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Abstract

Many researchers have studied Internet topology, and the analysis of complex and multilevel Internet structure is nontrivial. The
emphasis of these studies has been on logical level topologies, however physical level topologies are necessary to study resilience
realistically, given the geography and multilevel nature of the Internet. In this paper, we investigate the representativeness of the
synthetic Gabriel, geometric, population-weighted geographical threshold, and location-constrained Waxman graph models to the
actual fibre backbone networks of six providers. We quantitatively analyse the structure of the synthetic geographic topologies
whose node locations are given by those of actual physical level graphs using well-known graph metrics, graph spectra, and the
visualisation tool we have developed. Our results indicate that the synthetic Gabriel graphs capture the grid-like structure of physical
level networks best. Furthermore, given that the cost of physical level topologies is an important aspect from a design perspective,
we also compare the cost of synthetically generated geographic graphs and find that the synthetic Gabriel graphs achieve the
smallest cost among all the graph models that we consider. Finally, based on our findings we propose a graph generation method to
model physical level topologies, and show that it captures both grid and star structures ideally.
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1. Introduction and Motivation

Internet modelling has been the focus of the research com-
munity for decades [1, 2, 3, 4]. The Internet can be examined
at the physical, IP, router, PoP (point of presence), and AS (au-
tonomous system) level from a topological point of view [5].
At the lowest level we have the physical topology, which con-
sists of components such as fibre and copper cables, ADMs
(add drop multiplexers), cross-connects, and layer-2 switches.
The logical level consists of devices operating at the IP-layer.
The primary focus of previous studies has been on the logical
aspects of the Internet, since tools were developed to collect,
measure, and analyse IP-level properties of the Internet (e.g.
Rocketfuel [6]). However, given that physical networks provide
the means of connecting nodes in the higher levels, the study of
physical connectivity is an important area of research [7, 8, 9].
Moreover, geography is an important aspect to consider dur-
ing the design and analysis of networks [10, 11], in particular
modellling area-based challenges on networks, such as power
failures and severe weather [12].
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Physical level topologies are necessary and important for
studying the structure and evolution of the Internet holisti-
cally [13]. Unfortunately, in an effort to maintain intellec-
tual property and competitiveness, many providers are unwill-
ing to disclose their physical topologies. We generate adja-
cency matrices of physical level graphs of four commercial
service providers based on a third party map [14], and then
make use of the publicly available Internet2 research network
and the synthetic CORONET fibre topology. Using the node
locations of the physical topologies, we generate synthetic ge-
ographical graphs of these topologies utilising the Gabriel, ge-
ometric, geographical threshold, and Waxman graph models.
We analyse the structural properties of the synthetically gener-
ated geographical graphs using the KU-TopView (KU Topol-
ogy Viewer) [15] visualisation tool, well-known graph metrics,
and graph spectra and find that the Gabriel graph model most
closely captures the grid-like structure of the physical networks.

Another important aspect of modelling physical graphs is the
cost of networks, which is particularly important to consider
when designing physical level networks. Moreover, from a net-
work design perspective, it is important to design networks that
are resilient yet less costly. Unfortunately, these two objectives
fundamentally oppose one another. We compare the syntheti-
cally generated geographical graphs based on a cost model and
our results indicate that Gabriel graphs are also the best among
the ones we consider in terms of minimising cost. Additionally,
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(a) AT&T (b) Level 3 (c) Sprint

(d) TeliaSonera (e) Internet2 (f) CORONET

Figure 1: Visual representation of physical-level service provider networks in KU-TopView [15]

amongst all of the synthetically generated graphs we find that
there are some whose costs are two orders of magnitude greater
than their corresponding physical graphs. To the best of our
knowledge, there are no other studies that provide structural-
and cost-based comparisons of geographic graph models ap-
plied to graphs with node locations that are constrained to those
of actual physical graphs. Furthermore, we discuss how one
might develop a better synthetic graph generator that incorpo-
rates the strengths of two of the geographical graph models that
we study.

The rest of the paper is organised as follows: The properties
of graphs we analyse are presented in Section 2. We describe
the synthetic geographical graph models in Section 3. We anal-
yse the structural properties using well-known graph metrics
and graph spectra, as well as the cost incurred to design these
graphs in Section 4. We discuss how one might develop a bet-
ter alternative geographical graph model to capture graph struc-
tural properties in Section 5. Finally, we summarise our study
as well as propose future work in Section 6.

2. Properties of Networks

In this section we present characteristics of networks in terms
of graph metrics, graph spectra, and network cost. We also pro-
vide visual representation of backbone networks.

2.1. Topological Dataset
We study physical level communication networks that are

geographically located within the continental United States.
Therefore, we only include the 48 contiguous US states, the
District of Columbia, and exclude Hawaii, Alaska, and other
US territories. We use US long-haul fibre-optic routes map
data to generate physical topologies for AT&T, Level 3, and
Sprint [14]. In this map, US fibre-optic routes cross cities
throughout the US and each ISP has different coloured links.

