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Abstract—Graph robustness metrics have been used largely to
study the behavior of communication networks in the presence
of targeted attacks and random failures. Several researchers
have proposed new graph metrics to better predict network
resilience and survivability against such attacks. Most of these
metrics have been compared to a few established graph metrics
for evaluating the effectiveness of measuring network resilience.
In this paper, we perform a comprehensive comparison of the
most commonly used graph robustness metrics. First, we show
how each metric is determined and calculate its values for
baseline graphs. Using several types of random graphs, we study
the accuracy of each robustness metric in predicting network
resilience against centrality-based attacks. The results show three
conclusions. First, our path diversity metric has the highest
accuracy in predicting network resilience for structured baseline
graphs. Second, the variance of node-betweenness centrality
has mostly the best accuracy in predicting network resilience
for Waxman random graphs. Third, path diversity, network
criticality, and effective graph resistance have high accuracy in
measuring network resilience for Gabriel graphs.

Keywords—Network resilience;Network science;Connectivity
evaluation;Graph robustness;Fault tolerance;Reliability;
Survivability;Network design;Graph spectra

I. INTRODUCTION AND MOTIVATION

The computer applications that rely on communication
networks are critical to every aspect of our lives. Health
care providers and receivers are becoming more dependent on
computer networked applications [1]. E-learning is becoming
an essential part of academic and professional education [2].
On-line businesses have an increasing number of customers.
In 2014, the business-to-consumer (B2C) sales are estimated
to be $1.5 trillion while this number is projected to increase
in the upcoming years [3].

These networked services are publicly accessible, which
make them prone to targeted attacks. Moreover, earthquakes,
hurricanes, tsunami, and other natural disasters cause area-
based node failures that not only affect local users but might
significantly disrupt remote users. Computer network resilience
is defined as the ability of the network to provide and maintain

an acceptable level of service in the face of various faults and
challenges to normal operation [4], [5]. Since computer net-
works are susceptible to targeted attacks and natural disasters
that could disrupt its normal operation and services, building
a network with higher resilience is a crucial part of its design
and evolution.

In an attempt to provide a good network resilience measure,
many researchers have proposed graph metrics that assess
network robustness against nodes or links removal. For exam-
ple, some classic graph metrics such as average node degree,
clustering coëficcient, average hop count for shortest paths,
radius, and diameter have been used to measure connectivity
and robustness. k-connectivity – which indicates removing a
minimum of k nodes to partition the graph – provides a good
robustness measure against node failures. On the other hand,
min-cut – which specifies the minimum number of links to
partition a graph – provides a good robustness measure against
link failures. These two metrics are promising robustness mea-
sures; however, the algorithmic complexity for these problems
is NP-complete [6], which makes them intractable solutions
for large networks.

Graph spectral theory studies the relationship between
structural properties and eigenvalues and eigenvectors of their
corresponding matrices. Several graph spectral metrics have
been introduced to measure graph robustness against node or
link removals. Such metrics are algebraic connectivity [7],
spectral gap [8], natural connectivity [9], weighted spec-
trum [10], network criticality [11], and effective graph re-
sistance [12]. Moreover, there have been several studies to
compare a subset of these metrics [9], [13], [14]. The results of
these metrics show promising ability to describe the robustness
of a given graph.

In this paper, we compare the accuracy of several graph
properties and graph robustness metrics to predict network
resilience against targeted attacks. Using a set of baseline
graphs, we calculate graph properties and robustness metrics
for each graph to give the reader an intuition for how each
metric is determined. Then, we present three resilience metrics
to measure connectivity against centrality-based node attacks.



These metrics calculate the sum of flow robustness, which
measures the number of remaining reliable flows during each
attack [15]. The sum of the flow robustness values, while
attacking all nodes, is our measure of network resilience
because it captures the number of node-pair connections from
start to the end of a given attack. Using a large set of
randomly generated graphs, we check the accuracy of each
graph robustness metric to predict graph resilience against
centrality-based attacks. Our sample set consists of six classes
of random graphs that exhibit similar graph properties of
real-world communication networks. This sample set includes
Waxman graphs, which have the mesh-like properties of logical
level networks, and Gabriel graphs, which exhibit the grid-like
properties of physical-level networks [16].

Our contribution in this work is twofold. First, we survey
graph robustness metrics, which are used in the literature to
predict network resilience against targeted attacks and random
failures. Second, we present three network resilience measures
against centrality-based attacks. Using baselines and random
graphs, we study the accuracy of each spectra metric in
predicting the three network resilience measures using a non-
linear correlation.

