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ABSTRACT

Routing protocols are essential to the performance of wire-
less networks especially in mobile ad-hoc scenarios. The
development of new routing protocols requires comparing
them against well-known protocols in various simulation en-
vironments. In this paper, we present an overview of the
well-known MANET routing protocols and the implementa-
tion details of the DSR routing protocol in the ns-3 network
simulator. We verify DSR routing performance under var-
ious scenarios and compare its performance against other
protocols implemented in ns-3: AODV, DSDV, and OLSR.
Our results show that the performance of DSR shares simi-
lar characteristics with AODV yet has slightly higher overall
performance results in terms of the routing metrics we use.

Categories and Subject Descriptors

1.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and Analysis; C.2.2 [Computer-
Communication Networks]: Network Protocols — rout-
ing protocols

General Terms

Implementation, Analysis, Testing, Verification

Keywords
DSR implementation, MANET, mobile ad hoc routing pro-

tocol, ns-3, AODV, DSDV, OLSR

1. INTRODUCTION

Mobile ad hoc networks (MANETS) [5] are self-configuring
networks with mobile nodes connected by wireless links to
form an arbitrary topology without an infrastructure. In
MANETS, nodes self-organise and act as both end and in-
termediate systems. The two major challenges for routing
in MANETSs are the dynamic topologies caused by mobil-
ity, and maintaining connectivity with wireless channels and
nodes moving out of range from one another.
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Many routing protocols for MANETS have been proposed
with four of them arguably the most prominent ones in the
research community: AODV [18, 16], DSDV [17], DSR |8,
9], and OLSR [4], due to their early emergence and varied
characteristics. The operational characteristics and perfor-
mance of these four protocols provide an important baseline
with which new protocols should be compared.

Simulation has become the backbone for MANET research,
since the simulation environment provides easily accessible
resources to study new protocols or models [5, 10]. As an
open-source simulator, ns-2 [13] has been widely employed
in the academic research community. However, in response
to a number of deficiencies, the ns-3 discrete event network
simulator [14] is proposed as its successor and is still un-
der development, providing greater flexibility, evolvability,
modularity, and the support of heterogeneity including hy-
brid wired and wireless models.

Despite its advantages, ns-3 is relatively new with lim-
ited number of protocol models incorporated into its release
distribution [19]; existing built-in MANET routing proto-
cols are limited to the optimised link state routing (OLSR)
and ad hoc on-demand distance vector (AODV) protocols.
We have implemented destination-sequenced distance vector
(DSDV) protocol and incorporated it in the distribution [11].
To have a fairly complete set of protocols for performance
comparison, we have developed an ns-3 implementation of
the dynamic source routing (DSR) protocol'. DSR is one
of the major MANET routing protocols proposed [9], and it
provides a baseline reactive source routing for performance
comparison and for reproduction of previous results (e.g. [1])
in the ns-3 environment.

In this paper, we present our ns-3 implementation of the
DSR routing protocol and compare its performance with
other existing MANET routing protocol models in ns-3. The
rest of the paper is organised as follows: Section 2 presents
background and related work on MANET protocols. Sec-
tion 3 presents the implementation details of DSR in ns-
3. Performance evaluation and comparison of DSR against
AODV, DSDV, and OLSR are presented in Section 4. Fi-
nally, Section 5 is our conclusions and future work.

2. BACKGROUND AND RELATED WORK

In this section, we present background information about
MANETS, and briefly describe the four MANET routing
protocols simulated in this paper: DSR, AODV, DSDV, and
OLSR.

!Source code is at http://code.nsnam.org/tomh /ns-3-dsr-2



2.1 Routing Protocol Types

MANET routing protocols can be classified into two cat-
egories based on their update mechanisms: proactive and
reactive. We briefly these types; a more detailed explana-
tion is presented in our companion paper on DSDV [11].

