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Abstract—Communication networks are prone to failures due
to targeted attacks or large-scale disasters. Networks can be
improved to withstand challenges using mechanisms such as
diversity, which can simply be improved by adding links, however
achieving maximum resilience is not feasible due to limited
budget. Therefore, algorithms that improve the diversity of
networks cost-efficiently are necessary. In this paper, we present
a heuristic algorithm that adds links to improve the diversity of
the graph while minimizing the cost of link addition. We analyze
the flow robustness of non- and improved graphs against targeted
attacks. Our results indicate that path-diversity-improved graphs
are more resilient to attacks than graphs improved by adding
links to the lowest degree nodes.

Index Terms—Network design, optimization, augmentation,
algorithm; Network cost model; Network resilience, survivability,
connectivity, robustness, reliability; Path diversity; Backbone
network

I. INTRODUCTION AND MOTIVATION

Networks in general and the Internet in particular are
prone to correlated failures. Algorithms and mechanisms are
necessary to defend networks and to make them resilient and
survivable against challenges [1]. One such mechanism is
diversity and it has been the subject of published works in the
field of network resilience. Diversity is used to enhance band-
width, delay, and loss rate of media streaming applications [2].
Path diversity is used in the optical domain to route around
failed nodes or to split traffic for a better utilization of network
resources [3]. Diverse routing is necessary for multihoming to
improve the service delivery of provider networks [4], [5].
Therefore diversity is an essential mechanism for survivable
networks.

? Work performed while at The University of Kansas.

The design and optimization of cost-efficient networks that
are resilient against challenges and attacks has been studied
by many researchers over the past few decades, but the
resilient network design problem is NP-hard. Moreover, net-
works cannot have unlimited resilience due to cost constraints,
since these two objectives fundamentally oppose one another.
Maximum resilience is achieved by a full-mesh, impractical
from a cost perspective. Therefore careful engineering of
existing networks is required under limited resources, and
efficient algorithms are necessary to accomplish this.

Our contribution in this work is twofold. First, our main
contribution in this work is an improvement algorithm that
improves the path diversity of a graph. Our heuristic im-
provement algorithm considers adding links with the least
cost among available choices. Our results indicate that the
path diversity of improved graphs withstand centrality-based
attacks better than the non- and improved graphs. Second, we
introduce an algorithm for finding the optimal k-diverse paths
considering both nodes and links using an exhaustive search
of all paths.

The rest of the paper is organized as follows: We present
brief background and related work on network improvement
and path diversity in Section II. Measurement of path diversity
and the algorithm to calculate the path diversity of a graph is
explained in Section III. Our heuristic algorithm that improves
path diversity of a graph in the least costly fashion is presented
in Section IV. The dataset for the communication networks as
well as evaluation of these topologies using our algorithm is
presented in Section V. Finally, we summarize our findings as
well as propose future work in Section VI.
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II. BACKGROUND AND RELATED WORK

In this section we present background and related work
about network improvement and path diversity.

A. Network Optimization

Network design is a NP-hard problem [6] that has been
studied in the past [7]–[9]. The optimization process en-
hances the network for one or multiple objectives. Network
improvement can be accomplished by means of rewiring while
keeping the number of edges constant or by means of adding
new links to improve the connectivity of graphs. The design
process is different for backbone and access networks, since
the topological structure of these networks fundamentally
differ [8], [9]. Adding a set of links or node to the graphs
to optimally maximize a certain graph property is known in
the literature as graph augmentation where several problems
are proven to be NP-hard [10], for example, adding a set of
links to optimally increase the algebraic connectivity [11].

Network design and optimization objectives are cost, ca-
pacity, reliability, and performance [8], [9]. Network cost is
incurred by the number of nodes required, capacity of nodes
required, and number of links. In our earlier work, we provided
a cost model that is the total link length for a given network
with the assumption that fiber length dominates wide-area
network cost [12]. Topological connectivity is another objec-
tive that can be measured by means of many graph metrics
such as average degree, betweenness, and closeness [7], [13].
Previously, we developed a heuristic algorithm that maximizes
the algebraic connectivity of a graph while selecting the least
cost links [14], [15].

B. Path Diversity

A path between a source s and a destination d is the set
of nodes and links that form a loop-free connection. Diverse
paths between node pairs strengthen the ability of a network
to withstand attacks and correlated failures. If the alternative
paths have no common node or link they are disjoint; if there
are some common network nodes or links, they are partially
disjoint. Path diversity has been studied from a topological
perspective [16]–[18], as well as in terms of multipath rout-
ing [19], [20], and multipath transport [21], [22]. In this paper,
we approach the path diversity subject from a graph theoretic
perspective. Our objective is to calculate the path diversity
of a graph as a single number between 0 and 1. A metric
to capture the total graph diversity has been developed [22],
[23]. We consider fully- and partially-disjoint paths between
every node pair to calculate the path diversity. Then, the path
diversity value of graphs are used as the objective function to
optimize the graphs.