The rest of the paper is organized as follows: review
and discussion of related work is presented in Section II. A
brief background on graph theory and several spectral graph
robustness metrics are presented in Section III. A dataset
of two types of graphs: baseline and random graphs, are
explained in Section IV. The flow robustness metric, graph
attack models, and measuring network resilience are presented
in Section V. The results for evaluating the graph robustness
metrics against each graph types are shown in Section VI.
Finally, we summarize our findings as well as propose future
work in Section VII.

II. RELATED WORK

Several studies have been done to quantify graph robustness
against targeted attacks and random failures. In this section, we
present their work in terms of the proposed robustness metrics
and how they have been evaluated.

Path diversity is a metric that measures disjoint nodes and
links between alternative paths between two communicating
nodes. The total path diversity (TGD) is the average path
diversity among all node pairs [17]. The TGD has shown
better accuracy in predicting survivability of synthetic and real
networks when compared to other graph metrics such as clus-
tering coëficcient, average hop count, and betweenness [17].
Furthermore, it has been shown that adding links to physical
graphs to increase TGD provide better resilience than adding
links to increase minimum degree nodes [18].

The variance of degree, closeness, and betweenness metrics
have been used to quantify the centrality balance of a given
graph. These graph metrics are proposed to measure graph
robustness against targeted-node attacks [19]. Moreover, these
metrics have been used as objective functions to improve
graph robustness while adding a set of links to a given graph.
The results show that degree-balanced improved graphs are
more robust than betweenness- and closeness-balanced graphs
against centrality-based attacks [19].

Algebraic connectivity has been studied by several re-
searchers [20]–[22]. It has been shown that algebraic con-
nectivity is more informative and accurate than average node
degree when characterizing network resilience [21]. Another
study improved synthetically generated Erdős-Rényi random
and Barabási-Albert graphs in terms of adding links to the
existing topology [20]. On the other hand, one study shows that
algebraic connectivity is not tightly related to graph robustness
via simulating node and link removals of several random
graph types [23]. Moreover, we developed a heuristic algorithm
that improves the connectivity of a graph using the algebraic
connectivity metric by adding cost-efficient links in our earlier
work [24], [25].

Weighted spectral distribution (WS) has been introduced
to analyze the Internet topology [10]. Another study has been
done to compare WS with other robustness metrics against
geographic correlated failures and showed that WS is a better
measure to evaluate geographically correlated vulnerable links
and nodes [13].

Natural connectivity is a spectral graph metric that has been
compared to algebraic connectivity using a set of structural
and random graphs to examine robustness against node and
link removals [9]. It has been shown that natural connectivity
measures connectivity changes more precisely than algebraic
connectivity.

Network criticality is a spectral graph metric that measures
the robustness of a network against topological changes [11].
A smaller value of network criticality means higher network
robustness. Furthermore, this metric has been compared to
algebraic connectivity, average node degree, and average node
betweenness. However, this study concluded that there is no
unique graph metric that can capture robustness and connec-
tivity [14].

The spectral gap is also a spectral graph metric that has
been used to measure the robustness of the graph against
targeted attacks [8]. A small spectral gap value indicates a
smaller number of articulation points that might partition the
network once a node or a link is removed [26].

Effective graph resistance is a spectral graph metric that
measures the robustness of network against node or link
removals [12]. This metric has been compared to algebraic
connectivity in terms of measuring the connectivity of several
random types and real-world networks.

III. GRAPH ROBUSTNESS METRICS

In this section we present graph theoretic background and
related work to network robustness metrics. Furthermore, we
present graph spectra theory and its application to network
robustness.

A. Graph Centrality Metrics

Graph centrality metrics show the importance of a link
or a node to the graph. Since the node or link importance
varies from one application to another, several metrics have
been introduced as indicators to identify central nodes based
on the need of the application [27].

The node degree centrality CD(n), defined as the number
of links incident to a node n and can be viewed as the node



importance [28]. The degree is a local centrality metric since
it depends only on the number of links locally connected.
Assortativity As(G) is a graph metric that measures the degree
similarity among adjacent nodes for a given graph G [29]. For
example, in a uniform-degree graph the assortativity is 1.

The shortest path di,j between node i and node j is the
path with the minimum number of hops. The average shortest
path length d̄ provides a measure of average number of hops
among all nodes. Some other common graph metrics such
as eccentricity, radius, and diameter provide statistical graph
values of all node-pair shortest paths. The eccentricity ε(v) is
the longest of the shortest paths between node v and every
other node. The graph radius R(G) is the shortest of the
shortest paths of graph G. The graph diameter D(G) is the
longest of the shortest paths of graph G.