2.1.1 Proactive Table-Driven Routing Protocols

Proactive routing protocols maintain updated routing in-
formation of all the nodes in the network by periodically
distributing routing tables among each other. The advan-
tage is that the routes to any destination are ready to use
when needed. However, routing tables grow with the size
and node density of the network, rather than the number of
routes actually needed. The overhead of flooding route ad-
vertisements to maintain convergence is a major drawback
of proactive protocols. Destination-sequenced distance vec-
tor (DSDV) [17] and optimised link state routing (OLSR) [4]
are two major proactive routing protocols. DSDV maintains
a routing table with entries for all the nodes. In order to
reduce the amount of overhead, two types of update packets
are used, with one type carrying all the available routing
information while the other one carries only the informa-
tion changed since the previous full update. In order to
avoid routing loops, a sequence number is used. OLSR is
a point-to-point protocol based on the traditional link-state
algorithm. Tt uses HELLO messages at each node to dis-
cover neighbor information and select a set of multipoint
relays (MPRs). Only MPRs are allowed to rebroadcast the
received messages. OLSR floods topology data frequently
enough over the network to make sure all nodes are syn-
chronised with link state information.

2.1.2  Reactive On-Demand Routing Protocols

Unlike proactive routing protocols, reactive routing pro-
tocols construct routes only when needed for data transmis-
sion. When a route to a new destination is required, the
node initiates a route request and must wait until the route
is discovered. There is no need to distribute their rout-
ing information periodically or to maintain routes for all
the nodes in the network. The disadvantage is the delay in
finding routes to new destinations. Dynamic source routing
(DSR) [9] specified in RFC 4728 [8] and ad hoc on-demand
distance vector (AODV) [18, 16] are two well-studied reac-
tive routing protocols. DSR is an on-demand routing pro-
tocol based on the source routing concept. It contains two
major working phases: route discovery and route mainte-
nance. When a node initiates packets to one destination, it
first searches its route cache for saved route entries. If not
found, it initialises the route request process. DSR carries
the full routing information from the source to the destina-
tion in the packet header. Route maintenance is the process
to validate the source route and is managed using either
route error messages or acknowledgements. AODV is a dis-
tance vector routing protocol that operates only on demand.
When a route does not exist to a give destination, a route
request (RREQ) message is flooded by the source and by the
intermediate nodes that do not have previous routes in their
routing table. Once the RREQ message reaches the destina-
tion, the node responds by unicasting a route reply (RREP)
message. This way nodes along this path set up forward-
ing entries in their routing tables and form the whole route.
AODYV uses sequence numbers created by the destination for
each route entry to avoid routing loops.
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2.2 Previous DSR Implementations

DSR has been implemented and analysed in a number of
simulation tools. Most of the previous performance com-
parisons use the ns-2 network simulator [13]; including per-
formance comparison with DSR, AODV, and DSDV [1, 7].
However, there are also studies that use different simula-
tion tools. AODV and DSR performance comparison is per-
formed using GloMoSim [12], QualNet [15], and ns-2 [2, 6].
Although being the predecessor of ns-3, the ns-2 implemen-
tation of DSR cannot be ported to the ns-3 environment
due to the significantly different simulation architecture and
code structure, however, the ns-2 implementation was used
to provide insight and guide design decisions for our ns-3
implementation.

3. DSR MODULE FOR ns-3

This section describes our implementation of DSR. The
two major components of the DSR operation are route dis-
covery and route maintenance. All the major attributes used
in this implementation are listed in Table 1. The relation
among all the classes implemented in this module is shown
in Figure 1.

We implemented the DSR routing protocol ns3: :dsr: :Dsr
Routing in ns-3 by extending from the abstract base class
ns3::Ipv4L4Protocol. The ns3::dsr::DsrFsHeader and
ns3::dsr: :DsrOptionHeader is extended from ns3: :Header,
and they are essentially shim headers between the transport
layer and network layer. We have also declared ns3: :dsr::
RouteCache to store all the routes that have been discovered
in previous route discovery process. Similarly, we have de-
clared the ns3::dsr::SendBuffer class to store all unsent
data packets and ns3::dsr::RreqTable to avoid duplicate
route requests as well as control the rate of consecutive route
requests for one destination. The ns3: :dsr: :MaintainBuff
is used to store the data packet when sent out from the send
buffer and waiting for delivery of acknowledgment from the
next hop node. An in-depth explanation of all these classes
is presented in the following sections.

