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Abstract—The Internet topology has been studied extensively
for decades. However, the emphasis of Internet topology research
has been on logical level topologies. On the other hand, physical
level topologies are necessary to study the resilience of networks
realistically. In this paper, we analyse the structure of synthetic
geographic topologies whose node locations are given by those
of actual physical level graphs. Our results indicate that the
synthetic Gabriel graphs capture the grid-like structure of
physical level networks. Moreover, given that the cost of physical
level topologies is an important aspect from a design perspective,
we also compare the cost of several synthetically generated
geographic graphs and find that the synthetic Gabriel graphs
achieve the smallest cost among all of the graph models that we
consider.
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I. INTRODUCTION AND MOTIVATION

Internet modelling has been the focus of the research
community for decades [1]. The Internet can be examined
at the physical, IP, router, PoP (point of presence), and
AS (autonomous system) level from a topological point of
view [2]. At the lowest level we have the physical topology,
which consists of components such as fibre and copper cables,
ADMs (add drop multiplexers), cross-connects, and layer-2
switches. The logical level consists of devices operating at the
IP-layer. The primary focus of previous studies has been on the
logical aspects of the Internet, since tools were developed to
collect, measure, and analyse IP-level properties of the Internet
(e.g. Rocketfuel [3]). However, given that physical networks
provide the means of connecting nodes in the higher levels,
the study of physical connectivity is an important area of
research [4]-[6]. Moreover, physical topologies are necessary
to model area-based challenges on networks, such as power
failures and severe weather [7].

Physical level topologies are necessary and important for
studying the structure and evolution of the Internet holisti-
cally [8]. Unfortunately, in an effort to maintain security and
competitiveness, many providers are unwilling to disclose their
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physical topologies. We generate adjacency matrices of phys-
ical level graphs of four commercial service providers based
on a third party map [9], and then make use of the publicly
available Internet2 research network and the synthetic CORO-
NET fibre topology. Using the node locations of the physical
topologies, we generate synthetic geographical graphs of
these topologies utilising the Gabriel, geometric, geographical
threshold, and Waxman graph models. We analyse the struc-
tural properties of the synthetically generated geographical
graphs using KU-TopView (KU Topology Viewer) [10] and
find that the Gabriel graph model most closely captures the
grid-like structure of the physical networks.

Another important aspect of modelling physical graphs
is the cost of networks, which is particularly important to
consider when designing physical level networks. Moreover,
from a network design perspective, it is important to design
networks that are resilient yet less costly. Unfortunately, these
two objectives fundamentally oppose one another. We compare
the synthetically generated geographical graphs based on a
cost model and our results indicate that Gabriel graphs are also
the best among the ones we consider in terms of minimising
cost. Additionally, amongst all of the synthetically generated
graphs we find that there are some whose costs are two orders
of magnitude greater than their corresponding physical graphs.
To the best of our knowledge, there are no other studies that
provide structural- and cost-based comparisons of geographic
graph models applied to graphs with node locations that are
constrained to those of actual physical graphs. Furthermore,
we discuss how one might develop a better synthetic graph
generator that incorporates the strengths of two of the geo-
graphical graph models that we study.

The rest of the paper is organised as follows: The topo-
logical dataset we use in this study is presented in Sec-
tion II. The properties of graphs we analyse are presented
in Section III. We describe the synthetic geographical graph
models in Section IV. We analyse the cost incurred to design
these graphs and present synthetically generated graphs of the
Internet2 network visually in Section V. We discuss how one
might develop a better alternative geographical graph model to



capture a graph’s structural properties in Section VI. Finally,
we summarise our study as well as propose future work in
Section VII.