Betweenness is a centrality metric that can be used for
both nodes and links. Node betweenness CB(n) is defined as
the number of the shortest paths through a node n while link
betweenness CB(l) is defined as the number of the shortest
paths through a link l. Betweenness is considered to have
global significance since the betweenness value is impacted by
the whole structure of the graph [30]. Node closeness CC(n)
is a centrality metric that measures the mean distance from the
node n to other nodes [28], [31]. Clustering coëficcient CC(n)
is a graph metric that measures how fully-connected a node’s
neighbors are [32].

B. Centrality-Balanced graph robustness

The high centrality nodes and links attract adversaries
who can apply successful attacks on a targeted network by
disrupting a few nodes with high centrality. For example a star
network has one central node with high degree. Attacking this
node completely disconnects the communication network. To
measure the graph balanced-centrality property, four metrics
have been introduced [19]. First, the degree-balanced graph
metric σ2

CD
, which is computed as the degree variance of

all the nodes. Second, closeness-balanced graph metric σ2
CC

,
which is computed as the closeness variance of all the nodes.
Third, node-betweenness-balanced graph metric σ2

CBv
, which

is computed as node-betweenness variance of all the nodes.
Fourth, link-betweenness-balanced graph metric σ2

CBl
, which

is computed as node-betweenness variance of all the links.

C. Total Graph Diversity

Path diversity is defined as the ratio of the number of
disjoint elements (nodes and links) between the shortest path
and alternative path to the number of elements in the shortest
path [17], [33]. Let the shortest path between a given (s, d)
pair be P0. Then, for any other path Pk the path diversity is
computed as:

D(Pk) = 1− |Pk ∩ P0|
|P0|

(1)

The path diversity has a value of 1 if Pk and P0 are completely
disjoint and a value of 0 if Pk and P0 are identical.

TGD (total graph diversity) is the average of the EPD
(effective path diversity) values of all node pairs in a given
graph [17] and TGD measures the structural path diversity of
a graph as a single value. EPD is the normalized sum of path

diversities for a selected set of paths connecting a node pair
(s, d). The EPD value is calculated as:

EPD = 1− e−λksd (2)

where λ is an experimentally determined constant that scales
the impact of ksd based on the utility of this added diver-
sity [17] and ksd is the sum of all non-zero diversity paths
defined as:

ksd =

m∑
i=1

D(Pi) (3)

D. Graph Spectral Robustness Metrics

The topology of a graph G can be represented by an
adjacency matrix, incidence matrix, Laplacian matrix, or nor-
malized Laplacian matrix [34], [35]. Let {µ1, µ2, ..., µn} rep-
resent a non-decreasing list of the eigenvalues of the adjacency
matrix and {λ1, λ2, ..., λn} represent a non-decreasing list of
the eigenvalues of the Laplacian matrix.

Algebraic connectivity, denoted as λ2, is the second small-
est eigenvalue of the Laplacian matrix [7] and defined as:

λ2 ≤ n(G) ≤ l(G) ≤ dmin(G) (4)

The algebraic connectivity λ2 = 0 only if the graph is
disconnected and 0 < λ2 ≤ N when the graph is connected.

Spectral gap, denoted as ∆µ = µn−µn−1, is the difference
between the largest and the second largest eigenvalues of
the adjacency matrix. Small spectral gap indicates articulation
points that might partition the network once a node or a link
is removed [26].

Natural connectivity, denoted as µ̄, is a scaled average
eigenvalue of the graph adjacency matrix [9]. A larger value
of µ̄ indicates higher robustness to link or node removals. The
value of µ̄ is calculated as follows:

µ̄ = ln [
1

n

n∑
j=1

eµj ] (5)

where µ is the jth eigenvalue of the adjacency matrix.

Weighted spectral distribution, denoted as WS, has been
introduced to analyze Internet topology [10]. The value of WS
is calculated as follows:

WS(G,N) =

n∑
i=1

(1− λi)N (6)

where λi is the ith eigenvalue of the Laplacian matrices and
N is the number of cycles being measured [10]. In this paper,
we use N = 4 since it is related to the number of disjoint
paths [10], [13].

Network criticality, denoted as τ̂ , is a graph metric
that measures the robustness of network against topological
changes [11]. A smaller value of τ̂ indicates higher network



robustness. We note that this metric is also called total resis-
tance distance [36]. The value of τ̂ is calculated as follows:

τ̂ =
2

|N | − 1
Trace(L+) (7)

where |N | is the number of nodes in a given graph, Trace(L+)
is the trace of the Moore-Penrose inverse of Laplacian matrix
of the given graph [11].