We project the cities to be physical node locations and con-
nect them based on this map, which is sufficiently accurate on
a national scale. We use this data to generate adjacency ma-
trices for each individual ISP. To capture the geographic prop-
erties as well as the graph connectivity, cities are included as
nodes even if they are merely a location along a link between
fibre interconnection. Finally, we also make use of the pub-
licly available TeliaSonera network [16], Internet2 [17], and
CORONET [18, 19] topologies. CORONET is a synthetic fibre
topology designed to be representative of service provider fibre
deployments. Moreover, we have developed the KU-TopView
(KU Topology Map Viewer) [20] to visually present the topolo-
gies we study. The topologies we studied are shown in Figure 1
and they are publicly available [15].

2.2. Graph Properties

The graph metrics provide insight on a variety of graph prop-
erties, including distance, degree of connectivity, and centrality.
We calculate a number of well-known graph properties using
the Python NetworkX library [21]. Network diameter, radius,
and average hop count provide distance measures [7]. Cluster-
ing coefficient is a measure of how well a node’s neighbours
are connected [7]. Eccentricity of a node is the longest short-
est path from this node to every other node; the largest value
of eccentricity among all nodes is the diameter and the smallest
eccentricity is the radius. Closeness centrality is the inverse of
the sum of shortest paths from a node to every other node [22].
Betweenness is the number of shortest paths through a node or
link and provides a centrality or importantness measure [23]. In
Table 2 we list a number of relevant quantities for each of the
provider networks. A detailed analysis of graph metrics for the
given physical networks was presented in our earlier work [24].
We observe from the node and link counts that AT&T, Level 3,
and Sprint are the larger among the networks. Moreover, all of
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Table 1: Topological characteristics of geographical physical-level networks

Network Nodes Links Avg. Node Clust. Diam. Rad. Avg. Close. Max. Node Max. Link
Degree Coeff. Hop. Between. Between.

AT&T 383 488 2.55 0.04 39 20 14.13 0.07 17, 011 14, 466
Level 3 99 132 2.67 0.09 19 10 7.65 0.14 1, 622 1, 046

Sprint 264 313 2.37 0.03 37 19 14.71 0.07 11, 324 9, 566
TeliaSonera 21 25 2.38 0.21 9 6 4.06 0.25 75 61

Internet2 57 65 2.28 0.00 14 8 6.69 0.15 630 521
CORONET 75 99 2.64 0.00 17 9 6.45 0.16 1, 090 704

the physical topologies have an average degree between 2 and 3.
In our previous work, we noted that the average degree of these
physical topologies was much smaller than the average degree
of their corresponding logical topologies due to the difficulty
involved in connecting nodes in a physical topology, where one
must physically lay down fibre between nodes [24, 25, 26].

2.3. Spectral Properties

In this section we provide the necessary background on net-
work spectra, discuss how to analyse spectral plots, and present
spectra of physical level networks. We note that previously we
analysed logical and physical level communication networks,
and US freeway topologies using graph spectra [24, 25]. For a
detailed coverage of graph spectra we refer the reader to mono-
graphs on the topic [27, 28, 29, 30, 31].

Let G = (V, E) be an unweighted, undirected graph with n
vertices and m edges. Let V = {v0, v1, . . . , vn−1} denote the ver-
tex set and E = {e0, e1, . . . , em−1} denote the edge set. In this
paper we use the normalised Laplacian matrix L(G), which is
represented as follows:

L(G)(i, j) =


1, if i = j and di , 0

−
1√
did j

, if vi and v j are adjacent

0, otherwise

Let M be a symmetric matrix of order n and I be the identity
matrix of order n. Then, the eigenvalues (λ) and the eigen-
vector (x) of M satisfy Mx = λx for x , 0. In other words,
the eigenvalues are the roots of the characteristic polynomial,
det(M−λI) = 0. The set of eigenvalues together with their mul-
tiplicities (number of occurrences of a given eigenvalue) define
the spectrum of M.

The normalised Laplacian spectrum provides insight into the
structure of networks that are different in order (nodes) and size
(links) since the L(G) is normalised according to the degree of
the nodes. The eigenvalues of the normalised Laplacian reside
in the [0, 2] interval. The algebraic multiplicity of λ = 0 in-
dicates the number of connected components. Hence, there is
always at least one eigenvalue equal to 0. Furthermore, matrices
which resemble one another (e.g. full mesh vs. partial mesh)
may have similar eigenvalues and multiplicity. The spectrum

of L(G) is quasi-symmetric2 around 1, which means a large
algebraic multiplicity for the eigenvalue λ = 1 may indicate du-
plications in a network [32]. An eigenvalue of 2 indicates the
graph is bipartite; eigenvalues close to 2 indicates the graph is
nearly bipartite [32]. A bipartite graph is a graph whose ver-
tex set can be divided into two groups such that no two vertices
within a group share an edge.
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Figure 2: Spectra of baseline networks [24]

In this paper, we plot the RCF (relative cumulative fre-
quency) of eigenvalues for each graph. First, we show the spec-
tra of baseline topologies to present how to read spectra of a
given graph. The RCF plot of the normalised Laplacian eigen-
values for baseline topologies (linear, ring, tree, grid, toroid,
full mesh, and star) of order n = 100 is shown in Figure 2. As
mentioned above, all the spectra plots have one eigenvalue at
0. The spectra of star topology has one eigenvalue at 2 show-
ing that the star topology is a bipartite graph, and rest of the 98
eigenvalues are located at 1. The mesh topology has one eigen-
value at 0, and the rest of the 99 eigenvalues are located to a
value close to 1 (the exact value is 1.0101 for a 100 node full-
mesh topology [24]). Toroid and grid topologies have similar
spectra plots since a toroid is a circular grid. Similarly, linear
and ring topologies have similar spectral plots since a ring is a
linear topology connected by its end points. The spectra of a
tree topology lies somewhere between a grid and linear topolo-
gies.

