP
1.1 connection, the client also samples the inter-request gap
times based on HttpGapTime and sends requests after the gap
time without waiting for the previous responses. The model
repeats this process until all the requested ADUs are sent
or have a timeout without receiving any responses. This
timeout value is defined as PageTimeout and it is a user
tunable parameter. On the server side, when a RequestAdu

arrives, the server locates it in server AduContainer. If the
model finds one match, the Web request is deleted from the
server AduContainer and the corresponding ResponseAdu is
sent to the client after ServerDelay. This process will repeat
until the requests are exhausted and all the responses are
received by the client, following the next Web session. When
all the Web sessions are finished transferring, the transport
connection is closed and simulation is ended.

The result recording logic is triggered when one Web page
is fully received. We consider the object delivery ratio and
the response latency for each Web page as the performance
metrics. If one Web page is not timed out, the object delivery
ratio should always be one when using a reliable transport
protocol such as TCP. The response latency is the time when
client sent out the first request until the last byte of response
for this specific Web page has been received. We have im-
plemented our own result tracing system independent of the
ns-3 built-in, which is included in our HTTP distribution.
The reason behind this choice that for transactional traffic,
users care more about the latency as well as the delivery
ratio of the Web pages. It would be really difficult, if not
impossible, to add tracing events in ns-3 notifying when a
Web page is finished since the tracing events can only get
information about how many TCP segments have been re-
ceived by the node. There is no way to distinguish between
two intermediate Web objects. This means that the result
tracing logic is highly dependent on the HTTP model itself.
When each page has finished receiving, we record how long

it takes to successfully transfer the whole Web page. If TCP
has timed out, we record what percentage of the Web page
has been successfully delivered. All the tracing results are
saved in different files and available to use after the simula-
tion.

4. SIMULATION RESULTS
In this section, we present the simulation results con-

ducted with the ns-3 network simulator [2] to analyse the
performance of HTTP in different network conditions. Al-
though the network characteristics data from [12] is aging,
we still use it because this is the most detailed data pub-
lic available and verified. Furthermore, this paper provides
baseline results to compare against.

Several recent works have proposed Web traffic models
based on current Web traffic data. One paper analyses Web
traffic from 2006 to 2010 [14], capturing browsing behavior
from more than 100 countries. Another recent paper [20]
proposes their Web traffic models based on the top one mil-
lion visited Web pages. We plan to test these datasets and
models and may incorporate them into a future version of
our ns-3 HTTP model if verified.

4.1 Scenarios and Metrics
Previous work [12] has defined characteristics for different

networks including maximum segment size (MSS), round
trip time (RTT), and the bandwidth for network links as
shown in Table 3. Some of the networks are from mea-
surement of the actual systems. For example, a 10 Mb/s
Ethernet connection was measured between two Sun hosts.
For some of the other networks, parameters were estimated;
for example, Modem and ISDN used theoretical bandwidths.
The networks with N-Modem and N-F-Internet [18] repre-
sents two similar network characteristics with Modem and
Fast-Internet, respectively. They are just the same networks
with a slight different characteristics. We include them to
verify our model. The networks with the HTTP workloads
are used to test how different size of Web pages and number
of request-response transactions affect HTTP performance
and they are shown as follows [12]:

• Small Page: single 5 kB Web page

• Medium Page: single 25 kB Web page

• Large Page: single 100 kB Web page

• Small Cluster: single 6651 B page with embedded
3883 B and 1866 B images

• Medium Cluster: single 3220 B page with three em-
bedded images of sizes 57613 B, 2344 B, and 14190 B

• Large Cluster: single 100 kB page with 10 embedded
25 kB images

In addition to these workloads, we also use a varying work-
load with a range of 10 to 1000 Web objects with the fixed
object size 10 kB, to test different HTTP versions: pipelin-
ing, persistent, and non-persistent connection. We will show
the results in Section 4.3.