Effective graph resistance, denoted as RG, is a graph metric
that measures the robustness of a network against node or link
removals [12]. The value of RG is calculated as follows:

RG = N

N∑
i=2

1

λi
(8)

The normalized version is called effective graph conductance
C∗, which is defined as:

C∗ =
N − 1

RG
(9)

where the values of C∗ lie in the interval [0, 1].

IV. DATASET

In this section, we present our datasets, which consists
of two categories: baseline graphs and random graphs. For
each category, we present several types and discuss graph
properties. In all our models, we use simple undirected graphs,
representation of bidirectional communication links.

A. Baseline graphs

We select a set of graphs with known structures to give
some intuition of each graph metric during evaluation process.
This set includes: full-mesh, wheel, grid, torus, ladder, ring,
barbell, linear, binary-tree, and star graphs. A full-mesh graph,
also called complete, has a link between every node pair. A star
graph has one node designated as the root and a set of other
nodes, while there is a link between the root and every other
node. A wheel graph is a star graph with a link connecting all
adjacent leaves. A grid graph has a m× n nodes placed in a
grid form with m rows and n columns. In this graph, there is
a link connecting every adjacent vertical and horizontal node
pair. A torus graph is a grid graph with a link connecting
every left and right nodes in each row and a link connecting
every top and bottom nodes in each column. A ladder graph
is a special case of the Grid graph such that n is always 2. A
linear graph, also called a path, is a set of nodes placed as a
line in which there is a link connecting every adjacent node
pair. A ring graph, also called circle, is a linear graph with the
end nodes connected by a link. A binary-tree graph has one
node designated as a root with two children nodes. Each child
has at most two children with a height h defining the length
of the shortest path between the root and the leaves. A barbell
has two full mesh graphs and a link connecting them. A set
of examples for the baseline graphs are shown in Figure 1.

B. Random graphs

In this section, we present three random graph models to
generate our dataset for robustness metrics evaluation.

1) Gilbert graphs: The Gilbert random graph model is
one of the earliest models to construct random graphs [37].
Given a number of nodes n and connectivity probability p,
the random graph model G(n, p) constructs a graph with n
nodes and m links are connected with probability p. Another
similar graph model is the Erdős-Rényi (ER). The random
graph model ER(n,m) generates a graph with n nodes and
randomly connected m links.

2) Waxman graphs: The Waxman model provides a prob-
abilistic way of connecting nodes in a graph [38]. Given two
nodes {u, v} with a Euclidean distance d(u, v) between them,
the probability of connecting these two nodes is:

P (u, v) = βe
−d(u,v)
Lα (10)

where β, α ∈ (0, 1] and L is the maximum distance between
any two nodes. Increasing β increases the link density and a
large value of α corresponds to a high ratio of long links to
short links. In this paper, the Waxman model node locations
are uniformly distributed.

3) Gabriel graphs: Gabriel graphs are useful in modeling
graphs with geographic connectivity that resemble grids [39],
[40]. In a Gabriel graph, two nodes are connected directly if
and only if there are no other nodes that fall inside the circle
whose diameter is given by the line segment joining the two
nodes. The location of nodes are generated randomly using
a uniform distribution with a range of [0, 1] for both x-axis
and y-axis. It has been shown that Gabriel graphs exhibit the
grid-like properties of physical-level networks [16].

V. MEASURING ROBUSTNESS

In this section, we show how the flow robustness metric
is determined. Then, we present our centrality-based attack
models for robustness evaluation. Finally, we present three
metrics to measure network resilience against centrality-based
attacks.

A. Flow robustness

Flow robustness is a graph metric that measures the ratio
of the number of reliable flows to the number of total flows in
the network [15]. A flow is considered reliable if at least one
of its paths remains unbroken by the link or node failures. The
number of total flows is the maximum number of flows, which
is n(n−1)/2 flows for n nodes. This metric captures the ability
for the network nodes to communicate with each other. The
range for flow robustness values is [0, 1] where 1 indicates that
all the nodes can communicate with each other and 0 means
there is no node-pair communication in the whole network i.e.
there are no links in the graph. The flow robustness metric can
be used to model reachability, in which nodes communicate
with each other. To calculate flow robustness, let G = (N,L)
be the graph representing the given network. Let {Ci; 1 < i <
k} be the set of components in graph G. The flow robustness
FR is computed using:

FR(G) =

∑k
i=1 |Ci|(|Ci| − 1)

|n|(|n| − 1)
, 0 ≤ FR ≤ 1 (11)
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Fig. 1. Several example of baseline graphs

B. Graph attack models

We use a graph theoretic model to attack a given graph
and show how its flow robustness changes after each node
removal. In this paper, we use three centrality metrics: node
betweenness, node closeness, and node degree [30]. Hence, we
have three attack models, in which the node with the highest
centrality is removed. The node-betweenness attack targets the
node through which the highest number of shortest paths pass.
The node-closeness attack targets the most central node in
terms of hop count. The node-degree attack targets the node
with the highest number of connections. If the attack requires
removing multiple nodes, centrality metrics are recomputed
upon attacking each node.