2We use the term quasi-symmetric to refer to “almost symmetric” graph
spectra. For example, a finite full-mesh graph is quasi-symmetric, since all
eigenvalues except the first (which is equal to 0) are equal to a value close to 1.
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Next, we present the RCFs of physical-level networks as
shown in Figure 3. The RCFs of physical-level networks look
similar. Moreover, the spectra of physical networks also look
similar to those of grid structures [24]. The largest eigenvalues
of the physical topologies are close to 2. Hence, the physical
topologies are nearly bipartite graphs.
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Figure 3: Spectra of physical networks

2.4. Network Cost Model
Structural properties impact the connectivity and cost of

building networks. While at the logical level the cost is captured
by the number of nodes and the capacity of each node (i.e. the
bandwidth and number of ports available in a router [3, 4]), at
the physical level, the length of the fibre is a major determinant
of the cost. After all, logical level links are arbitrarily overlaid
links on top of the underlying physical links. Previously, we
provided a network cost model as:

Ci, j = f + v × di, j (1)

where f is the fixed cost associated with the link (including
termination), v is the variable cost per unit distance for the link,
and di, j is the length of the link [20, 26, 33]. Moreover, in a
modest attempt to capture the total cost of fibre topologies, if
we assume that the fibre length dominates wide-area network
cost and ignore the fixed cost associated with each link, the
network cost can be written as:

C =
∑

i

li (2)

where li is the length of the i-th link [24, 34]. We calculate the
total link length for each provider with this simplified network
cost model as shown in the 4th column in Table 2. The total link
length of each physical topology is somewhere between 14,000
to 50,000 km. For these topologies, the smaller the size of the
network, the smaller the total length link of the fibre.

Next, for each physical level topology, we consider as an up-
per baseline the full-mesh topology whose vertex set is identi-
cal to that of the original topology. We then calculate the total
link count and length of each full-mesh topology as shown in
columns 5 and 6 in Table 2, respectively. Note that the total link

Table 2: Topological characteristics of physical level networks

Network Nodes
Geographical Full mesh

Links Tot. l Links Tot. l
[km] ×106 [km]

AT&T 383 488 50,026 73,153 116.8
Level 3 99 130 28,538 4,851 7.5

Sprint 264 312 33,627 34,716 57.8
TeliaSonera 21 25 14,190 210 0.4

Internet2 57 65 19,050 1,596 2.7
CORONET 75 99 28,325 2,775 4.6

lengths are given in millions of km for a hypothetical full-mesh
physical level topology, emphasising that real networks cannot
have unlimited resilience due to cost constraints.

2.5. Structure of Physical Level Graphs
The physical level topologies consist of a number of degree-

two intermediate nodes for accurate geographic representation
that are necessary for modelling area-based challenges on the
network, such as power failures and severe weather [12]. How-
ever, these intermediate nodes artificially change the graph the-
oretic properties of the networks, in particular artificially skew-
ing the degree distribution toward degree-2 nodes. Therefore,
we modify the existing physical level graphs by removing nodes
with a degree of two, if there is not a logical level node at that
location serviced by the physical node. The number of nodes,
links, and average degree of the structural graphs are shown in
Table 3. Each structural graph has fewer nodes and links than its
corresponding physical level graph. However, with the excep-
tion of TeliaSonera, each structural graph has a larger average
degree than its corresponding physical level graph. For exam-
ple, the structural graph of Internet2 has 16 nodes, 24 links, and
an average degree of 3 whereas the original Internet2 physical
graph has 57 nodes, 65 links, and an average degree of 2.28. We
believe that the structural graph of TeliaSonera has a smaller av-
erage degree than the original graph of TeliaSonera due to the
latter’s small order and size. However, we note that total fibre
length of the structural graph (14,040 km) is close to that of the
original physical graph (14,190 km).

Table 3: Fibre link lengths of structural graphs

Network Nodes Links Avg. Node Deg. Tot. l [km]
AT&T 162 244 3.01 40,985

Level 3 63 94 2.98 27,597
Sprint 77 114 2.96 28,069

TeliaSonera 18 21 2.33 14,040
Internet2 16 24 3.00 18,146

CORONET 39 63 3.23 27,579

3. Graph Models for Physical Level Networks

In the following section we present four different geographic
graph models. The Gabriel graph model is a parameterless

4



model that uses only node locations as input, while the geo-
metric, geographical threshold, and Waxman models all require
at least one parameter. The geometric graph model uses a sin-
gle threshold parameter, while the geographic threshold model
and the probabilistic Waxman model use two parameters. We
apply each of these graph models to graphs with node locations
constrained to those of actual physical topologies. Given the di-
verse nature of these models, we believe the following sections
represent a fairly comprehensive analysis of geographic graph
models applied to physical topologies.

3.1. Gabriel Graphs
Next, we generate Gabriel graphs of the six service provider

networks. Gabriel graphs are useful in modelling graphs with
geographic connectivity that resemble grids [35, 36]. We would
expect the Gabriel graph to be one of the best ways to model
physical topologies for this reason. In a Gabriel graph, two
nodes are connected directly if and only if there are no other
nodes that fall inside the circle whose diameter is given by the
line segment joining the two nodes. The number of links and
the total link length of Gabriel graphs using the node locations
of the six networks are shown in Table 4.