II. TOPOLOGICAL DATASET

We study physical level communication networks that are
geographically located within the continental United States.
Therefore, we only include the 48 contiguous US states, the
District of Columbia, and exclude Hawaii, Alaska, and other
US territories. We use US long-haul fibre-optic routes map
data to generate physical topologies for AT&T, Sprint, and
Level 3 [9]. In this map, US fibre-optic routes cross cities
throughout the US and each ISP has a different coloured link.
We project the cities to be physical node locations and connect
them based on this map, which is sufficiently accurate on a
national scale. We use this data to generate adjacency matrices
for each individual ISP. To capture the geographic properties
as well as the graph connectivity, cities are included as nodes
even if they are merely a location along a link between fibre
interconnection. Finally, we also make use of the publicly
available TeliaSonera network [11], Internet2 [12], and CORO-
NET [13], [14] topologies. CORONET is a synthetic fibre
topology designed to be representative of service provider fibre
deployments.

III. PROPERTIES OF NETWORKS

We investigate a number of other quantities that reveal
a graph’s structural properties using the Python NetworkX
library [15]. In Table I we list a number of relevant quantities
for each of the provider networks. A detailed analysis of graph
metrics for the given physical networks was presented in our
earlier work [16]. We observe from the node and link counts
that AT&T, Level 3, and Sprint are the larger among the
networks. Moreover, all of the physical topologies have an
average degree between 2 and 3. In our previous work, we
noted that the average degree of these physical topologies was
much smaller than the average degree of their corresponding
logical topologies due to the difficulty involved in connecting
nodes in a physical topology, where one must physically lay
down fibre between nodes.

TABLE I
TOPOLOGICAL CHARACTERISTICS OF PHYSICAL LEVEL NETWORKS

Geographical Full mesh

Network . Avg. Node | Tot. [ . Tot. [
Nodes | Links Degree [km] Links %100 [km]

AT&T 383 488 2.55 50,026 | 73,153 116.8

Level 3 99 130 2.63 28,538 4,851 7.5

Sprint 264 312 2.36 33,627 | 34,716 57.8

TeliaSonera 21 25 2.38 14,190 210 0.4

Internet2 57 65 2.28 19,050 1,596 2.7

CORONET 75 99 2.64 28,325 2,775 4.6

A. Network Cost Model

Structural properties impact the connectivity and cost of
building networks. While at the logical level the cost is
captured by the number of nodes and the capacity of each

node (i.e. the bandwidth and number of ports available in a
router [17], [18]), at the physical level, the length of the fibre
is a major determinant of the cost. After all, logical level links
are arbitrarily overlaid links on top of the underlying physical
links. Previously, we provided a network cost model as:

Cij=f+vxd )]

where f is the fixed cost associated with the link (including
termination), v is the variable cost per unit distance for the
link, and d; ; is the length of the link [19], [20]. Moreover, in
a modest attempt to capture the total cost of fibre topologies, if
we assume that the fibre length dominates wide-area network
cost and ignore the fixed cost associated with each link, the
network cost can be written as:

C=>1 )

where [; is the length of the i-th link [21], [22]. We calculate
the total link length for each provider with this simplified
network cost model as shown in 5th column in Table I. The
total link length of each physical topology is somewhere
between 14,000 to 50,000 km. For these topologies, the
smaller the size of the network, the smaller the total length
link of the fibre.

Next, for each physical level topology, we consider as an
upper baseline the full-mesh topology whose vertex set is
identical to that of the original topology. We then calculate
the total link count and length of each full-mesh topology
as shown in column 6 and 7 in Table I, respectively. Note
that the total link lengths are given in millions of km for a
hypothetical full-mesh physical level topology, emphasising
that real networks cannot have unlimited resilience due to cost
constraints.

B. Structure of Physical Level Graphs

The physical level topologies consist of a number of degree
two intermediate nodes for accurate geographic representation
that are necessary for modelling area-based challenges on the
network, such as power failures and severe weather. However,
these intermediate nodes artificially change the graph theoretic
properties of the networks, in particular artificially skewing
the degree distribution toward degree-2 nodes. Therefore, we
modify the existing physical level graphs by removing nodes
with a degree of two, if there is not a logical level node at that
location that is serviced by the physical node. The number of
nodes, links, and average degree of the structural graphs are
shown in Table II. Each structural graph has fewer nodes and
links than its corresponding physical level graph. However,
with the exception of TeliaSonera, each structural graph has
a larger average degree than its corresponding physical level
graph. For example, the structural graph of Internet2 has 16
nodes, 24 links, and an average degree of 3 whereas the
original Internet2 physical graph has 57 nodes, 65 links, and
an average degree of 2.28. We believe that the structural graph
of TeliaSonera has a smaller average degree than the original



graph of TeliaSonera due to the latter’s small order and size.
However, we note that total fibre length of the structural graph
(14,040 km) is close to that of the original physical graph
(14,190 km).