Most of the other routing protocol implementations in ns-
3 are IP dependent, which render plugging-in DSR as a shim
between IP and the transport layer protocol problematic.
In the current implementation of DSR in ns-3, it acts as
ns3: : Ipv4L4Protocol, which uses the services of IP. There-
fore, DSR should bypass IP’s forwarding callback mecha-
nism implemented in ns-3 and implement its own. To do
this, the destination address in IP header is always set as
the gateway address that is the next hop for the packet,
and the real destination address will be shown in the DSR
header. Figure 2 shows how DSR packets are encapsulated
within IP in ns-3.

IP header

DSR Fixed Portion DSR

header

DSR Options

Transport Protocol

payload

Figure 2: DSR header encapsulation within IP
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Figure 1: DSR class diagram

3.1 Routing Functions

The routing functions of DSR consist of two parts: route
discovery and route maintenance. We illustrate these two
mechanisms in detail as follows.

3.1.1 Route Discovery

When a node S has a packet to send to some destination
node D but does not currently have a route to that node
in its route cache, the node S saves the data packet in its
send buffer and initiates route discovery process to find a
route. To prevent from buffering the packets indefinitely,
packets are dropped if they wait in the send buffer for more
than MaxSendBuffTime (the default is 30 s). For route dis-
covery, S transmits route request packets as local broadcast
messages, specifying the target address and a unique request
identifier. The node receiving the route request packet will
check its identifier and target address in the request header;
if the same one has been received before, the packet will be
recognised as a duplicate and silently dropped. Otherwise,
it appends its own node address to a list in the route request
header and rebroadcasts it. When the route request packet
reaches its destination, the target node sends a route reply
packet back to the initiator of the request, including a copy
of the accumulated list of node addresses in its reply header.
When the route reply reaches the initiator of the request, it
caches the new route in its route cache. Upon receiving the
route reply message, node S will use the source route from
route reply to send the data packet to D. Furthermore, all
the intermediate nodes receiving route reply packet will cut
the route from their own to the destination and save it in
their own route cache.

Another feature of the route request packet is that when
an intermediate node receives a packet, it searches the route
cache for route to the destination address. If there is an
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existing route, the node attaches the route found to the route
received from route request header, which forms a full route
from the source to the destination. Then the node sends
back a route reply packet to the source with the full route.

3.1.2 Route Maintenance

Route maintenance is the mechanism by which the source
node or any intermediate node is able to detect link break-
age when the network topology has changed such that the
source route in the source route header no longer works. This
is a hop-by-hop operation and there are three mechanisms
to verify the delivery of data packets to the next hop as
discussed in Section 3.2. If the data packet fails to de-
liver to the next hop, the sender will retransmit the data
packet. After MaintenanceRetries times of retransmission
fails, a route error packet will be sent out. The packet will
not be dropped immediately; instead, a salvage mechanism
will start by searching the route cache for alternative routes
to the destination. If no alternative route is found, or the
data packet has already been salvaged for MaxSalvageCount
times, this data packet will be dropped.

DSR has a mechanism of removing stale route entries from
the node’s route cache. If a node does not use the route
for a period of time, that route entry will be expired and
removed from the route cache. In our implementation, DSR
waits for RouteCacheTimeout before removing the entries,
with default value as 300 s.

3.2 Acknowledgment Mechanisms

There are three types of acknowledgement mechanisms
specified in the RFC 4728: link-layer, passive, and network-
layer acknowledgement. If the media access control (MAC)
protocol in use can provide feedback for the successful de-
livery of data packets, then it should be used to notify the



delivery of data packets and maintain the route validity. It
requires the MAC protocol to be able to provide layer-2 feed-
back to the network layer about the data packet delivery.
However, in ns-3, only AdhocWifiMac supports the layer-2
feedback mechanism. When link-layer acknowledgement is
not available, but passive acknowledgement is, it should be
used when the nodes can put themselves into promiscuous
receive mode. In the absence of the above two acknowl-
edgement mechanisms, the node should use network layer
acknowledgements. When this mechanism is used, acknowl-
edgement request header will be attached to the data packet
before being transmitted. The acknowledgement will be sent
back to the sender to notify the delivery of data packets.

3.3 DSR Optimisation Mechanisms

Several optimisations have been specified in RFC 4728:
salvaging, gratuitous route reply, and increased spreading of
route errors. The salvaging mechanism is triggered when the
forward link is broken and there is an alternative route to the
destination in the node’s route cache. Instead of dropping
the data packet, the node will try to retransmit it with the
newly found route.