C. Measuring network resilience

In this section, we explain how to measure network re-
silience against a specific centrality-based attack. Flow robust-
ness measures the reachability of a given graph. However, it
is not useful to distinguish between connected graphs. For
example, the flow robustness value for a full-mesh graph and
a star graph is the same, which is one. As a solution, we
introduce three robustness behavioral measures to calculate the
sums of flow robustness of a given network resilience against
centrality-based attacks. The robustness measures are: sums of
flow robustness against degree attack (SFRD), sums of flow
robustness against closeness attack (SFRC), and sums of flow
robustness against betweenness attack (SFRB). Each measure
captures resilience of a given network against the associated
attack. For example, SFRD measures the network resilience
against node degree-based attack.

Using an example, we illustrate how to measure network
resilience of a 9-node wheel topology via sums of flow
robustness against betweenness attack (SFRB). To compute the
sums of flow robustness, we need to remove all nodes in this
graph iteratively. In each iteration, one node is removed and

the flow robustness is computed and added to the previous sum
of flow robustness values. The permutation of nodes list define
all possible ways for node attacks. In this example, we attack
nodes based on their highest betweenness values, which yields
the list {0, 1, 5, 3, 7, 8, 2, 4, 6}. Figure 2 depicts the topology
while the attack is undergoing. Light green colored nodes
indicate connected status (not attacked) while dark red colored
nodes indicate disconnected status (attacked). Once a node is
attacked all links attached to that node are removed. The values
of robustness for each iteration are shown in the Table I. In
step 2, we observe that after removing node 0, all 8 links are
removed but flow robustness decreased by 0.22, which is not
significant since there are alternative paths for the other nodes
to communicate. However, in step 4, the flow robustness is
decreased by 0.58 − 0.17 = 0.41, which is the largest flow
robustness decrease because the graph is partitioned into two
components. Notice that we stop after step 6 since there are
no remaining links and there is no need to attack the rest of
the connected nodes. The sum of flow robustness values for a
9-node wheel topology is 2.61 as shown in the Table I.

TABLE I. MEASURING SFRB OF A 9-NODE WHEEL TOPOLOGY

Step Removed Nodes FR SFRB
1 {} 1.00 1.00
2 {0} 0.78 1.78
3 {0, 1} 0.58 2.36
4 {0, 1, 5} 0.17 2.53
5 {0, 1, 5, 3} 0.08 2.61
6 {0, 1, 5, 3, 7} 0.00 2.61

VI. GRAPH METRICS EVALUATION

In this section, we present our evaluation results for base-
line and random graphs. We show how each robustness metric
is related to the resilience of a given graph against centrality-
based attacks. To determine the accuracy of each graph metric
in predicting the graph resilience against the three centrality-
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Fig. 2. Measuring SFRB a 9-node wheel topology

based attacks, we use a non-linear correlation function to
check the graph metric and resilience measure dependency.
In this paper, we use Spearman’s rank correlation coefficient,
which yields 1 for perfect correlation, −1 for perfect inverse
correlation, and 0 for no correlation [41].

A. Baseline graphs

In this section, we generate 10 nodes in each graph
presented in Section IV-A unless it is structurally impossible
e.g. grid, torus, barbell, and tree graphs in which case we
generate the feasible network closest to 10 nodes. Then, we
apply the graph metrics presented in Section III and calculate
their values for each generated baseline graph. Moreover, we
measure the resilience of each graph against node attacks using
the three measures SFRD, SFRC, and SFRB. The results are
shown in Table II. For each metric, we measure its accuracy
in predicting the resilience of the graphs by correlation of its
values with resilience measures. For example, the accuracy
of the metric number of links |L| in predicting the resilience
measure SFRD is 0.74. By observing all the correlation values
for robustness metric X: corr(X, SFRD), corr(X, SFRC), and
corr(X, SFRB), we notice that the total path diversity TGD
graph metric has the highest accuracy values of 0.99, 0.96,
0.96 for corr(X, SFRD), corr(X, SFRC), and corr(X, SFRB)
respectively. Next, we observe that node average degree places
second with 0.91, 0.88, and 0.84 for the resilience measures.
The third highest is variance of node-betweenness metric with
accuracy values corr(σ2

CBv
, SFRD | SFRC | SFRB) ≤ −0.85.