Our validation scenario consists of two nodes, one server
and one client, with a point-to-point link connecting them.
The transport protocol in this case is TCP. We use user-
defined mode of our generator and use the following vari-
ables:

Table 3: Network characteristics
Network RTT (ms) BW (Mb/s) MSS (B)

Fast-Internet 89 1.02 512
N-F-Internet 80 1.17 1460

ADSL 30 6 512
Ethernet 0.7 8.72 1460

Fast-Ethernet 0.7 100 1460
Modem 250 0.0275 512
DirecPC 500 1 512

Slow-Internet 161 0.102 512
ISDN 30 0.122 512

WAN-Modem 350 0.0275 512
WAN-ISDN 130 0.122 512
N-Modem 150 0.0275 1460

• UserObjectRequestGap: 0.01 s

• UserServerDelay: 0.1 s

• UserPageRequestGap: 0.2 s

• UserPageRequestSize: 256 B

We only consider a wired scenario in this paper, with only
one server-client pair analysed. We plan to perform more
detailed wireless simulations later with varying number of
server-client pairs, including based on our previous work
simulating wireless scenarios [7]. We choose UserObjectRe-
questGap, UserServerDelay, and UserServerDelay based
on the most frequent values in our distribution model, and
use 256 B of request size that would fit in one TCP seg-
ment for most real-world MTUs. This way the latency is
mainly dependent on the response size. For the simulation
metric, we use the Web page response latency and do not
present object delivery ratio since TCP guarantees the de-
livery of data segments, and all the cases we tested do have
100% object delivery ratio. We use HTTP 1.1 with persis-
tent connection and pipelining for all the simulation cases
except for the last one in which we test how different HTTP
versions would affect the response latency.

4.2 Distribution Module Validation
We verify that the source variable generation function

can generate reasonable results compared to the distribu-
tion function described in previous work [5, 8, 17]. This is
designed to test the operation of HttpRandomVariable in ns-
3. We choose the RequestSize, ResponseSize, RequestGap
and ServerDelay times as examples, and use a complemen-
tary cumulative distribution function (CCDF) to represent
the results.

The Web object sizes include both request and response
file sizes; the generation function for both is the Discrete
Weibull distribution. However, the size of responses is sig-
nificantly larger than that of requests. As we can see from
Figure 2, for response sizes, 78% are smaller than 10 kB, and
only 1% larger than 100 kB. While for request sizes, 97.5%
are smaller than 1460 B, which would fit in one TCP seg-
ment. These two source variables follow the self-similar dis-
tribution as the number of large file sizes is small, while the
number of small file sizes is large. This phenomena matches
the real-world Internet traffic [9].

C
C

D
F

File Size [KB]

Request Size
Response Size

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120

Figure 2: CCDF of HTTP file sizes

Two major time values in this model are the request gap
time and server delay time as shown in Figure 3. The re-
quest gap time is the delay between two subsequent Web
objects, while the server delay time is the latency for the
server to process the ADU from clients and trigger the re-
sponse sending mechanism. The request gap time follows a
mixture of Normal and Gamma distributions [5]. Based on
the generation functions for each time variable; 90% of the
request gap time is below 10 ms, while 1% are larger than
25 ms. The server delay time follows an Inverse Weibull dis-
tribution, 90% are below 500 ms, with only 1% larger than
1000 ms. Both of the two time values follow self-similar dis-
tributions. The maximum request gap time is set as 100 ms,
which explains the cutoff of the request gap time at that time
value.

C
C

D
F

Time [ms]

Request Gap
Server Delay

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500

Figure 3: CCDF of HTTP delay times

4.3 Simulation Results
The first simulation scenario is to test how different work-

loads affect network performance in terms of response la-
tency. The result is shown in Table 4 with the time scale in
milliseconds. As the Web page sizes increase, the latency for
all the networks increases as expected. Although some of the
values are not exactly the same as the theoretical values [12],
they are of the same order of magnitude. Furthermore, we
additionally take server processing delay into consideration,
which is another factor that contributes to the overall la-
tency. When plotting the performance of all the networks,

we did not include the WAN-Modem and N-Modem curves
because their performance are very similar to the Modem
curve. For the same reason, we do not present WAN-ISDN
here and show the ISDN curve.

We further test how the response size would affect HTTP
performance. We use the same network configuration as
previous simulations. As the response size increases, the re-
sponse latency increases for both of the fast network curves
in Figure 4 as well as the slow networks in Figure 5. While
for the slow network, the increase degree is larger, they are
more sensitive to the increasing size of responses. For exam-
ple, as shown in Figure 5, the latency of Modem increases
from 15 s to 33 s when response size increases from 40 kB
to 100 kB; however the latency only increases from 10 s to
15 s for DirecPC.