The gratuitous route reply is used when the node promis-
cuously received a data packet destined for other nodes but
is named in the later unused portion of the packet’s source
route. Then it can infer that the intermediate nodes before
itself in the source route are no longer necessary, and a gra-
tuitous route reply packet will be sent back to the source
with the shorter route.

The increased spreading of route errors means that when
the node receives the route error for the data packet it orig-
inates, it is the source of the data packet and the node will
piggy-back the route error packet in the next route request
process. This way it ensures that the route error packet
spreads to the neighboring nodes and gets the expired route
entries deleted.

3.4 DSR Data Structures

There are several conceptual data structures that are im-
portant to support the DSR operation. Here we introduce
the essential ones.

RouteCache contains all the routing information collected
from route discovery process. The structure of the DSR
RouteCache is implemented as follows. Each entry imple-
mented by the RouteCacheEntry class corresponds to a node
in the network and the entry is mapped to that node’s 1P
address. Every entry stores the following attributes of a
node: the IP addresses from the source to the destination
saved in a vector, the destination address of the route, and
the time-stamp of the route entry when it is initially saved.
The RouteCache will save multiple route cache entries for a
single destination since DSR accepts multiple route replies.
All the route cache entries for a single destination are saved
according to the hop-count and freshness of the route. The
route with least hop count will be saved before others, and
for those routes with same hop count, the route entry that is
newly found will be saved before other routes. The Route-
Cache class has implemented functions to add, delete, update,
look up, and print entries. Also, unlike other routing proto-
cols, DSR saves the entire source route in the route cache,
indexed only with the final destination. Therefore, when the
direct route to a certain destination is not found, the look up
route function will also search all the intermediate nodes in
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every single route entry for the expected destination. If the
originating node finds any intermediate node that matches
the expected destination, the newly found route will be re-
moved from the original route and indexed with the new des-
tination address for future use. All the route cache entries
are governed by a global timeout value RouteCacheTimeout,
with a default value of 300 s. The route cache will be purged
periodically to get rid of outdated routes.

PacketBuffer is used to save data packet whenever there
is no route or the node is waiting for next hop delivery notifi-
cation. There are two types of packet buffers: Send Buffer
and Maintenance Buffer. These both buffer data packets,
the only difference is that the Send Buffer will save the
packet when receiving it from transport layer and if a route is
not found, while the packet will be saved in the Maintenance
Buffer when sent out from the Send Buffer yet is waiting
for the next hop acknowledgment. When DSR receives the
data packet from the transport protocol, it first checks the
RouteCache for previously found route entries. The data
packet is saved to Send Buffer if no existing routes are
found, and the node will initiate the route discovery process
by broadcasting Route Request packets. When the packet
in Send Buffer is sent out with Source Route header, the
data packet will be saved in Maintenance Buffer waiting
for next hop delivery notification from the acknowledgement
mechanism used. After MaxMaintenanceRetries times of re-
transmission without receiving any delivery notification, the
data packet will be removed from the Maintenance Buffer.

RreqTable is used to save route request information. It
keeps track of two parts of route request operations: route
request initiated by the node itself and request received
by this node, which are implemented as RreqRequestEntry
and RreqRequestId, respectively. RreqTableEntry saves the
route requests have been initiated by the node itself. The
fields of the route entries include the destination address
that records the specific destination this node has initiated
route requests to, the time-to-live (TTL) that allows the
node to implement a series of mechanisms to limit the trans-
mission hops of the route request packet, and the request
number that is used to record the number of consecutive
route requests sent for a certain destination. The other entry
RreqTable record is RreqTableId. This entry keeps track of
the route requests this node has received from other nodes,
and drops duplicate route request packets. It is mapped to
the source node that is originating this route request. The
detail entries include the destination address that records
the specific destination for this request, and the identifica-
tion field that keeps track of the identification number of the
route request packet. If the two fields in the RreqTableId
are the same for two entries, the request packet will be recog-
nised as a duplicate one and will be dropped silently.

GratuitousRouteReply class is used to shorten routes.
Whenever a node overhears a transmission that is not des-
tined for itself, but can infer a shorter route to a specific
destination, it will send a gratuitous route reply to the
source of the longer route indicating the shorter route. Its
entry includes three fields: ReplyTo is the address to which
the node originates a gratuitous route reply, ReplyFrom keeps
track of the node from which this node overhears the packet
that triggered the gratuitous route reply, and GratuitousH-
oldoffTime is the remaining time before the expiration of
the entry.