TABLE I
FIBRE LINK LENGTHS OF STRUCTURAL GRAPHS

[ Network [[ Nodes [ Links | Avg. Deg. [ Tot. I [km] |
AT&T 130 191 2.94 37,489
Level 3 48 71 2.96 25,390
Sprint 52 73 2.81 25,190

TeliaSonera 18 21 2.33 14,040
Internet2 16 24 3.00 18,146
CORONET 39 63 3.23 27,579

IV. GRAPH MODELS FOR PHYSICAL LEVEL NETWORKS

In the following section we present four different geographic
graph models. The Gabriel graph model is a parameterless
model that uses only node locations as input, while the
geometric, geographical threshold, and Waxman models all
require at least one parameter. The geometric graph model uses
a single threshold parameter, while the geographic threshold
model and the probabilistic Waxman model use two parame-
ters. We apply each of these graph models to graphs with node
locations constrained to those of actual physical topologies.
Given the diverse nature of these models, we believe the
following sections represent a fairly comprehensive analysis
of geographic graph models applied to physical topologies.

A. Gabriel Graphs

Next, we generate Gabriel graphs of the six service provider
networks. Gabriel graphs are useful in modelling graphs with
geographic connectivity that resemble grids [23], [24]. We
would expect the Gabriel graph to be one of the best ways to
model physical topologies for this reason. In a Gabriel graph,
two nodes are connected directly if and only if there are no
other nodes that fall inside the circle whose diameter is given
by the line segment joining the two nodes. The number of links
and the total link length of Gabriel graphs of six networks are
shown in Table III.

TABLE III
FIBRE LINK LENGTHS OF GABRIEL GRAPHS

[ Network [[ Links | Tot. I [km] |
AT&T 686 66,157
Level 3 170 33,991
Sprint 474 57,104
TeliaSonera 26 12,111
Internet2 94 27,786
CORONET 127 33,265

B. Geometric Graphs

A 2-dimensional geometric graph is a graph in which nodes
are placed on a plane or surface and any pair of nodes is
connected if and only if:

d(u,v) < dy 3)

where d(u, v) is the Euclidean distance between the two nodes
{u,v}, and dy is a distance threshold parameter [25]. In the
conventional random 2-dimensional geometric graph model,
nodes are distributed randomly on a plane.

Using the physical level node locations of six provider
networks, we generate four different geometric graphs based
on four different dy distance threshold values. For the first
set of graphs, we use the maximum link length of the actual
physical graph as the dy value. For the second set of graphs
we select the largest possible values of dy such that the total
link lengths of these graphs are less than the total link lengths
of the original physical level graphs. Using this methodology,
we find that all of the synthetically generated graphs are
disconnected. For the third set of graphs, we select the smallest
value of dy such that the graphs are connected. It turns out
that none of these graphs are biconnected. For the fourth
set of graphs we select the smallest values of dg such that
the graphs are biconnected: that is, such that the graphs will
remain connected after the failure of any one node or link.
This is a basic requirement for basic network resilience and
survivability [26], [27]. The link lengths [ of the actual graphs
as well as the synthetically generated geometric graphs are
shown in Table IV.