Table 4: Fibre link lengths of Gabriel graphs

Network Links Tot. l [km]
AT&T 686 66,157

Level 3 170 33,991
Sprint 474 57,104

TeliaSonera 26 12,111
Internet2 94 27,786

CORONET 127 33,265

3.2. Geometric Graphs
A 2-dimensional geometric graph is a graph in which nodes

are placed on a plane or surface and any pair of nodes is con-
nected if and only if:

d(u, v) ≤ dθ (3)

where d(u, v) is the Euclidean distance between the two nodes
{u, v}, and dθ is a distance threshold parameter [37]. In the con-
ventional random 2-dimensional geometric graph model, nodes
are distributed randomly on a plane.

Using the physical level node locations of six provider net-
works, we generate four different geometric graphs based on
four different dθ distance threshold values. For the first set of
graphs, we use the maximum link length of the actual physical
graph as the dθ value. For the second set of graphs we select
the largest possible values of dθ such that the total link lengths
of these graphs are less than the total link lengths of the origi-
nal physical level graphs. Using this methodology, we find that
all of the synthetically generated graphs are disconnected. For
the third set of graphs, we select the smallest value of dθ such
that the graphs are connected. It turns out that none of these
graphs are biconnected. For the fourth set of graphs we select

the smallest values of dθ such that the graphs are biconnected:
that is, such that the graphs will remain connected after the fail-
ure of any one node or link. This is a basic requirement for basic
network resilience and survivability [38, 39]. The link lengths l
of the actual graphs as well as the synthetically generated geo-
metric graphs are shown in Table 5.

To further explain the data in Table 5, consider the AT&T
physical graph with the given node locations. The number of
links, total link length, and maximum link length of the actual
AT&T physical graph are shown in columns 2, 3, and 4, re-
spectively. For the case of AT&T, when we assign dθ = max(li)
(where max(li) = 629 km in this case), the synthetically gen-
erated geometric graph has 15,062 links and the total length of
the graph is approximately 5.7×106 km. Using this threshold
optimised methodology we obtain the number of links, total
link length, and dθ as shown in columns 5, 6, and 7, respec-
tively. With the second cost optimised methodology we gen-
erate synthetic geometric graphs such that the total link length
is less than that of the actual physical topology. In the case of
AT&T, the generated graph has a total link length of 49,937 km,
which is less than that of the actual AT&T graph whose total
link length is 50,026 km. We note that the cost optimised geo-
metric graphs of all service providers are disconnected graphs.
The number of links, total link length, and dθ for cost-optimised
graphs are shown in columns 8, 9, and 10, respectively. Since
the cost-optimised geometric graphs are disconnected graphs,
we increase the value of dθ until we obtain connected graphs.
Applying this cost and connectivity optimised methodology to
the AT&T graph, the total number of links is 4,916, the total
length of the links is 918,353 km, and dθ = 302 km, as shown
in columns 11, 12, and 13, respectively. While cost and connec-
tivity optimised graphs are connected, none of them are bicon-
nected. Therefore, we increase dθ so that the resulting geomet-
ric graphs are biconnected. Applying this cost and biconnectiv-
ity optimised methodology to the AT&T graph, we obtain a syn-
thetically generated geometric graph with 8,343 links, 2.2×106

km of total link length, and a dθ value of 424 km, as shown in
columns 14, 15, and 16, respectively. The rest of the service
provider data is shown in the consecutive rows in Table 5.

3.3. Population-weighted Geographical Threshold Graphs
A threshold graph is a type of graph in which links are

formed based on node weights [40]. Two nodes {u, v} with node
weights {wu,wv} are connected if and only if:

wu + wv ≥ t (4)

in which t is a threshold value that is a non-negative real num-
ber. A modified version of a threshold graph is a geographical
threshold graph that includes geometric information about the
nodes [41]. In this case, two nodes {u, v} with node weights
{wu,wv} are connected if and only if:

wu + wv ≥ ψd(u, v)φ (5)

where ψ and φ are model parameters and d(u, v) is the Euclidean
distance between nodes {u, v}. In our study, we assign the node
weights to be the population estimates of cities for year 2011,
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Table 5: Cost of geometric graphs based on a threshold value

Network
Actual Threshold Optimised Cost Optimised Cost & Con. Optimised Cost & Bicon. Optimised

Links Tot. l Max. l Links Tot. l dθ Links Tot. l dθ Links Tot. l dθ Links Tot. l dθ
[km] [km] [km] [km] [km] [km] [km] [km] [km] [km]

AT&T 488 50,026 629 15,062 5,719,021 629 783 49,937 99 4,916 918,353 302 8,343 2,169,572 424
Level 3 130 28,538 1,063 2,107 1,326,422 1,063 209 28,358 226 749 234,721 528 1,104 449,360 683

Sprint 312 33,627 602 6,478 2,327,659 602 466 33,573 112 3,417 804,197 390 4,261 1,159,340 452
TeliaSonera 25 14,190 1,592 106 88,151 1,592 37 13,757 614 56 27,842 859 93 68,635 1,425

Internet2 65 19,049 910 442 246,259 910 83 18,997 334 131 37,532 424 258 104,793 616
CORONET 99 28,325 943 922 506,209 943 156 28,144 280 512 188,663 604 613 253,812 691

which are taken from the US Census Bureau [42]. The popu-
lation statistics for each provider are given in Table 6. For the
AT&T physical graph, the total of population of all of the cities
(e.g. 383 cities) is about 76 million, and the average city pop-
ulation is about 197,000. The most populous city (NYC for all
networks) has about 8.2 million people, and the least populated
city has 182 people. These statistics are shown in columns 2, 3,
4, and 5 in Table 6 respectively for each provider network.