Here the negative sign indicates an inverse correlation with
robustness.

Among the presented graphs, the full-mesh graph has
obviously the highest resilience since there is a link between
every pair. On the other hand, the star graph has the lowest
resilience because removing one node can fully disconnect
the network. We observe that just the TGD and average node
degree graph metrics capture this fact by ranking the full-mesh
as the highest and the star as the lowest. Although algebraic
connectivity and network criticality do not rank the mesh and
star graphs correctly, their over all accuracy in predicting the
resilience is higher, corr( λ2, SFRD | SFRC | SFRB) ≥ 0.71
and corr(τ̂ , SFRD | SFRC | SFRB) ≤ −0.84, than the rest
(except TGD and average node degree).

B. Random Graphs

In the baseline graphs evaluation, we have studied and com-
pared 10 structurally different graphs to give some intuition
about robustness metrics. However, with just 10 graphs, we can
not draw a solid conclusion about the accuracy of the compared
metrics to predict their resilience against node attacks. In this
section, we increase our graph sample size from 10 graphs to
30,000 graphs divided into six 5000-sample-size classes. We
note that all randomly generated graphs are all connected to
avoid zero values for spectral robustness metrics. The number
of nodes in each generated graph is 20. Using three corr(X,
SFRD), corr(X, SFRC), and corr(X, SFRB), we calculate the
accuracy of each graph metric to predict resilience using a
sample of 5000 graphs. The correlation results are shown in
Table III.

1) Gilbert graphs evaluation: The first two are Gilbert
random graphs with p = 0.8 and p = 0.5. The Gilbert random
graphs are completely random graphs that do not model real-
world communication networks. By observing the correlation
values of the all metrics for the three attacks, we see that
all graph metrics have low accuracy in predicating network
resilience i.e. | corr(X, SFRD | SFRC | SFRB) is mostly lower
than 0.70. This is because of the complete randomness in
generating Gilbert graphs. However, among the graph metrics,
the σ2

CBv
metric has slightly higher accuracy than the other

metrics for degree and closeness attacks. Moreover, we observe
that the algebraic connectivity λ2 has the highest accuracy,
corr(λ2, SFRB)≥ 0.66 , in predicting graph resilience against
betweenness attack (SFRB). On the other hand, we see that
both radius and diameter graph properties have consistently
the lowest accuracy in predicting network resilience for the
two Gilbert graphs.

2) Waxman graphs evaluation: The next three random
graphs are generated using Waxman models, W(α, β) , with
three combination of parameters: (α = 0.5, β = 0.5), (α =
0.5, β = 0.8), and (α = 0.5, β = 0.8). Waxman graphs exhibit
mesh-like properties that can model logical-level networks
with some long links to reduce diameter. For the graphs with
α = 0.5 and β = 0.5, we get both medium density graphs and
a medium number of long links. For the graphs with α = 0.5
and β = 0.8, we get medium density graphs and a high number
of long links. For the graphs with α = 0.8 and β = 0.5, we get
high density graphs and a medium number of long links. The
maximum distance threshold L is set to 1 and the locations are
randomly selected using a uniform distribution with a range
of [0, 1] for both x-axis and y-axis.

Unlike Gilbert graphs results, some Waxman graph metrics
have high accuracy values in measuring resilience. We observe
that the variance of the node-betweenness metric has slightly
higher accuracy than the others metrics for degree and close-
ness attacks i.e. corr(σ2

CBn
, SFRD | SFRC) ≤ −0.75. Next,

both network criticality τ̂ and effective graph resistance C∗

are the second best predictors for graph resilience against both
degree and closeness attacks. In fact, both metrics have almost
identical accuracy results because they both claim to measure
graph resistance using the eigenvalues of Laplacian matrix.