To further explain the data in Table IV, consider the AT&T
physical graph with the given node locations. The number
of links, total link length, and maximum link length of the
actual AT&T physical graph are shown in columns 2, 3,
and 4, respectively. For the case of AT&T, when we assign
dp = max(l;) (where max(l;) = 629 km in this case), the
synthetically generated geometric graph has 15,062 links and
the total length of the graph is approximately 5.7x10°% km.
Using this threshold optimised methodology we obtain the
number of links, total link length, and dy as shown in columns
5, 6, and 7, respectively. With the second cost optimised
methodology we generate synthetic geometric graphs such that
the total link length is less than that of the actual physical
topology. In the case of AT&T, the generated graph has a
total link length of 49,937 km, which is less than that of the
actual AT&T graph whose total link length is 50,026 km. We
note that the cost optimised geometric graphs of all service
providers are disconnected graphs. The number of links, total
link length, and dy for cost-optimised graphs are shown in
columns 8, 9, and 10, respectively. Since the cost-optimised
geometric graphs are disconnected graphs, we increase the
value of dy until we obtain connected graphs. Applying this
cost and connectivity optimised methodology to AT&T, the
total number of links is 4,916, the total length of the links
is 918,353 km, and dy = 302 km, as shown in columns
11, 12, and 13, respectively. While cost and connectivity
optimised graphs are connected, none of them are biconnected.
Therefore, we increase dy so that the resulting geometric
graphs are biconnected. Applying this cost and biconnectivity
optimised methodology to AT&T, we obtain a synthetically



TABLE IV
COST OF GEOMETRIC GRAPHS BASED ON A THRESHOLD VALUE

Actual Threshold Optimised Cost Optimised Cost & Con. Optimised Cost & Bicon. Optimised

Network . Tot. 1 Max. 1 . Tot. 1 de . Tot. 1 do . Tot. [ de . Tot. I de
Links [km] ‘ [km] Links [km] ‘ [km] Links [km] [km] Links [km] [km] Links [km] ‘ [km]

AT&T 488 50,026 629 15,062 5,719,021 629 783 49,937 99 | 4916 918,353 302 | 8,343 (2,169,572 424
Level 3 130 28,538 1,063 2,107 [1,326,422 | 1,063 209 28,358 226 749 234,721 528 1,104 449,360 683
Sprint 312 33,627 602 6,478 2,327,659 602 466 33,573 112 | 3,417 804,197 390 | 4,261 [1,159,340 452
TeliaSonera 25 14,190 1,592 106 88,151 | 1,592 37 13,757 614 56 27,842 859 93 68,635 | 1,425
Internet2 65 19,049 910 442 246,259 910 83 18,997 334 131 37,532 424 258 104,793 616
CORONET 99 28,325 943 922 506,209 943 156 28,144 280 512 188,663 604 613 253,812 691

generated geometric graph with 8,343 links, 2.2x10% km of
total link length, and a dy value of 424 km, as shown in
columns 14, 15, and 16, respectively. The rest of the service
provider data is shown in the consecutive rows in Table IV.

C. Population-weighted Geographical Threshold Graphs

A threshold graph is a type of graph in which links are
formed based on node weights [28]. Two nodes {u,v} with
node weights {w,,,w,} are connected if and only if:

Wy + Wy > 1 “4)

in which ¢ is a threshold value that is a non-negative real num-
ber. A modified version of a threshold graph is a geographical
threshold graph that includes geometric information about the
nodes [29]. In this case, two nodes {u, v} with node weights
{wy,, w,} are connected if and only if:

Wy, + wy > Yd(u, v)¢ 5)

where ¢ and ¢ are model parameters and d(u,v) is the
distance between nodes {u,v}. In our study, we assign the
node weights to be the population estimates of cities for year
2011, which are taken from the US Census Bureau [30]. The
population statistics for each provider are given in Table V.
For the AT&T physical graph, the total of population of all
of the cities (e.g. 383 cities) is about 76 million, and the
average city population is about 197,000. The most populous
city (NYC for all networks) has about 8.2 million people, and
the least populated city has 182 people. These statistics are
shown in columns 2, 3, 4, and 5 in Table V respectively for
each provider network.