Attribute Defaults | Summary

MaxSendBuffLen 64 Maximum number of packets that can be stored in send buffer
MaxSendBuffTime 30 s Maximum time packets can be queued in the send buffer

MaxMaintLen 50 Maximum number of packets that can be stored in maintenance buffer
MaxMaintTime 30 s Maximum time packets can be queued in maintenance buffer
MaxCacheLen 64 Maximum number of route entries that can be stored in route cache
RouteCacheTimeout 300 s Maximum time routes can be queued in route cache
SendBuffInterval 1s How often to check send buffer for pending data packets
NodeTraversalTime 100 ms Time it takes to traverse the two neighboring nodes

MaxMaintRexmt 2 Maximum number of retransmissions for data packets

RregRetries 16 Maximum number of retransmissions for route request discovery
MaintenanceRetries 2 Maximum number of retransmissions for data packets from maintenance buffer
RequestTableSize 64 Maximum number of request entries in the request table
RequestIdSize 16 Maximum number of request Ids in the request table
NonPropRequestTimeout | 30 ms Timeout value for non-propagation route requests

DiscoveryHopLimit 255 Maximum route discovery hop limit

MaxSalvageCount 16 Max salvage count for a single data packet

BlacklistTimeout 3s Time for a neighbor to stay in blacklist

GratuitousHoldoffTime | 1 s Time for gratuitous route reply entry to expire

BroadcastJitter 10 ms Jitter time to avoid collision for broadcast packets
PassiveAckTimeout 100 ms Time for a packet in maintenance buffer to wait for passive acknowledgment
RequestPeriod 500 ms Base time interval between route requests

MaxRequestPeriod 10 s Max time interval between route requests

Table 1: DSR attributes and their default values

3.5 DSR Header Format

The DSR header consists of two parts: DsrFsHeader and
DsrOptionsHeader, as shown in Figure 3. The DsrFsHeader
is fixed in size and used to carry information that must be
present in all DSR packets, while the DsrOptionsHeader is
used to carry information for specific DSR options.

3.5.1 DSR Fixed-size Header

The DsrFsHeader is a fixed size header which contains a
next header field to indicate the immediate header follow-
ing the DSR option header. The payload length field indi-
cates the length of all the option headers following the DsrF-
sHeader. The message id, source id, and destination id are
needed for the ns-3 implementation. These fields are added
(in addition to the header fields from RFC 4728) to differ-
entiate between data and control packets as well as identi-
fying source and destination addresses for post-processing
purposes. The modified header is shown in Figure 3; it
is word aligned and adds four bytes extra overhead. The
header fields are explained in detail below.

0 1 2 3
01234567012345670123456701234567

| Next Header |F| Message Id | Payload Length |

| Source Id | Dest Id |

| Options |

Figure 3: DsrFsHeader format

The next header is a 4-bit field that indicates the upper
layer protocol id, indicating which transport protocol to pass
to. The message id field is also 4 bits in length and indicates
the type of message this DSR header is carrying, message id
number 1 indicates a control packet, while id number 2 is a
data packet. The source id and destination id are also added
only for ns-3 implementation to indicate the initiator and
the destination of the packet since the source and destination
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field in IP header is changed as the packet transmitted hop-
by-hop. The payload length field indicates the payload length
of all the DSR option headers combined.

3.5.2 DSR Options Header

The DsrOptionsHeader includes all the DSR options need-
ed for protocol operation. The route request option, as shown
in Figure 4, is attached to route discovery packet that will
include all intermediate nodes’ IP addresses in the header to
form a full route to the destination. The route reply option
is used to notify the source node with the whole route in its
header with its header format as shown in Figure 5.

The source route option is attached to data packets and
directs the packet from source to destination. It includes
all intermediate nodes to form the full route, as shown in
Figure 6. When a route error occurs, the route error option is
used to indicate the link breakage and the node removes the
erroneous routes from the route cache, as shown in Figure 7.

The acknowledgement request option is used to request
next hop network acknowledgement as shown in Figure 8,
while the acknowledgement option is used to indicate the
successful delivery of data packet to the next hop, as shown
in Figure 9.