For betweenness attacks, both network criticality τ̂ and
effective graph resistance C∗ are the best predictor for graph
resilience with corr(τ̂ , SFRB)≤ −0.78. We also note that both



TABLE II. EVALUATING GRAPH ROBUSTNESS METRICS USING BASELINE GRAPHS

Barbell Grid Ladder Linear Mesh Ring Star Torus Tree Wheel corr(X, SFRD) corr(X, SFRC) corr(X, SFRB)
|N| 12.00 9.00 10.00 10.00 10.00 10.00 10.00 9.00 15.00 10.00 — — —
|L| 17.00 12.00 13.00 9.00 45.00 10.00 9.00 18.00 14.00 18.00 0.68 0.79 0.74
C̄D 2.83 2.67 2.60 1.80 9.00 2.00 1.80 4.00 1.87 3.60 0.84 0.88 0.91
σ2
CD

0.47 0.44 0.24 0.16 0.00 0.00 5.76 0.00 0.92 3.24 -0.58 -0.48 -0.55
σ2
CC

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 -0.43 -0.40 -0.44
σ2
CBv

0.06 0.01 0.01 0.04 0.00 0.00 0.09 0.00 0.05 0.03 -0.88 -0.85 -0.85

σ2
CBl

0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 -0.56 -0.54 -0.54

CC 0.58 0.00 0.00 0.00 1.00 0.00 0.00 0.33 0.00 0.62 0.60 0.60 0.66
As 0.13 -0.06 0.28 -0.12 1.00 1.00 -1.00 1.00 -0.52 -0.33 0.66 0.61 0.68
R 4.00 2.00 3.00 5.00 1.00 5.00 1.00 2.00 3.00 1.00 -0.38 -0.46 -0.40
D 7.00 4.00 5.00 9.00 1.00 5.00 2.00 2.00 6.00 2.00 -0.60 -0.65 -0.62
d̄ 3.48 2.00 2.33 3.67 1.00 2.78 1.80 1.50 3.50 1.60 -0.71 -0.73 -0.73
TGD 0.23 0.73 0.68 0.00 1.00 0.39 0.00 0.91 0.00 0.82 0.96 0.96 0.99
λ2 0.09 1.00 0.38 0.10 10.00 0.38 1.00 3.00 0.10 1.47 0.81 0.78 0.78
∆λ 0.01 1.41 0.73 0.24 10.00 0.38 3.00 3.00 0.29 2.63 0.58 0.60 0.57
τ̂ 3.03 0.96 1.25 3.67 0.20 1.83 1.80 0.50 3.50 0.69 -0.84 -0.87 -0.87
WS 3.02 2.44 3.04 4.37 1.00 3.75 2.00 1.27 5.46 1.48 -0.67 -0.65 -0.71
λ̄ 2.19 1.67 1.61 1.09 9.66 1.19 1.49 2.87 1.18 2.95 0.75 0.77 0.82
C∗ 0.06 0.23 0.16 0.05 1.00 0.11 0.11 0.44 0.04 0.29 0.87 0.84 0.88
SFRD 1.97 2.72 2.62 2.11 3.67 2.56 1.00 3.14 1.61 2.91 1.00 0.95 0.99
SFRC 1.86 2.61 2.47 1.67 3.67 2.29 1.00 3.14 1.94 2.73 0.95 1.00 0.96
SFRB 1.86 2.61 2.47 1.67 3.67 2.29 1.00 3.14 1.61 2.73 0.99 0.96 1.00