TABLE V
POPULATION STATISTICS OF CITIES AS NODE WEIGHTS

[ Network [ Total [ Average [ Maximum | Minimum |
AT&T 75,753,034 197,789 8,244,910 182
Level 3 53,221,035 537,586 8,244,910 12,695
Sprint 67,794,208 256,796 8,244,910 448

TeliaSonera 27,944,279 1,330,680 8,244,910 65,397
Internet2 40,980,611 718,958 8,244,910 8,438
CORONET 49,559,726 660,796 8,244,910 33,395

Using city populations as node weights, we generate syn-
thetic graphs for each provider network. We choose ¢ = 1 so
that we can manipulate only . Moreover, by choosing ¢ = 1,

we find that the righthand side of inequality (5) varies linearly
with distance. Hence, as the distance increases between two
nodes they are less likely to be connected. Having fixed ¢ = 1,
we first choose ¢ so as to minimise cost while ensuring
connectivity, and then choose 1 so as to minimise cost while
ensuring biconnectivity. More specifically, for each network,
we select the largest value of ¥ rounded to the nearest tenth
such that the graph is connected, and then select the largest
value of ¢ rounded to the nearest tenth such that the graph
is biconnected. The results of both methodologies are shown
in Table VI. For AT&T, we find that the largest value of v
such that AT&T is connected is 3.1, yielding a link number
of 1670 and a total link length of 690,941 km. Additionally,
the largest value of ¢ such that AT&T is biconnected is 2.4,
which yields a link number of 2,336 and a total link length of
1,036,747 km.

TABLE VI
POPULATION-WEIGHTED GEOGRAPHIC THRESHOLD GRAPHS FOR ¢ = 1

Connectivity Optimised Biconnectivity Optimised ]

’ Network H % [ Links [ Tot. I [km] | % | Links | Tot. [ [km] |
AT&T 3.1 1,670 690,941 2.4 2,336 1,036,747
Level 3 3.4 324 158,316 2.4 526 304,696
Sprint 3.0 1,164 500,678 2.4 1,532 717,311
TeliaSonera 3.4 43 31,099 2.3 62 58,492
Internet2 3.2 151 98,733 23 233 194,938
CORONET 3.3 244 127,387 2.4 374 233,360

D. Location-constrained Waxman Graphs

The Waxman model provides a probabilistic way of con-
necting nodes in a graph [31]. Given two nodes {u,v} with
a Euclidean distance d(u,v) between them, the probability of
connecting these two nodes is:

—d(u,v)

P(u,v) = fe” La (6)

where 8, € (0,1] and L is the maximum distance between
any two nodes. Increasing (3 increases the link density and a
large value of « corresponds to a high ratio of long links to
short links.

In the Waxman model nodes are uniformly distributed in the
plane. We modify the Waxman model so that it is constrained
by the node locations. The resulting link properties of the
location-constrained Waxman model, along with the S and
« parameters, are shown in Table VII. For each network, we



choose 3 and « such that the resulting graph is a connected
graph with the smallest possible total link length. For example,
in the AT&T graph, using the node geographic locations we

TABLE VIII
STRUCTURAL PROPERTIES OF FIBRE TOPOLOGIES

. . Avg, Tot. [
use 3 and « values of 0.1 and run the experiments 10 times, Provider Graph Opt. | Links | o0 e [km]
which results graphs that are disconnected. Then, we keep 3 Physical N/A 438 2.55 50,026
at a value of 0.1 and increase « to a value of 0.2, which results Structural N/A 191 2.94 37,489
. d hs but with £ 1.6 milli km total Gabriel N/A 686 3.58 66,157
in connected graphs but wi a mean of 1.6 million km tota TO 115,062 | 78.65 57719.021
link length. We calculate total link length by averaging 10 runs AT&T Geometric || CCO | 4916 | 25.67 918,353
with increments of 0.1 for 3 and « parameters until we find ggg ?’2‘7‘8 4;% Z’égg’gﬁ
connected graphs that result in least total length. The 3 and PWGTG |0 T2336 [ 12.19 T.036.747
o parameters for each provider are shown in columns 2 and 3 Waxman CCO [ 1,896 9.90 991,037
in Table VII. The average number of links for each topology Physical N/A 130 2.63 28,538
resulting from 10 runs is shown in column 4, whereas the Structural || N/A 71 2.96 25,390

