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ABSTRACT

Accurate mobility models are needed to simulate the physical movement of nodes in a highly-dynamic
aeronautical network. The fundamental problem with many synthetic mobility models is their random,
memoryless behavior. Airborne ad hoc networks require a flexible memory-based 3-dimensional mobility
model. We present a new 3-dimensional implementation of the Gauss-Markov mobility model for airborne
telemetry network simulations, and compare its behavior to memoryless models such as random waypoint
and random walk using the ns-3 simulator.

I. INTRODUCTION AND MOTIVATION

Airborne communication presents a challenging environment for mobile ad hoc networking. High
mobility, limited bandwidth and transmission range, and unreliable noisy channels, create a harsh envi-
ronment for communications [1]. The problems of congestion, collisions, and transmission delays are
only made worse in an ad hoc multi-hop environment [2]. Additionally, we cannot assume that any two
nodes will be within transmission range of each other for very long. Two highly mobile nodes moving in
opposite directions at hypersonic relative velocity might only expect to have a few seconds of opportunity
to discover, setup, and transfer data, or to make a successful handoff.

New protocols are emerging to address these difficulties [3] and there is a need to evaluate their per-
formance, initially, through realistic simulations. The ns-3 simulator is an emerging network performance
simulation environment with several mobility models already built in, including random direction 2D,
random walk 2D, random waypoint, constant velocity, constant acceleration, and constant position [4].

The fundamental problem with many synthetic mobility models is their random, memoryless behav-
ior. Simulations using these mobility models exhibit unnatural movements with abrupt and often extreme
changes in velocity and direction, uncharacteristic of highly-mobile airborne nodes. These mobility mod-
els are insufficient in simulating a highly-dynamic airborne ad hoc network. They also lack support for
3-dimensional position allocation, relative velocity between nodes in 3-D space, and realistic flight be-
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havior. In this paper, we present a 3-dimensional implementation of the Gauss-Markov mobility model
suitable for use in multi-tier, highly-dynamic MANET simulations. We present an analysis of the proposed
model and its characteristics based on ns-3 simulations.

II. CURRENT NS-3 MOBILITY MODELS

As of ns-3.7, the built-in mobility models include constant velocity, random walk 2D, random direction
2D, and random waypoint. We now present a brief summary of these models.

In constant velocity, nodes proceed along their initial velocity vector for the duration of the simulation
as shown in Figure 1a. There are no geographic boundaries in this model. In random walk 2D, each node
is given a random trajectory (speed and direction) and travels on that trajectory for a fixed period of time
or a fixed distance as shown in Figure 1b. When nodes reach the limits of the 2-dimensional boundary,
they bounce off in a new direction mirroring the previous direction and velocity. Figure 1c shows an
example of the random direction model, in which nodes travel on a random trajectory until they reach
the 2D boundary, at which time they pause for a random period of time and head off in a new random
direction and speed. In the random waypoint model, as illustrated in Figure 1d, each node travels to a
random waypoint (x,y coordinate), pauses for a period of time, and then heads off to another waypoint.
The waypoints, node speeds, and pause times are modeled as uniformly distributed random variables.

AN

(a) Constant Velocity (b) Random Walk (c¢) Random Direction (d) Random Waypoint

Figure 1: ns-3 Memoryless Mobility Models

These simple synthetic mobility models do not mimic the motion of airborne nodes very well. The
nodes undergo sudden changes in speed and direction at random, which is uncharacteristic of real objects
(e.g. aircraft).



III. AIRBORNE MOBILITY MODEL REQUIREMENTS

Some of the challenges faced by airborne networks include high mobility, limited bandwidth, limited
transmission range, and intermittent connectivity [1]. Airborne nodes are highly dynamic and require 3-
dimensional models. The current ns-3 mobility models are designed for 2-dimensional movement. The
random waypoint model, the basic design of which is not limited to 2 dimensions, can only select from
waypoints generated from the ns-3 position allocation class. And at this time, there are only three position
allocation models identified in the position allocation class: grid position, random rectangle, and random
disc, all of which are 2-dimensional allocation schemes.