Table 6: Population statistics of cities as node weights

Network Total Average Maximum Minimum
AT&T 75,753,034 197,789 8,244,910 182

Level 3 53,221,035 537,586 8,244,910 12,695
Sprint 67,794,208 256,796 8,244,910 448

TeliaSonera 27,944,279 1,330,680 8,244,910 65,397
Internet2 40,980,611 718,958 8,244,910 8,438

CORONET 49,559,726 660,796 8,244,910 33,395

Using city populations as node weights, we generate syn-
thetic graphs for each provider network. We choose φ = 1 so
that we can manipulate only ψ. Moreover, by choosing φ = 1,
we find that the righthand side of inequality (5) varies linearly
with distance. Hence, as the distance increases between two
nodes they are less likely to be connected. Having fixed φ = 1,
we first choose ψ so as to minimise cost while ensuring connec-
tivity, and then choose ψ so as to minimise cost while ensuring
biconnectivity. More specifically, for each network, we select
the largest value of ψ rounded to the nearest tenth such that
the graph is connected, and then select the largest value of ψ
rounded to the nearest tenth such that the graph is biconnected.

Table 7: Population-weighted geographic threshold graphs for φ = 1

Network Connectivity Optimised Biconnectivity Optimised
ψ Links Tot. l [km] ψ Links Tot. l [km]

AT&T 3.1 1,670 690,941 2.4 2,336 1,036,747
Level 3 3.4 324 158,316 2.4 526 304,696

Sprint 3.0 1,164 500,678 2.4 1,532 717,311
TeliaSonera 3.4 43 31,099 2.3 62 58,492

Internet2 3.2 151 98,733 2.3 233 194,938
CORONET 3.3 244 127,387 2.4 374 233,360

The results of both methodologies for PWGTG (population
weighted geographic threshold graph) are shown in Table 7. For
the AT&T graph, we find that the largest value of ψ such that
AT&T is connected is 3.1, yielding a link number of 1,670 and a

total link length of 690,941 km. Additionally, the largest value
of ψ such that AT&T is biconnected is 2.4, which yields a link
number of 2,336 and a total link length of 1,036,747 km.

3.4. Location-constrained Waxman Graphs
The Waxman model provides a probabilistic way of connect-

ing nodes in a graph [43]. Given two nodes {u, v} with a Eu-
clidean distance d(u, v) between them, the probability of con-
necting these two nodes is:

P(u, v) = βe
−d(u,v)

Lα (6)

where β, α ∈ (0, 1] and L is the maximum distance between any
two nodes. Increasing β increases the link density and a large
value of α corresponds to a high ratio of long links to short
links.

In the Waxman model nodes are uniformly distributed in
the plane. We modify the Waxman model so that it is con-
strained by the node locations. The resulting link properties of
the location-constrained Waxman model, along with the β and
α parameters, are shown in Table 8.

Table 8: Location-constrained Waxman graphs

Network β α
Avg. No. σ Avg. σ
of Links Links Tot. l [km] Tot. l

AT&T 0.2 0.1 1,981 54 1,044,856 29,509
Level 3 0.6 0.1 392 14 205,036 7,896

Sprint 0.2 0.1 904 43 475,943 24,271
TeliaSonera 0.6 0.2 31 3 24,498 4,743

Internet2 0.6 0.1 102 10 62,100 7,723
CORONET 0.5 0.1 174 15 91,002 10,062

For each network, we choose β and α such that the resulting
graph is a connected graph with the smallest possible total link
length. For example, in the AT&T graph, using the node geo-
graphic locations we use β and α values of 0.1 and run the ex-
periments 10 times, which results graphs that are disconnected.
Then, we keep β at a value of 0.1 and increase α to a value of
0.2, which results in connected graphs but with a mean of 1.6
million km total link length. We calculate total link length by
averaging 10 runs with increments of 0.1 for β and α parameters
until we find connected graphs that result in least total length.
The β and α parameters for each provider are shown in columns
2 and 3 in Table 8. The average number of links for each topol-
ogy resulting from 10 runs is shown in column 4, whereas the
standard deviation σ of the number of links resulting from 10
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(a) Geographical (b) Structural (c) Gabriel

(d) Geometric (e) Geographical threshold (f) Waxman

Figure 4: Visual representation of Internet2 physical-level topologies in KU-TopView [15]

runs is shown in column 5. The average total link length of 10
runs is shown in column 6, and the standard deviation σ of the
total link of length resulting from 10 runs is shown in column
7.

4. Analysis of Physical-level Graphs

In this section we present a visual, graph metrics, spectra,
and cost analysis of the different synthetic models.