.. . . Gabriel N/A 170 3.43 33,991

standard deviation ¢ of the number of links resulting from 10 TO [ 2107 | 42.57 1326422
runs is shown in column 5. The average total link length of Level 3 Geometric |[ CCO | 749 | 15.13 234721
10 runs is shown in column 6, and the standard deviation o ggg 1;8‘4‘ 22;(5) ‘l“s‘g;?g
of the total link of length resulting from 10 runs is shown in PWGTG | =551 336 1 1063 304.696
column 7. Waxman CCO 364 7.35 192,546
Physical N/A 312 2.36 33,627

TABLE VII Structural || N/A 73 | 2381 25,190

LOCATION-CONSTRAINED WAXMAN GRAPHS Gabriel N/A 474 3.50 57,104

TO 6,478 49.08 2,327,659

Network 5 - Avg. No. > X7 > Sprint Geometric CCO | 3417 25.89 804,197

of Links | Links | Tot. I [km] | Tot. 1 CBO | 4261 | 32.28 1,159,340

AT&T [[ 02 [ 0.1 | 1,981 54 1,044,856 | 29,509 PWGTG ||-oCO | 1164 882 200,678

Tevel 3 || 06 | 0.1 392 14 305,036 | 7.8% CBO | 1,532 | 11.61 77,311

Sprnt || 02 | 0.1 904 g T75083 | 24271 Waxman || CCO | 826 6.26 429,285
TeliaSonera || 0.6 | 0.2 31 3 24498 | 4,43 Physical N/A 25 2.38 14,190
Tnternet2 || 0.6 | 0.1 102 10 62,100 | 7,723 Structural || N/A 21 233 14,040
CORONET 0.5 0.1 174 15 91,002 10,062 Gabriel N/A 26 2.48 12,111

TO 106 10.09 88,151

TeliaSonera | Geometric CCO 56 5.33 27,842

CBO 93 8.86 68,635

V. ANALYSIS OF PHYSICAL-LEVEL GRAPHS PWGTG Cco 43 4.09 31,099

CBO 62 5.90 58,492

In this section we present the cost incurred using different Waxman [[ CCO 25 2.38 15,937
graph models, as well as show the structure of the synthetic Physical N/A 65 2.28 19,050
Structural N/A 24 3.00 18,146

models for the Internet2 network. bl A o1 355 77786
. TO 442 | 1551 246,259

A. Cost Analysis of Graphs Internet2 | Geometric || CCO | 131 | 4.5 37532
We presented the total link lengths of the synthetically ggg ?g? g'gg lgg’;gz
generated graphs in the previous section. However, in order PWGTG | —=g51 733 818 194,938
to see the big picture we summarise them again in Table VIII. Waxman CCO 85 2.98 48,252
The first column shows the providers, and the second column Physical N/A 99 2.64 28,325
gives the types of graphs generated for each provider, which Sg‘:g?:erfl Ejﬁ 13; ;gg %Z%g
we discussed in the previous section. For each type of graph, 0 997 1 2459 506.200
if any optimisation technique was used, this is indicated in CORONET | Geometric ([ CCO | 512 [ 13.65 188,663
column 3, where optimisation techniques include CO (connec- glég gii 12?? %g;gg
tivity optimised), CCO (cost and connectivity optimised), and PWGTG | —=g5 1372 997 233,360
CBO (cost and biconnectivity optimised). The total number of Waxman CCo 154 411 73,498

links, average node degree, and total link lengths are shown in
columns 4, 5, and 6, respectively. For the Waxman graph (as
discussed in Section IV-D), among the set of ten connected
graphs we generated, we choose the graph with the smallest
total link length to present in Table VIII.