Simulated airborne nodes represent the motion of physical objects flying through the air, for which
natural laws must be obeyed. This implies that the path of an airborne node will not be completely
random, but its position at any point in time will be dictated largely by its previous position and velocity
vector. Therefore, the mobility model must have memory. The mobility models mentioned previously are
all memoryless. One characteristic of a memoryless mobility model is the existence of very sharp and
sudden changes in direction and speed. One measure by which a good airborne mobility model should be
judged is the fluidity of movement between consecutive positions.

A multi-tier MANET topology is required to support various quality of service needs while also at-
tempting to provide seemless airborne connectivity [5, 3]. Multi-tier networks introduce coverage asym-
metry, since higher altitude nodes can potentially have far more neighbors than ground-based or low-
altitude nodes. An airborne MANET will have nodes at different altitudes performing different functions
and with different communication and mobility characteristics. Thus our model also supports multi-tier
networks.

IV. GAUSS-MARKOV MOBILITY ALGORITHM

In this section, we first present the basic Gauss-Markov algorithm for modeling two-dimensional mo-
bility. We then extend the model to three dimensions as well as introduce new parameters to accurately
model the mobility of airborne nodes.

A. The Basic 2D Gauss-Markov Algorithm

The Gauss-Markov mobility model is a relatively simple memory-based model with a single tuning
parameter, alpha o, which determines the amount of memory and variability in node movement. In this pa-
per, we describe other tuning parameters that have a significant impact on the dynamics and characteristics
of the Gauss-Markov mobility model as well as the selection of alpha.

In the traditional 2-dimensional implementation of the Gauss-Markov model, each mobile node is
assigned an initial speed and direction, as well as an average speed and direction. At set intervals of time,



a new speed and direction are calculated for each node, which follow the new course until the next time
step. This cycle repeats through the duration of the simulation. The new speed and direction parameters
are calculated as follows [6]:

Sp = aSp_1+ (1 —a)s++/ (1 —a?)s,,_,

d, = ad, 1+ (1—a)d++/(1—-a2)d,, , (1)

where « is the tuning parameter, 5 and d are the mean speed and direction parameters, respectively, and
Sz, , and d,, _, are random variables from a Gaussian (normal) distribution that give some randomness to
the new speed and direction parameters.

Special Case: o = 0
When « is zero, the model becomes memoryless; the new speed and direction are based completely upon
the average speed and direction variables and the Gaussian random variables.

Sn = S+ Sz,

d, = d+d,, , (2)

Special Case: o = 1
When « is 1, movement becomes predictable, losing all randomness. The new direction and speed values
are identical to the previous direction and speed values. In short, the node continues in a straight line.

Sn = Spn-1

dy = dp 3)

Setting o between zero and one allows for varying degrees of randomness and memory. In addition
to «, the dynamics of the Gauss-Markov mobility model are greatly influenced by other variables like the
time step, the selection of the average speed and direction, and the mean and standard deviation chosen for
the Gaussian random variables. For example, choosing a standard deviation on the Gaussian distribution
governing the direction that is much larger than the average direction generates a very different movement
pattern than if the standard deviation and average direction values are similar.

B. Extending the Model to Three Dimensions

In this section, we discuss several methods to extend the basic Gauss-Markov 2-dimensional model
to three dimensions. The first approach is to apply the Markov process to the z, y, and 2 axis of a 3-
dimensional velocity vector. The velocity vector is computed as:

Tp = atpq+(1—a)Z++/(1—-0a?)z,,
Yn = QlYp—1 -+t (1 - Oé)g v (1 - Oﬂ)ywn—l
Zn = azpi+(1—a)Z+ /(1 -a?)z,_, )
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The advantage of this approach is that at each time step, the new velocity vector values can be ap-
plied directly to the constant velocity helper class in ns-3 that will calculate the position of the mobile
nodes automatically. This eliminates the need for direction variables entirely, along with the trigonometric
calculations that would be required to determine the node velocity vector.

The problem with this method is that it is uncharacteristic of aircraft in flight; it is not easy to model
airplane flight based upon the plane’s velocity in the z-direction, its velocity in the y-direction, and its
velocity in the z-direction. Aircraft flight can be more accurately modeled using a velocity variable com-
bined with variables for both direction and pitch. In the second approach, we start with the speed and
direction variables found in the 2-dimensional Gauss-Markov model, and add a third variable to track the
vertical pitch of the mobile node with respect to the horizon as follows:

Sp = asp 1+ (1—a)s++/(1—a?)s,,_,

d, = ad,_1+(1—a)d++/(1—-a?)d,, .