4.1. Visual Analysis of Graphs
We inspect all the synthetically generated topologies of

all the providers using the KU-TopView (KU Topology Map
Viewer) [15, 20]. We find the results to be similar across all
providers. We discuss the Internet2 graph here because its
smaller order makes it easier to visualise, and thus more in-
formative for demonstrating the fitness of each synthetic graph
model on this topology. The geographical, structural, Gabriel,
geometric, population weighted geographical threshold, and
location-constrained Waxman model of the Internet2 physical-
level graphs are shown in Figure 4.

The geographic physical-level Internet2 topology with 57
nodes and 65 links is shown in Figure 4a. In our earlier
work we showed using graph spectra that geographic physical-
level graphs resemble a grid-like structure [25]. The structural
physical-level Internet2 topology in which degree-2 nodes are
removed is shown in Figure 4b. The synthetically generated
Gabriel graph of the geographic Internet2 graph is shown in
Figure 4c. While the Gabriel graph preserves the grid-like
structure of the geographic physical-level topology, it omits
some of the links at the periphery of the actual geographic
physical-level graph (e.g. link between Baton Rouge, LA and
Jacksonville, FL) and adds links that are infeasible to deploy
due to terrain. The synthetically generated geometric graph

based on a distance threshold value that incurs minimal cost
to obtain a connected graph is shown in Figure 4d. In this case,
while islands of nodes that are close to each other are richly
connected, overall the graph is far from being biconnected. The
geographical threshold graph of the Internet2 topology using
population of cities as node weights is shown in Figure 4e. This
synthetic graph resembles multiple star-like structures, because
highly-populated cities become central nodes and connect to
nodes that are far away. In this connected graph, there is only
one link that connects east and west portions of the US. Finally,
a location-constrained Waxman graph with β = 0.6 and α = 0.1
values is shown in Figure 4f. Because of the probabilistic na-
ture of this graph model, the links between nodes are estab-
lished randomly. In conclusion, Gabriel graphs are the closest
to model physical level topologies with some caveats which we
discuss in the next section.

4.2. Graph Metrics Analysis

The visual representation of graphs provide information on
how the different models generate graphs, however, this is not
sufficiently rigorous. Therefore, we calculate the graph metrics
(mentioned in Section 2.2) of all the graphs as shown in Table 9.
In this table the first column shows the backbone provider, the
second column shows graph model, the third column shows the
applicable optimisation method, and the rest of the columns
show the well-known graph metric values. The optimisation
methods applicable are: TO (threshold optimised), CCO (cost
and connectivity optimised), CBO (cost and biconnectivity op-
timised).

In observing the Table 9, structural graphs have fewer num-
ber of nodes and have an average degree close to 3 compared to
geographical physical graphs as explained in Section 2.5. The
rest of the graphs have the same node numbers as their corre-
sponding geographical physical graph. The geometric graph
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Table 9: Structural properties of fibre topologies

Provider Graph Opt. Nodes Links Avg. Node Clust. Diam. Rad. Avg. Close. Max. Node Max. Link
Degree Coeff. Hop. Between. Between.

AT&T

Physical N/A 383 488 2.55 0.04 39 20 14.13 0.07 17, 011 14, 466
Structural N/A 162 244 3.01 0.12 28 14 9.16 0.12 3, 592 2, 936
Gabriel N/A 383 686 3.58 0.23 40 20 14.06 0.07 26, 026 22, 037

Geometric
TO 383 15, 062 78.65 0.75 8 4 3.29 0.32 5, 608 2, 779

CCO 383 4, 916 25.67 0.69 26 13 8.16 0.13 24, 381 24, 462
CBO 383 8, 343 43.57 0.71 15 8 5.06 0.21 14, 443 12, 423

PWGTG CCO 383 1, 670 8.72 0.85 3 2 2.31 0.44 55, 687 24, 580
CBO 383 2, 336 12.19 0.88 3 2 2.19 0.46 40, 664 5, 293

Waxman CCO 383 1, 896 9.90 0.05 7 4 3.29 0.31 4, 778 2, 862

Level 3

Physical N/A 99 132 2.67 0.09 19 10 7.65 0.14 1, 622 1, 046
Structural N/A 63 94 2.98 0.18 14 7 5.68 0.18 655 568
Gabriel N/A 99 170 3.43 0.29 23 12 8.16 0.13 1, 515 1, 314

Geometric
TO 99 2, 107 42.57 0.81 5 3 2.04 0.51 391 175

CCO 99 749 15.13 0.71 14 7 4.19 0.26 1, 726 934
CBO 99 1, 104 22.30 0.75 8 4 3.09 0.34 1, 143 582

PWGTG CCO 99 324 6.55 0.82 4 2 2.57 0.40 3, 582 1, 748
CBO 99 526 10.63 0.82 3 2 2.01 0.51 2, 528 222

Waxman CCO 99 364 7.35 0.17 8 4 3.11 0.33 751 399

Sprint

Physical N/A 264 313 2.37 0.03 37 19 14.71 0.07 11, 324 9, 566
Structural N/A 77 114 2.96 0.14 16 9 6.47 0.16 743 602
Gabriel N/A 264 474 3.59 0.26 33 17 11.94 0.09 13, 110 874