The results are not surprising: when networks are required
to be biconnected, additional costs are incurred. Furthermore,
for geometric graphs, as the threshold distance is increased, the
graph becomes more connected, which increases the total cost.
Moreover, geometric graphs incur the highest cost among all

of the graph models considered. The PWGTGs (population
weighted geographical threshold graphs) also incur a high
cost due to the fact that nodes with heavy weights are
connected even if they are far apart. For our future work, we
will generate additional PWGTGs by further varying the
and ¢ parameters. Depending on the physical topology used,
PWGTGs may incur a higher cost than Waxman graphs or vice



versa. On the other hand, the probabilistic nature of Waxman
can result in graphs that are not structurally optimal.

We presented the total link lengths of the synthetically
generated graphs in Table VIII. However, in order to better
illustrate the results we summarise them again in Figure 1.
The y-axis shows the cost incurred in terms of total link length
in units of m for each graph and z-axis shows six provider
networks for different graph models from left to right. We use
the graphs that provide minimal connectivity with the least
cost. For the Waxman graph (as discussed in Section IV-D),
among the set of ten connected graphs we generated, we
choose the graph with the smallest total link length to present
in Figure 1.
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Cost analysis of physical graph models

Cost analyses of the graphs indicate that the cost of each
synthetically generated graph depends on the order (number
of nodes) of the network as expected. For example, the cost
incurred for TeliaSonera is the smallest and TeliaSonera also
has the lowest number of nodes. Second, we can infer that
geographical, structural, and Gabriel graphs incur about the
same cost for all providers. The cost of geometric, population-
weighted geographical threshold, and Waxman graphs are
much higher than the previous three models. However, the
cost difference between different graph models for TeliaSonera
is not as drastic as larger size networks due to its smaller
order. In other words, the difference between the first three
and last three graph models differs more as the number of
nodes increase. The location-constrained Waxman model is
probabilistic in nature and the cost values are shown for
a sample generated graph using this model with 8 = 0.6
and a = 0.1. The cost incurred with the Waxman model is
generally higher than that of the original geographic physical
level graphs across all providers, because the links are added
probabilistically.

A graph’s connectivity can be improved by adding links;
however this adds additional cost to achieve resilience [22]. By
examining the synthetically generated topologies using the ge-
ometric graph model and geographical threshold graph model
in Tables IV and VI respectively, we observe that it incurs

about 90% or more additional cost to result in biconnected
graphs. For example, applying the geometric graph model on
Internet2 topology yields a total link length of about 37,000
km for a minimal connected graph. However, for the same
node locations of Internet2, when we generate a biconnected
synthetic graph, the total link length is about 105,000 km,
which is more than double the cost of the uniconnected
version. Similar conclusions can be also observed for the
geographic threshold model. When we compare these cost
values against the upper bound of the Internet2 graph, which
is 2.7 million km, we observe that they are far less than the
upper bound. From these results, we conclude that all synthetic
graph models discussed in this paper—with the exception of
the Gabriel graph model—result in a total link length that is
not feasible to model physical level topologies.

B. Visual Analysis of Graphs

We inspect all the synthetically generated topologies of
all the providers using KU-TopView (KU Topology Map
Viewer) [10], [20]. We find the results to be similar across
all providers. We discuss the Internet2 graph here because its
smaller order makes it easier to visualise, and thus more infor-
mative for demonstrating the fitness of each synthetic graph
model on this topology. The geographical, structural, Gabriel,
geometric, population weighted geographical threshold, and
location-constrained Waxman model of the Internet2 physical-
level graphs are shown in Figure 2.