DPn = QPp-1+ (1 - O‘)ﬁ—'— (1 - az)pan (5)

Note that these formul® represent basic 3-dimensional node movement. The objective of this model is
to accurately represent the 3-dimensional node movement while limiting the complexity. It is not necessary
to model the various flight controls, like the rudder, flaps, ailerons, angle of bank, etc. It is sufficient to
model the aircraft movement itself using the Gauss-Markov algorithm, for which we assume the direction
and pitch variables represent the actual angles at which the aircraft is moving.

After calculating these variables, the algorithm must determine a new velocity vector and send that
information to the ns-3 constant velocity helper, in which the new node location is calculated. Assuming
the direction and pitch variables are given in radians, the velocity vector v is calculated as:

vy = Sycos(dy)cos(p,)
v, = Sysin(d,)cos(p,)
v, = Spsin(py) 6)

V. SIMULATIONS

We implemented the proposed 3D Gauss-Markov model in ns-3 simulator. Table 1 summarizes the
various parameters of our implementation, the attributes they represent, and the default values. In order
to examine the results of the mobility model in 3D, a Windows application was developed that parses the
ns-3 trace file data and displays the mobile node paths on the computer screen. This viewer allows one to
zoom in and out and rotate the traces in three dimensions about the origin. As various parameters of the
Gauss-Markov mobility model are adjusted, the changes in node mobility characteristics can be displayed
and analyzed.

We conducted ns-3 simulations to evaluate various characteristics of the mobility model. Simulations
included 4 mobile nodes with a simulation boundary of 300 km?. The simulations were run for a duration
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Table 1: Parameter description for 3D Gauss-Markov implementation in ns-3

Simulation parameter \ Attribute description \ Default value ‘
Bounds 3D boundary of the cruising area X: [—100, 100],

Y: [—100, 100], Z: [0, 100]
TimeStep parameter recalculation interval 1 second
Alpha tunable parameter o 1.0
MeanVelocity average velocity of nodes Uniform random variable

[0 1]
MeanDirection average direction of nodes (radians) Uniform random variable

[0 27]
MeanPitch average node pitch above horizon Constant Random Variable = 0
NormalVelocity | individual node velocities Normal distribution

mean = 0, std. dev. =1.0
NormalDirection | individual node directions Normal distribution

mean = 0, std. dev. =1.0
NormalPitch individual node pitch Normal distribution

mean = 0, std. dev. =1.0

of 200 seconds and the TimeStep was set to 5.0 seconds. All plots were generated using the Windows-
based Trace Viewer application.

C. Verifying Special Cases (aw = 0,1)

J
@a=1 ®a=0

Figure 2: Gauss-Markov Model with @« = 1 and v = 0

The node movements observed for cases of &« = 0 and 1 are shown in Figure 2. As expected from
the Gauss-Markov calculation, when o = 1 the nodes move in a straight line (unless they run into the
simulation boundary). On the other hand, when o = 0 the nodes movements are based completely on
the average velocity and direction offset by the Gaussian random variables. Since there is no memory
component to the calculation, this results in more abrupt movements and sharper angles as shown in
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Figure 2b. The larger the standard deviation (with respect to average values), the more random is the node
movement. Notice that when o = 0, the movements are not completely random; the nodes move in a
general direction over time. This is because Equation 2 includes the average speed and direction as well

as the Gaussian random variable. Removing the average from the calculation would allow the nodes to
wander more freely.

D. Variations in «

Setting o between zero and one allows us to tune the Gauss-Markov model with degrees of memory
and variation. In order to analyze the impact of o on the mobility, we conducted simulations using the
parameters given in Table 2. Figure 3 shows variation in node movement with varying values of a. We
observe that as « increases, the node paths become less random and more predictable.