4. DSR MODULE EVALUATION

To verify and validate our DSR routing protocol imple-
mentation, first we run nine unit test cases incorporated in
the DSR module of ns-3 and verify its functionality. We in-
vestigate DSR performance with varying number of traffic
sources and different pause times for mobility models and
compare to the other existing MANET routing protocols in
ns-3.12.1: DSDV, OLSR, and AODV. We provided prelim-
inary results of DSR performance for different traffic types
previously [3].



| o | 1 | 2 | 3 |
01234567012345670123456701234567

| Option Type | Opt Data Len | Identification |

| Target Address |

| Address[1] [

| Address[2] |

| Address [n] |

Figure 4: RouteRequestHeader format

| 0 | 1 | 2 | 3 |
012345670123456701234567012345617

| Option Type | Opt Data Len |L| Reserved |

| Address[1] |

| Address[2] |

| Address [n] [

Figure 5: RouteReplyHeader format

| o | 1 | 2 | 3 |
0123456701234566701234567012345617

| Option Type | Opt Data Len |L| Reserved | Reserved |

| Address[1] |

| Address [2] |

| Address [n] |

Figure 6: SourceRouteHeader format

4.1 Performance Metrics

The performance metrics for the evaluation of DSR rout-
ing protocol are packet delivery ratio (PDR) that is the num-
ber of packets received divided by the number of packets sent
by the application, routing overhead that is the fraction of
bytes used by the protocol to send the DSR control mes-
sages, and delay that is the difference in time between when
the source transmits the packet at the MAC layer and when
the MAC layer of the destination receives that data packet.

4.2 Simulation Setup

We configure simulation parameters as close as possible
to previous studies [1] in order to have comparable results.
We perform the simulations over an area of 1500 x 300 m?.
All the simulations are averaged over 10 runs with each sim-
ulation running for 1000 s; some are averaged over 20 runs
to increase confidence. Simulations are performed with 50
nodes, and the source-sink traffic pairs are chosen to be 10,
20 and 30. We perform simulations with a packet size of

| 0 | 1 | 2 | 3 |
012345670123456701234567012345617

| Option Type | Opt Data Len | Error Type |Reservd|Salvagel

| Error Source Address |

| Error Destination Address |

Type-Specific Information

Figure 7: RouteErrorHeader format
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| 0 | 1 | 2 | 3 |
01234567012345670123456701234567

| Option Type | Opt Data Len | Identification |

Figure 8: AckRequestHeader format

| 0 | 1 | 2 | 3 |
01234567012345670123456701234567

| Option Type | Opt Data Len | Identification |

| ACK Source Address |

| ACK Destination Address |

Figure 9: AckHeader format

64 bytes to exclude the potential network congestion caused
by large packets. All the nodes are configured to send 4 pack-
ets/s. Using this lower packet rate, we can correctly evaluate
the performance of the routing protocols. We use the ns-
3 On-0ff application to generate CBR (constant bit rate)
traffic. The 802.11b MAC is the link layer over the Friis
propagation loss model to limit the transmission ranges of
nodes. Previous DSR performance study used a combina-
tion of free space propagation model and a two-ray ground
reflection model [1]. The transmission range of the nodes
is set at 250 m for evaluation. To achieve this transmis-
sion range, the transmit power is set to 8.9048 dBm. The
mobility model used is steady-state random waypoint® with
random velocities from 0.01 — 20.0 m/s and pause times of
0 —900 s.

DSR has several parameters with some of them intercon-
nected with each other and most of them are prone to change
with different simulation scenarios like mobility model, node
velocities, and node density. When the node velocity in-
creases, the RouteCacheTimeout needs to decrease to get rid
of invalid routes. Furthermore, the NodeTraversalTime is
the time for a packet to traverse the transmission range,
and requires careful consideration since it directly affects
the time to detect link breakage: if set too small, there will
be a possibility of false assumption of undelivered packets,
while if too large it takes too long to respond to link break-
ages. Thus, proper choice of RouteCacheTimeout and Node-
TraversalTime is important in different simulation scenar-
ios. DSR protocol parameters for our simulations are shown
in Table 2. The NodeTraversalTime is set as 2 us to fit the
250 m transmission range in this case. RouteCacheTimeout
is set as 300 s since this is a case with relatively low mobility
nodes.