Geometric
TO 264 6, 478 49.08 0.75 9 5 3.64 0.29 6, 150 5, 571

CCO 264 3, 417 25.89 0.71 19 10 6.48 0.17 12, 322 12, 383
CBO 264 4, 261 32.28 0.72 13 7 5.05 0.21 8, 146 6, 645

PWGTG CCO 264 1, 164 8.82 0.83 3 2 2.32 0.44 25, 577 11, 773
CBO 264 1, 532 11.61 0.87 3 2 2.21 0.46 18, 030 2, 971

Waxman CCO 264 826 6.26 0.05 8 5 3.75 0.27 2, 080 1, 610

TeliaSonera

Physical N/A 21 25 2.38 0.21 9 6 4.06 0.25 75 61
Structural N/A 18 21 2.33 0.18 7 5 3.58 0.28 54 43
Gabriel N/A 21 26 2.48 0.14 11 6 4.27 0.25 100 110

Geometric
TO 21 106 10.10 0.87 3 2 1.73 0.59 62 23

CCO 21 56 5.33 0.69 8 4 3.46 0.30 91 98
CBO 21 93 8.86 0.85 4 2 2.04 0.51 48 45

PWGTG CCO 21 43 4.09 0.66 4 2 2.50 0.41 127 98
CBO 21 62 5.91 0.79 3 2 1.85 0.56 76 20

Waxman CCO 21 25 2.38 0.08 11 6 4.31 0.24 97 104

Internet2

Physical N/A 57 65 2.28 0.00 14 8 6.69 0.15 630 521
Structural N/A 16 24 3.00 0.10 6 3 2.63 0.39 40 33
Gabriel N/A 57 94 3.30 0.25 15 8 5.64 0.18 776 684

Geometric
TO 57 442 15.51 0.73 6 3 2.55 0.40 234 116

CCO 57 131 4.60 0.52 20 10 7.31 0.14 783 810
CBO 57 258 9.05 0.67 9 5 4.09 0.25 623 610

PWGTG CCO 57 151 5.30 0.70 4 2 2.77 0.37 1, 052 770
CBO 57 233 8.18 0.84 3 2 1.98 0.51 773 82

Waxman CCO 57 85 2.98 0.06 13 7 5.07 0.21 673 597

CORONET

Physical N/A 75 99 2.64 0.00 17 9 6.45 0.16 1, 090 704
Structural N/A 39 63 3.23 0.08 9 5 4.08 0.25 173 133
Gabriel N/A 75 127 3.39 0.25 20 10 7.04 0.15 852 663

Geometric
TO 75 922 24.59 0.78 7 4 2.49 0.42 591 242

CCO 75 512 13.65 0.71 11 6 4.14 0.26 1, 045 1, 064
CBO 75 613 16.35 0.73 9 5 3.46 0.31 859 416

PWGTG CCO 75 244 6.51 0.79 4 2 2.59 0.40 1, 998 1, 064
CBO 75 374 9.97 0.81 3 2 2.01 0.51 1, 349 155

Waxman CCO 75 154 4.11 0.09 12 6 4.57 0.23 1, 132 1, 064

model generates the most number of links compared to any
other synthetic graph model. In particular, when the TO method
is used with the threshold set to maximum link length of the ac-
tual geographic physical network, the TO method generates at
least an order of magnitude higher number of links compared
to actual geographic physical graph. Average node degrees are

correlated with the number of links since average node degree
is calculated by 2m/n where m is the number of links and n is
the number of nodes.

From a distance metrics (i.e. diameter, radius, average hop-
count) perspective, TO geometric graphs and CBO population
weighted geographical threshold graphs yield the least values.
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Figure 5: Spectra of service provider networks

We can infer that these are the most well-connected graphs gen-
erated by synthetic graph models. On the other hand, these
values also indicate that these synthetic graphs models do not
generate graphs close to that of actual geographic physical
graphs. The Gabriel graph distance metric values are the clos-
est to the actual geographic physical graphs. In some cases
the graph distance values of Waxman graphs are close to geo-
graphic physical graphs, but randomness in generating the Wax-
man graphs may not always result close values. From a graph
centrality metrics perspective, the Gabriel graphs also produce
graphs with properties close to that of actual geographic physi-
cal graphs.

4.3. Spectral Analysis of Graphs

We plot the spectra of physical and synthetically generated
geographical graphs in Figure 5. Clearly, the spectra of phys-
ical, structural, and Gabriel graphs are similar across all six
topologies, and they represent a grid-like structure. For the
large networks, the geometric graph model consistently gen-
erates mesh-like structures. This is also not surprising since the
graphs generated with this algorithm result in more links and
higher average degree as shown Table 9.

Furthermore, the higher the threshold distance dθ, the closer
the geometric graph is to a full-mesh like structure. However,
for smaller networks, the multiplicities at λ = 1 disappear,
and the structure approaches that of the actual physical topol-
ogy. The PWGTGs (population weighted geographic threshold
graphs) are similar to geometric graphs, but less mesh-like. For
the large networks, the behaviour of the spectra corresponding

to our generated Waxman graph falls between that of the mesh-
like spectra and that of the spectra corresponding to the actual
physical level topologies, which are grid-like. For the small
networks, the graph spectra of our generated Waxman graph
closely follow the spectra of the physical topologies.