The geographic physical-level Internet2 topology with 57
nodes and 65 links is shown in Figure 2a. In our earlier
work we showed using graph spectra that geographic physical-
level graphs resemble a grid-like structure [16]. The structural
physical-level Internet2 topology in which degree-2 nodes are
removed is shown in Figure 2b. The synthetically generated
Gabriel graph of the geographic Internet2 graph is shown in
Figure 2c. While the Gabriel graph preserves the grid-like
structure of the geographic physical-level topology, it omits
some of the links at the periphery of the actual geographic
physical-level graph (e.g. link between Baton Rouge, LA and
Jacksonville, FL) and adds links that are infeasible to deploy
due to terrain. The synthetically generated geometric graph
based on a distance threshold value that incurs minimal cost
to obtain a connected graph is shown in Figure 2d. In this case,
while islands of nodes that are close to each other are richly
connected, overall the graph is far from being biconnected. The
geographical threshold graph of the Internet2 topology using
population of cities as node weights is shown in Figure 2e.
This synthetic graph resembles multiple star-like structures,
because highly-populated cities become central nodes and
connect to nodes that are far away. In this connected graph,
there is only one link that connects east and west portions
of the US. Finally, a location-constrained Waxman graph with
B = 0.6 and @ = 0.1 values is shown in Figure 2f. Because of
the probabilistic nature of this graph model, the links between
nodes are established randomly. In conclusion, Gabriel graphs
are the closest to model physical level topologies with some
caveats which we discuss in the next section.
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Fig. 2.

VI. DISCUSSION

In Section V we demonstrated that none of the synthetic
geographical graph models we study capture the cost and
structural properties perfectly. Based on our observations we
present some ideas about how to develop a new geographic
graph model that more closely captures the cost and structural
behavior of physical topologies. First, we observe that the
presence of parameters within a graph model gives the user
more control with regards to optimising the graph based on an
objective function. Second, we note that while Gabriel graphs
capture linear topologies that are horizontally aligned, they fall
short in capturing star-like structures.

« — o — o

[ L L
(a) Gabriel (b) GTG
Fig. 3. Graph models under linear geography

(a) Actual

(b) Gabriel

(c) GTG
Fig. 4. Graph models under star geography

GTGs (geographical threshold graphs), on the other hand,
generate star-like structures aggressively around heavily
weighted nodes. For example, in Figure 3, we show the

(e) Geographical threshold

NS
________ Z

(f) Waxman

Visual representation of Internet2 physical-level topologies in KU-TopView [10]

behavior of the Gabriel model and GTG model applied to
a linear topology consisting of nodes horizontally aligned. In
Figure 3a, we see that the Gabriel model perfectly captures
the linear topology, while in Figure 3b we see that the GTG
model aggressively adds more links.

Next, consider a star-like graph as shown in Figure 4.
While the Gabriel model aggressively changes it to a grid-
like structure as depicted in Figure 4b showing the circles for
determining the links, the GTG model can capture this star-like
structure better than the Gabriel model depending on the node
weight distribution, which we represent by giving different
node sizes as shown in Figure 4c. While each of these two
models captures different structures better than the other, a
better model would be able to select either the Gabriel model
or the GTG model based on local structural criteria.

Finally, a detailed examination of Gabriel graphs show
that they have two undesirable properties as compared to
highly-engineered physical graphs. First, they add unnecessary
ladder cross-connections between parallel linear segments in
an attempt to increase the grid-like structure, and second they
leave stub links that do not biconnect nodes on the edge into
the rest of the graph. We will explore heuristics for a modified-
Gabriel graph to address these issues in future work.

VII. CONCLUSIONS AND FUTURE WORK

Modelling the Internet at the logical level has been the focus
of the research community. On the other hand, physical level
topologies are necessary to study the resilience of networks
more realistically. In this paper, we discuss the fitness of
four geographical graph models applied to graphs with node
locations given by those of six actual networks. We evaluate
the cost of these synthetically generated graphs based on a cost
model, and we find that among the synthetic graph models we
studied, the Gabriel model yields topologies with the smallest



cost. Furthermore, the cost incurred using synthetic models
depends on the number of nodes and the geographic distribu-
tion of these nodes. We analyse the topologies generated by
the synthetic geographic graph models, and visual inspection
of these topologies shows that the Gabriel graphs best capture
the grid-like structure of physical level topologies. Based on
our observations we present some ideas about how to develop
a new geographic graph model that more closely captures the
structural behaviour of physical topologies.

For our future work, we intend to generate synthetic graphs
based on the structural physical-level topologies. Moreover,
we will investigate heuristics that increase connectivity and bi-
connectivity while representing grid-like structure of physical-
level topologies.
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