Table 2: Simulation setup while studying the impact of «

Simulation parameter | Value |
MeanVelocity [800 1200] m/s
MeanDirection [0 27] radians
MeanPitch [—0.05 0.05] radians
NormalVelocity N(0,80)
NormalDirection N(0,1.4)
NormalPitch N(0,0.2)
k\“«p (\{‘\: s ;J%\TJJ ﬂxy‘jﬁ/; f{”i <;‘"f 8 | A / \ { \‘
] b g %é St . /'5"}\/ij a1l LS
~ € e § o > i
) ;M {S’ /:ﬂ?\“f W\MW (\f/ W
s/ o L ~ )
E/ ] IV Y% /
s Q&/ NaY
(@) a =025 () a =05 (©)a =085 () a = 0.95

Figure 3: Gauss-Markov model with o = 0.25, 0.5, 0.85, and 0.95

E. Change in Standard Deviation

In addition to «, a significant parameter affecting node movement is the standard deviation of the
Gaussian random variables. By only changing the standard deviation of the normal direction variable from



its previous value of 1.4 radians to only 0.4 radians (about 23 degrees), the node movements become much
less random as shown in Figure 4. As expected, setting the standard deviation of the Normal (Gaussian)
distribution much smaller than the mean value provides relatively straight paths. Setting the standard
deviation on par with the mean value results in a more random path. Setting the standard deviation much
larger than the mean results in a much more random path.
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Figure 4: Gauss-Markov model with low standard deviation of 0.4 radians

F. Change in Timestep

Another significant parameter affecting node movement is the TimeStep, or how often a new set of
values are calculated for each node. Since the nodes velocity and direction are fixed until the next timestep,
setting a large timestep will result in long periods of straight movement. A short timestep (say 0.25
seconds), will result in a path that is almost continuously changing as shown in Figure 5. Nevertheless,
the zero mean on the Gaussian random variables should result in a relatively straight path, even when « is
small.
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Figure 5: Gauss-Markov model with small time step of 0.25 seconds

When the time step is relatively large (e.g. 5 seconds), we observed in that the node movements
become more linear when increasing « from O to 1 (Figures 3 and 4). However, this is not the case when
the time step parameter is small. Figure 5 shows that when using TimeStep = 0.25 seconds, the trace is
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fairly linear at o« = 0.25, but it becomes more random as we approach o = 0.95. This behavior is exactly
opposite when compared to the results with time step of 5 seconds. This is because of the increasing
memory effect with increasing values of o. The node’s new direction is based more upon it’s previous
direction than when « is small, therefore, small changes from the Gaussian random variable have the
opportunity to accumulate and alter the look of the path.

G. Simulating Multi-Tier Networks

Realistic airborne MANETS employ the services of different groups of nodes — each group performing
a particular function [5]. The mobility of these groups may vary significantly from one another. Hence
a generic mobility model cannot accurately represent the mobility of all groups. While one group may
experience little or no mobility (e.g. ground nodes), the other group may be moving at Mach speeds (e.g.
airborne nodes). Hence, both our model and implementation provide for simulating multi-tier networks,
in which different groups of nodes can have different mobility parameters. In this section, we present
the results of a three-tier network that was simulated in ns-3. The three tiers were modeled using three
different instances of the proposed Gauss-Markov model. First, the ground nodes were modeled using
low speed and velocity variance, and moderate variance for the direction and pitch. Secondly, the medium
altitude nodes were modeled with high velocity and variance, and finally, the high altitude nodes were
modeled with moderate velocity and variance.

Figure 6 depicts the top down view of the single multi-tier trace file. The individual tiers can be
visualized by rotating the viewing angle to a nearly horizontal direction as shown in Figure 6b. In this
figure, we are able to observe the node movements grouped by their altitudes. The high altitude nodes are
positioned at the top of the image, the medium altitude nodes are positioned in the middle of the image,
and the ground nodes are the short path lines clustered closely together in the bottom center of the image.

(a) Top Down View (b) Horizontal View

Figure 6: Multi-Tier Nodes — Top Down and Horizontal Views



VI. CONCLUSIONS

The three dimensional Gauss-Markov mobility model presented in this paper can be used to model
multi-tier airborne MANETSs. Compared to the previously available ns-3 mobility models, the Gauss-
Markov model provides more realistic node movement. Different types of aircraft movements can be
simulated by tweaking the three basic tuning parameters of «, standard deviation, and time step. The
Gauss-Markov model integrates well with the existing ns-3 mobility models, and also provides 3D support
for the constant velocity helper and the position allocation classes used by the existing mobility models.
Furthermore, it can be used in simulating multi-tier network environments, where different groups of
nodes serve different functions and have different communication and mobility characteristics.
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