4.4. Cost Analysis of Graphs

We presented the total link lengths of the synthetically gener-
ated graphs in the previous section. However, in order to see the
big picture we summarise them again in Figure 6. The y-axis
shows the cost incurred in terms of total link length in units
of m for each graph and x-axis shows six provider networks for
different graph models. We use the graphs that provide minimal
connectivity with the least cost. For the Waxman graph (as dis-
cussed in Section 3.4), among the set of ten connected graphs
we generated, we choose the graph with the smallest total link
length to present in Figure 6.

Cost analyses of the graphs indicate that the cost of each syn-
thetically generated graph depends on the order of the network.
For example, the cost incurred for TeliaSonera is the smallest
and TeliaSonera also has the lowest number of nodes. Second,
we can infer that geographical, structural, and Gabriel graphs
incur about the same cost for all providers. The cost of geomet-
ric, population-weighted geographical threshold, and Waxman
graphs are higher than the previous three models. However, the
cost difference between different graph models for TeliaSonera
is not as drastic as larger size networks due to its smaller or-
der. In other words, the difference between the first three and
last three graph models differs more as the number of nodes
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Figure 6: Cost analysis of physical graph models

increase. The location-constrained Waxman model is proba-
bilistic in nature and the cost values are shown for a sample
generated graph using this model with β = 0.6 and α = 0.1.
The cost incurred with the Waxman model is generally higher
than that of the original geographic physical level graphs across
all providers.

A graph’s connectivity can be improved by adding links;
however this adds additional cost to achieve resilience. By ex-
amining the synthetically generated topologies using the geo-
metric graph model and geographical threshold graph model in
Tables 5 and 7 respectively, we observe that it incurs about 90%
or more additional cost to result in biconnected graphs. For ex-
ample, applying the geometric graph model on Internet2 topol-
ogy yields a total link length of about 37,000 km for a minimal
connected graph. However, for the same node locations of In-
ternet2, when we generate a biconnected synthetic graph, the
total link length is about 105,000 km, which is more than dou-
ble the cost of the uniconnected version. Similar conclusions
can be also observed for the geographic threshold model. When
we compare these cost values against the upper bound of the In-
ternet2 graph, which is 2.7 million km, we observe that they are
far less than the upper bound. From these results, we conclude
that all synthetic graph models discussed in this paper—with
the exception of the Gabriel graph model—result in a total link
length that is not feasible to model physical level topologies.

5. Discussion

In Section 4 we demonstrated that none of the synthetic ge-
ographical graph models we study capture the cost and struc-
tural properties perfectly. Based on our observations we present
some ideas about how to develop a new geographic graph model
that more closely captures the cost and structural behavior of
physical topologies. First, we observe that the presence of pa-
rameters within a graph model gives the user more control with
regards to optimising the graph based on an objective func-
tion. Second, we note that while Gabriel graphs capture lin-
ear topologies that are horizontally aligned, they fall short in
capturing star-like structures.

(a) Gabriel (b) GTG

Figure 7: Graph models under linear geography

(a) Actual (b) Gabriel (c) GTG

Figure 8: Graph models under star geography

GTGs (geographical threshold graphs), on the other hand,
generate star-like structures aggressively around heavily
weighted nodes. For example, in Figure 7, we show the be-
havior of the Gabriel model and GTG model applied to a lin-
ear topology consisting of nodes horizontally aligned. In Fig-
ure 7a, we see that the Gabriel model perfectly captures the
linear topology, while in Figure 7b we see that the GTG model
aggressively adds more links.

Next, consider a star-like graph as shown in Figure 8. While
the Gabriel model aggressively changes it to a grid-like struc-
ture as depicted in Figure 8b showing the circles for determin-
ing the links, the GTG model can capture this star-like structure
better than the Gabriel model depending on the node weight
distribution, which we represent by giving different node sizes
as shown in Figure 8c. While each of these two models captures
different structures better than the other, a better model would
be able to select either the Gabriel model or the GTG model
based on local structural criteria.

Finally, a detailed examination of Gabriel graphs show that
they have two undesirable properties as compared to highly-
engineered physical graphs. First, they add unnecessary lad-
der cross-connections between parallel linear segments in an at-
tempt to increase the grid-like structure, and second they leave
stub links that do not biconnect nodes on the edge into the rest
of the graph. We will explore heuristics for a modified-Gabriel
graph to address these issues in future work.

6. Conclusions and Future Work

Modelling the Internet at the logical level has been the fo-
cus of the research community. On the other hand, physical
level topologies are necessary to study the resilience of net-
works more realistically. In this paper, we discuss the fitness
of four geographical graph models applied to graphs with node
locations given by those of six actual networks. We evaluate
the cost of these synthetically generated graphs based on a cost
model, and we find that among the synthetic graph models we
studied, the Gabriel model yields topologies with the smallest
cost. Furthermore, the cost incurred using synthetic models
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depends on the number of nodes and the geographic distribu-
tion of these nodes. We analyse the structural properties of the
synthetic graphs using the well-known graph metrics and graph
spectra. Our results confirm that, among the synthetic graph
generators, the Gabriel graphs best capture the grid-like struc-
ture of physical level topologies, but do not create local star-like
structures that better connect high-population nodes. Based on
our observations we present some ideas about how to develop
a new geographic graph model that more closely captures the
structural behaviour of physical topologies.

For our future work, we intend to generate synthetic graphs
based on the structural physical-level topologies. Moreover, we
will investigate heuristics that increase connectivity and bicon-
nectivity while representing grid-like structure of physical-level
topologies.
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