III. PATH DIVERSITY MEASUREMENT

In this section, we present definitions of path diversity, total
path diversity of a graph, and our algorithm that finds k-diverse
paths. We note that we use the path diversity definition from
our earlier work, since it captures the diversity of a graph
considering both nodes and links [22], [23]. We emphasize

that while the definitions are summarized here to provide the
necessary background on how to measure the path diversity
of a given graph, we develop a new algorithm that finds the
k-diverse paths as explained in Section III-C.

A. Path Diversity Definition

Given a shortest path and an alternative path between two
nodes in a graph, the path diversity of the alternative is defined
as the ratio of the number of disjoint elements (nodes and
links) between the shortest path and alternative path to the
number of elements in the shortest path. Given a (source s,
destination d) node pair, a path P between them is a set
containing all links L and all intermediate nodes N [22],

P = L ∪N (1)

and the length of this path |P | is the combined total number
of elements in L and N . Let the shortest path between a given
(s, d) pair be P0. Then, for any other path Pk between the
same source and destination, the definition of the diversity
function [22], [24] D(Pk) with respect to P0 is:

D(Pk) = 1− |Pk ∩ P0|
|P0|

(2)

The path diversity has a value of 1 if Pk and P0 are completely
disjoint and a value of 0 if Pk and P0 are identical. This
measure captures the diversity with respect to both nodes and
links on alternative paths [22].

B. Total Graph Diversity
TGD (total graph diversity) is the average of the EPD

(effective path diversity) values of all node pairs in a given
graph [22] and TGD measures the structural path diversity
of a graph as a single value. EPD is the normalized sum
of path diversities for a selected set of paths connecting a
node pair (s, d). First, we find the k diverse paths using the
algorithm presented in Section III-C. Then, we remove zero
diversity paths from the list of returned paths because they do
not add any additional diversity. The returned diverse path is
denoted as Ps,d = {P1, P2, ... , Pm}, where m ≤ k, since-
zero diversity paths are removed from the set. To calculate
EPD, we use the exponential function:

EPD = 1− e−λksd (3)

where ksd is the sum of all non-zero diversity paths defined
as:

ksd =

m∑
i=1

D(Pi) (4)

where D(Pi) is the non-zero path diversity of the i-th path
with respect to the P0. In Equation 3, λ is an experimentally
determined constant that scales the impact of ksd based on
the utility of this added diversity [22]. For a given pair of
nodes, the range of EPD is between [0, 1) where 0 means
that there is no diversity in between the two nodes as there
are no alternative paths connecting the pair. When the EPD
approaches 1, it means high path diversity [22].
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C. Finding k-Diverse Paths

In this section, we present a new k-diverse paths al-
gorithm that determines the k paths between a source
s and destination d. This algorithm has four inputs: a
source node s, a destination node d, a hop-count thresh-
old h, and a threshold for the number of returned di-
verse paths k. Moreover, this algorithm uses four functions:
all simple paths(s,d,h), sort(L), path2elements(P ), and
p div(P ). The all simple paths(s,d,h) function finds all
possible loopless paths between a source s and destination
d, with hop-count threshold h for the path length. If h is
not set, all possible paths are returned. Whereas selecting
higher h value yields more accurate results,it requires more
computing resources. The number of all possible simple paths
can be as large as n! where n is the number of nodes. This
number is infeasible to compute for large size graphs, thus,
the h parameter should be chosen based on the size of the
graph and available computing resources. The sort(L) function
sorts a list of tuples of three elements: link, diversity, and
cost. The sorting is done in decreasing order of the diversity
value and increasing order of the cost value for links with
equal diversities. The path2elements(P ) function converts a
path P to a set of nodes and links elements as described in
Section III-A. The p div(P ) function computes the diversity
of the path with respect to the selected elements set. The
pseudo code is shown in Algorithm 1.

Functions:
all simple paths(s,d,h) := all simple paths between node
s and node d with a threshold hop-count h
sort(l) := sorting l function
path2elements(P ) := path P to link and node elements
p div(P ) := computes path diversity of path P
Input:
s := source node
d := destination node
h := hop-count threshold value for examined paths
k := threshold value for returned diverse paths
Output:
an ordered list of kdiverse paths
begin

diverse paths = []; empty ordered list
selected elements = {}; empty set
for path in all simple paths(s,d,h) do

diverse paths.append(path,p div(path),len(path))
selected elements.add(path2elements(path))

end
sort(diverse paths)
return diverse paths[0:k]

end
Algorithm 1: k-diverse path algorithm

This algorithm has two phases: finding all simple paths
and finding the k most diverse paths. In the first phase,
all possible paths are determined between a source s and
destination d with a hop-count threshold h using the function

all simple paths(s,d,h). For the second phase, the algorithm
determines the most diverse paths among the returned paths
via the all simple paths function. The shortest path P0 is
added to the selected paths in the first iteration and its ele-
ments (nodes and links) are added to the selected elements
set. Next, the algorithm iterates over the rest of the paths
by computing the diversity of the path using the p div(P )
function and adding it along with the path length to the
diverse paths list while the path elements are added to the
selected elements. Finally, using the sort(L) function, all
the tuples in the diverse paths list are sorted in decreasing
order of their diversity and in case there are multiple paths
with the same diversity, these paths are sorted in increasing
order of their hop-count.