The latency for the fast networks in Figure 4 is within
the delay range tolerable for everyday use. We can see that
for Fast-Internet, the latency increases to 1.5 s when the
response size is 100 kB. The latency is a little bit larger
than we normally desire in current Web browsing. This is
because all the network data from [12] is estimated 10 years
ago and dated, as mentioned before.

R
es

po
ns

e
La

te
nc

y
[s

]

Response Size [kB]

Fast-Internet
N-Fast-Internet

ADSL
Ethernet

Fast-Ethernet

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

Figure 4: Fast network with different response sizes

R
es

po
ns

e
La

te
nc

y
[s

]

Response Size [kB]

Modem
DirecPC

Slow-Internet
ISDN

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 10 20 30 40 50 60 70 80 90 100

Figure 5: Slow network with different response sizes

Furthermore, we compare the performance among per-
sistent connections with or without the pipelining option,
representing the HTTP 1.1 version, and the non-persistent
connections representing HTTP 1.0. We are able to demon-

strate the performance improvement of HTTP 1.1 with dif-
ferent options. The workload is from 0 to 1000 Web objects
with 10 kB in size. The network we use is Fast-Internet.
The result is shown in Figure 6 with response latency as the
metric.

As expected, we can see that HTTP with non-persistent
connections performs worst. When the number of Web ob-
jects reaches 1000, the response latency is 800 s. The per-
sistent connection without pipelining improves the perfor-
mance greatly: when carrying same number of Web objects,
the latency is only 300 s. Furthermore, when the pipelining
option is included in the persistent connection, the latency
further drops to 100 s. All the three curves are linear, be-
cause all the Web objects have the same size, so as the num-
ber of Web objects increases, the latency increases linearly.
The slope of the three curves for non-persistent, persistent,
and persistent with pipelining are 0.82, 0.28, and 0.09 re-
spectively. The persistent connection option has increased
the performance more as it drops the slope from 0.82 to 0.28,
while the pipelining option further drops the slope from 0.28
to 0.09. We plan to incorporate the parallel connection op-
tion in the future performance comparison cases to have a
complete list of HTTP options.

R
es

po
ns

e
La

te
nc

y
[s

]

Number of Web Objects

Non-Persistent
Persistent
Pipelining

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

Figure 6: Performance of different HTTP versions

5. CONCLUSIONS
In this paper we presented the implementation details of

our HTTP traffic generator for the ns-3 network simulator
and validated its performance. Our results confirm both the
source variable generation functions and latency for different
networks when carrying HTTP traffic. We analyse HTTP
performance over different network conditions with differ-
ent response sizes. Our results demonstrate that latency is
inversely proportional to response size. The larger the re-
sponse size is, the larger the latency required to transfer.
The performance comparison case among different HTTP
versions confirms the improvements of HTTP 1.1 options.
As part of future work, we plan to include HTTP with par-
allel connection option.

Acknowledgments
We would like to acknowledge the assistance of Justin P.
Rohrer, and the members of the ResiliNets research group
for their advice and suggestions which helped us with this

Table 4: Latency of different networks [ms]
Network Small page Medium page Large page Small cluster Medium cluster Large cluster

Fast-Internet 477.5 819.6 1471.7 808.5 1456.3 3852.8
N-Fast-Internet 277.4 587.2 1123.0 510.3 1141.2 3158.0

ADSL 155.5 258.3 395.3 256.4 411.2 935.4
Ethernet 7.1 26.0 96.7 16.5 71.0 262.3

Fast-Ethernet 2.5 5.4 11.6 4.4 11.7 25.7
Modem 2941.3 9700.3 33314.6 6829.5 25468.8 91694.2
DirecPC 2546.5 7329.5 15125.6 5501.0 12969.6 27129.3

Slow-Internet 1293.4 3653.1 10019.7 2769.2 8185.2 26695.3
ISDN 465.7 1884.6 7207.5 1263.4 5359.9 20106.1

WAN-Modem 3441.3 10580.1 34194.4 7669.4 26648.6 93574.0
WAN-ISDN 922.2 2341.1 7664.03 1922.7 6116.4 21562.6
N-Modem 3466.9 9456.1 31897.5 6880.8 24191.6 86515.7

implementation. We would also like to thank Tom Hender-
son and the ns-3 development team for their responsiveness
to issues with ns-3 platform. We acknowledge Asifuddin
Mohammad for an early version of the code that provided a
starting point for this work.