Parameter Values
RouteCacheTimeout 300 s
NodeTraversalTime 2 us

MaxSendBuffLen 64
MaxSendBuffTime 30 s
MaxMaintLen 50
MaxMaintTime 30 s
refer PassiveAckTimeout 4 ps

Table 2: DSR parameters

2This model eliminates the initial discrepancy of the RWP
model and uses a stationary distribution.



4.3 Simulation Analysis

In the first scenario, we vary the pause time in steady state
random waypoint mobility model so that we can analyse the
performance of DSR in both mobile and static scenarios.
Our simulation results show similar simulation results with
previous work [1], from where we get our simulation config-
uration. Figure 10 shows the variation of PDR by varying
the pause time. Note that the total number of nodes is 50
for all cases.
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Figure 10: PDR with varying pause time

We can see that as pause time increases, the packet de-
livery ratio for all three traffic source cases also increases.
When the pause time is 900, the PDR is 100% since the
nodes are stable for the whole process of simulation. The
PDR for 20 flows is greater than that for 30 flows for all
pause times as shown in Figure 10. This is due to the fact
that as the number of flows increase, the routing overhead
also increases and this leads to more collisions in the net-
work.

The routing overhead for different number of traffic flows
with varying pause times is shown in Figure 11. This plot
shows that overhead increases with the increasing number
of flows. This is expected for DSR since as the flow number
increases, more route discovery packets will be sent. The
overhead for the 30 flows case has high overhead when the
pause time is 0 s since as nodes constantly moving, route
error packets will also be transmitted out more often.
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Figure 11: Overhead with varying pause time

Next, we analyse packet delay for the above scenario. Fig-
ure 12 shows the delay decrease as the pause time increases.
This is because as the pause time increases the nodes will be
immobile for longer durations and less route breakage will
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occur with fewer number of route discovery cycles needed.
The delay increases slightly with an increase in the number
of traffic flows, since more traffic flows cause more data to
be queued for transmission.
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Figure 12: Packet delay with varying pause time

From Figure 13 to Figure 15 we only compare the 10 traffic
flow cases with 50 nodes among the four routing protocols.
In Figure 13, we compare the packet delivery ratio of existing
MANET routing protocols implemented in ns-3 with DSR.
From the plot we can see that OLSR outperforms DSR,
DSDV, and AODV. The performance of DSDV follows the
results from the previous work [1], while the performance
of DSR and AODV has a little decrease compared to those
results. This may be caused by the different MAC modules
they have used.
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Figure 13: PDR with varying pause time

In our analysis, we also compare the routing overhead in-
volved with all four protocols. The overhead for DSDV and
OLSR stays around 200 kb/s and does not change signifi-
cantly with the pause time increase as shown in Figure 14.
As proactive routing protocols, both DSDV and OLSR need
to initiate route discovery even when there is no need for the
route. The overhead for AODV and DSR decreases as the
pause time increase, because the route breakage decreases.
The overhead for DSR is slightly less than that for AODV
since DSR, does not need periodic broadcast messages that
AODV uses.

We analyse the packet delay for these protocols and the
result is shown in Figure 15. The packet delay is greater for
DSR and AODV compared to that for DSDV and OLSR.
This is because as reactive routing protocols, both DSR and
AODV need more time to react to link changes while nodes
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Figure 14: Overhead with varying pause time

are moving. Furthermore, we note that the variation of de-
lay (shown as the error bar) for both DSR and AODV is
comparably larger since they both rely on the buffering ex-
tensively in the route discovery cycle. As the pause time
increases, the delay for all the protocols decreases since less
link breakage occurs.
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Figure 15: Packet delay with varying pause time

S.  CONCLUSIONS

In this paper we presented the implementation of the DSR
MANET routing protocol in ns-3. A detailed explanation of
the components and how each class in the protocol interacts
with one other is also provided along with attributes that
can be modified in the protocol is presented. We analysed
our DSR implementation with varying pause time for steady
state random waypoint mobility model and compared its
performance against DSDV, OLSR, and AODV. Our results
indicate that DSR can achieve high packet delivery ratio
with less routing overhead for low mobility scenarios. For
part of the future work, we will test the performance of the
MANET routing protocols in high mobility scenarios.
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