TABLE III. EVALUATING GRAPH ROBUSTNESS METRICS USING RANDOM GRAPHS

|L| C̄D σ2
CD

σ2
CC

σ2
CBn

σ2
CBl

CC As R D d̄ij TGD λ2 ∆λ τ̂ WS λ̄ C∗

corr(X, SFRD)
Gilbert p=0.8 0.44 0.44 -0.43 -0.33 -0.53 -0.47 0.36 0.38 0.21 0.00 -0.42 0.53 0.47 0.39 -0.45 -0.47 0.41 0.47
Gilbert p=0.5 0.54 0.54 -0.38 -0.27 -0.66 -0.53 0.31 0.40 0.00 -0.04 -0.54 0.47 0.53 0.39 -0.61 -0.52 0.47 0.61
W(0.5, 0.5) 0.75 0.75 -0.06 -0.35 -0.81 -0.69 0.25 0.30 -0.12 -0.33 -0.70 0.74 0.63 0.43 -0.79 -0.66 0.61 0.79
W(0.5, 0.8) 0.68 0.68 -0.24 -0.49 -0.78 -0.68 0.23 0.35 0.13 -0.24 -0.67 0.67 0.64 0.42 -0.76 -0.60 0.55 0.76
W(0.8, 0.5) 0.63 0.63 -0.25 -0.47 -0.75 -0.64 0.24 0.33 0.43 0.15 -0.64 0.60 0.61 0.39 -0.73 -0.57 0.51 0.73
Gabriel 0.65 0.65 0.12 -0.01 -0.49 -0.50 0.26 0.14 -0.12 -0.31 -0.55 0.70 0.53 0.15 -0.66 -0.60 0.56 0.66
corr(X, SFRC)
Gilbert p=0.8 0.45 0.45 -0.44 -0.33 -0.54 -0.47 0.37 0.39 0.21 0.00 -0.42 0.54 0.49 0.40 -0.45 -0.47 0.42 0.48
Gilbert p=0.5 0.52 0.52 -0.35 -0.25 -0.64 -0.52 0.27 0.37 0.00 -0.04 -0.52 0.44 0.51 0.40 -0.58 -0.50 0.45 0.58
W(0.5, 0.5) 0.73 0.73 -0.02 -0.35 -0.83 -0.73 0.20 0.20 -0.12 -0.33 -0.71 0.72 0.64 0.46 -0.78 -0.67 0.60 0.78
W(0.5, 0.8) 0.68 0.68 -0.20 -0.50 -0.78 -0.71 0.18 0.26 0.13 -0.24 -0.68 0.67 0.65 0.46 -0.76 -0.61 0.55 0.76
W(0.8, 0.5) 0.63 0.63 -0.20 -0.45 -0.75 -0.66 0.20 0.27 0.43 0.16 -0.64 0.58 0.60 0.44 -0.71 -0.57 0.51 0.71
Gabriel 0.61 0.61 0.17 0.02 -0.58 -0.65 0.17 0.12 -0.15 -0.36 -0.62 0.71 0.65 0.27 -0.71 -0.58 0.52 0.71
corr(X, SFRB)
Gilbert p=0.8 0.43 0.43 -0.60 -0.41 -0.61 -0.69 0.32 0.25 0.15 0.00 -0.43 0.59 0.75 0.37 -0.49 -0.46 0.39 0.49
Gilbert p=0.5 0.49 0.49 -0.43 -0.29 -0.62 -0.64 0.23 0.28 0.00 -0.09 -0.50 0.42 0.69 0.33 -0.60 -0.46 0.40 0.60
W(0.5, 0.5) 0.76 0.76 -0.03 -0.40 -0.84 -0.81 0.22 0.15 -0.16 -0.41 -0.77 0.81 0.74 0.45 -0.85 -0.72 0.60 0.85
W(0.5, 0.8) 0.67 0.67 -0.24 -0.56 -0.78 -0.79 0.18 0.20 0.11 -0.31 -0.71 0.74 0.75 0.42 -0.81 -0.62 0.52 0.81
W(0.8, 0.5) 0.62 0.62 -0.26 -0.54 -0.73 -0.78 0.19 0.16 0.42 0.11 -0.68 0.66 0.76 0.39 -0.78 -0.58 0.48 0.78
Gabriel 0.62 0.62 0.18 0.06 -0.53 -0.68 0.17 0.10 -0.22 -0.43 -0.69 0.73 0.73 0.27 -0.77 -0.61 0.51 0.77

σ2
CBl

and TGD metrics have the second- and third-best results
respectively for the betweenness attack. Moreover, we observe
that the radius graph property generally performs very poorly
in predicting the graph resilience.

3) Gabriel graphs evaluation: The sixth random graph
class is generated using Gabriel graphs that exhibit grid-like
structure and model physical-level networks. By observing the
correlation values of the all metrics for the three attacks, we
see that the total path diversity TGD has the best accuracy
values for predicting network resilience against both degree
and closeness attacks with corr(TGD, SFRD | SFRC)≥ 0.70.
For the betweenness attack, we see that both τ̂ and C∗ are the
best predictors for graph resilience.

VII. CONCLUSIONS AND FUTURE WORK

Computer networks are prone to targeted attacks and
random failures. Evaluating and improving communication
networks resilience against these is an important aspect of
network design. In this paper, we evaluate a set of graph

robustness metrics to measure their accuracy in predicting
network resilience against centrality-based attacks via baseline
and random graphs. For baseline graphs, we show that the
path diversity metric has a high accuracy in predicting net-
work resilience. Generally, the variance of node-betweenness
centrality has the highest accuracy. For Waxman graphs,
which resemble logical-level networks, the variance of node-
betweenness centrality metric has the highest accuracy for
degree- and closeness-based attacks while network criticality
τ̂ and effective graph resistance C∗ have better results for
betweenness-based attack. All path diversity, network criti-
cality, and effective graph resistance have high accuracy in
measure network resilience centrality-based attacks for Gabriel
graphs, which resemble physical-level network. For future
work, we plan to evaluate weighted graph metrics and see
how our unweighted graph evaluation results compare to
evaluating weighted graphs. In addition, we plan to evaluate
these robustness metrics using larger order random graphs and
real service provider networks.
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