6. REFERENCES
[1] The network simulator: ns-2.

http://www.isi.edu/nsnam/ns/, December 2007.

[2] The ns-3 network simulator. http://www.nsnam.org,
July 2009.

[3] M. F. Arlitt and C. L. Williamson. Web Server
Workload Characterization: The Search for Invariants.
In ACM SIGMETRICS, pages 126–137, 1996.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk.
Hypertext Transfer Protocol – HTTP/1.0. RFC 1945
(Informational), May 1996.

[5] J. Cao, W. Cleveland, Y. Gao, K. Jeffay, F. Smith,
and M. Weigle. Stochastic Models for Generating
Synthetic HTTP Source Traffic. In IEEE INFOCOM,
volume 3, pages 1546–1557, Mar. 2004.

[6] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun. On
the Nonstationarity of Internet Traffic. In ACM
SIGMETRICS, pages 102–112, New York, NY, Jun.
2001.

[7] Y. Cheng, E. K. Çetinkaya, and J. P. Sterbenz.
Performance Comparison of Routing Protocols for
Transactional Traffic over Aeronautical Networks. In
Intl. Telemetering Conf. (ITC), Oct. 2011.

[8] H. Choi and J. O. Limb. A Behavioral Model of Web
Traffic. In IEEE ICNP, pages 327–334, Oct. 1999.

[9] M. E. Crovella and A. Bestavros. Self-similarity in
World Wide Web Traffic: Evidence and Possible
Causes. IEEE/ACM Trans. Netw., 5:835–846, Dec.
1997.

[10] T. D. Dyer and R. V. Boppana. Routing HTTP traffic
in a mobile ad hoc network. In IEEE MILCOM,
volume 2, pages 958–963, Oct. 2002.

[11] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFC 2817.

[12] J. Heidemann, K. Obraczka, and J. Touch. Modeling
the Performance of HTTP over Several Transport

Protocols. IEEE/ACM Trans. Netw., 5(5):616–630,
1997.

[13] F. Hernandez-Campos, K. Jeffay, and F. D. Smith.
Modeling and Generating TCP Application
Workloads. In BROADNETS, pages 280–289, Sep.
2007.

[14] S. Ihm and V. S. Pai. Towards Understanding Modern
Web Traffic. In ACM SIGCOMM conference on
Internet measurement conference, IMC ’11, pages
295–312, New York, NY, 2011. ACM.

[15] L. Le, J. Aikat, K. Jeffay, and F. D. Smith. The
Effects of Active Queue Management on Web
Performance. In ACM SIGCOMM, pages 265–276,
New York, NY, 2003. ACM.

[16] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the Self-similar Nature of Ethernet Traffic.
IEEE/ACM Networking, 2(1):1–15, Feb. 1994.

[17] B. A. Mah. An Empirical Model of HTTP Network
Traffic. In IEEE INFOCOM, volume 2, pages 592–600,
Kobe, Japan, 1997.

[18] H. F. Nielsen, J. Gettys, A. Baird-Smith,
E. Prud’hommeaux, H. W. Lie, and C. Lilley. Network
Performance Effects of HTTP/1.1, CSS1, and PNG.
In ACM SIGCOMM, pages 155–166, New York, NY,
Oct. 1997.

[19] V. Paxson and S. Floyd. Wide Area Traffic: the
Failure of Poisson Modeling. IEEE/ACM Networking,
3(3):226–244, Jun. 1995.

[20] R. Pries, Z. Magyari, and P. Tran-Gia. An HTTP Web
Traffic Model based on the Top One Million Visited
Web Pages. In EURO-NGI, pages 133–139, June 2012.

[21] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott.
What TCP/IP Protocol Headers Can Tell Us About
the Web. In ACM SIGMETRICS, pages 245–256,
2001.

[22] J. P. Sterbenz. Ns3-models.
https://wiki.ittc.ku.edu/resilinets/Ns3-Models,
September 2010.

[23] M. Weigle. Improving Confidence in Network
Simulations. In Winter Simulation Conference, pages
2188–2194, Dec. 2006.

[24] E. Weingartner, H. vom Lehn, and K. Wehrle. A
Performance Comparison of Recent Network
Simulators. In IEEE ICC, pages 1–5, Jun. 2009.