IV. DIVERSITY IMPROVEMENT ALGORITHM

In this section, we describe our algorithm that improves the
TGD of a given graph with its node locations by adding new
cost-efficient links.

A. Algorithm

The objective of this algorithm is to improve the TGD
of a graph by adding a user-specified number of links. The
algorithm adds one link that maximizes the TGD value. If
there are multiple links that give the same largest TGD value,
the least cost link is selected. We measure the cost of a link
in terms of the Euclidean distance of that link.

The topology improvement algorithm has two inputs: an
input graph Gi, a number of required links Lr. The input graph
Gi has a number of nodes ni with a number of links li. The
number of required links Lr is the number of links that should
be added to the graph. The algorithm adds links to the graph
with Lr iterations. To keep track of the selected links in each
iteration, the algorithm adds this link to the selectedLinks list.
In each iteration, the algorithm starts by adding the selected
links from previous iterations to the graph.

The candidate set contains the links that are connected to
the pairs with the lowest EPD values of the graph and not
currently present in the graph. To find the best candidate link,
each link in the candidate set is added to the graph and the
EPD of the corresponding pair is computed and mapped to
that link. Then, the link with the largest EPD is selected. In
case there are multiple links with the same largest EPD, the
least cost link is selected. This process is repeated until the
user requested number of links are added.

This algorithm uses four functions: cost(l), epd(P ),
candidate(G), and bestLink(L). The cost function cost(l)
returns the cost of adding a link l. In this paper, the cost is
defined as the Euclidean distance between the two ends of the
link. The effective path diversity function epd(P ) computes
the effective path diversity of the path P based on Equation 3.
The bestLink(L) function returns the link with the highest
EPD and lowest cost in case of multiple highest EPD values.
The candidate(G) takes a graph G as input and returns a set
of candidate tuples of two elements. The first element is a
lowest EPD pair and the second element is a candidate link.
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The candidate links are the set of all links in which one end is
connected to a node in the lowest EPD pairs and the other end
is connected to a node in the graph given that this link does not
exist in the graph. For each pair and link in the candidate set,
we add the link to the graph and compute the new EPD value
of that pair with its cost. Finally, the link with the highest EPD
and the lowest cost is selected using bestLink(L) function and
then added to the selectedLinks list. The algorithm repeats
this process as many times as the user requested. The pseudo
code is shown in Algorithm 2.

Functions:
cost(l) := cost of link l
epd(P ) := EPD value of path P
candidate(G) := candidate links function
bestLink(L) := maximum EPD value of links list L
Input:
Gi := input graph
Lr := number of required links
Output:
an ordered list of the added links
begin

selectedLinks = []; empty ordered list
links epd list = []; empty ordered list
while Lr > 0 do

G = Gi
G.addlinks(selectedLinks)
for P, L in candidate(G) do

links epd list.append((L,epd(P ),cost(L)))
end
selectedLinks.add(bestLink(links epd list))
Lr = Lr − 1

end
return selectedLinks

end
Algorithm 2: Topology improvement algorithm

B. Improvement Algorithm Example

In this section, we explain how our heuristic algorithm
improves a topology on a small-size graph. Figure 1 shows
a sample graph with 5 nodes and 5 links. In this example, the
hop-count threshold h is set to 10 and the number of diverse
paths k is set to 4. The initial TGD value of this sample graph
is 0.2023.

4 

3 

1 

2 
0 

0: Los Angeles, LA 

1: Houston, TX 

2: Kansas City, MO 

3: Chicago, IL 

4: Boston, MA 

Fig. 1. Optimization graph example

Our heuristic algorithm examines the links connected to the
least EPD pairs. The least EPD pairs are (1,2) and (3,4) with
EPD of 0 since they have no alternative paths. Therefore, the
candidate set consists of four possible links for each pair. To
find the best candidate, we determine the resulting EPD of the
corresponding pair after adding the candidate link and the cost
incurred as shown in Table I. Then, we find the link that gives
the highest pair EPD. Among the five candidate links, there
are four links that give a high-pair EPD of 0.50. The next step
is to find the lowest length link, which is the link (1,3). After
adding this link, the new TGD of this graph is 0.4034, which
is almost double the initial TGD.

TABLE I
EPD VALUES AND COST FOR CANDIDATE LINKS

Node Pair Link Resulting EPD Cost
(1, 2) (1, 0) 0.50 2,177
(1, 2) (1, 3) 0.50 1,043
(1, 2) (1, 4) 0.46 2,311
(3, 4) (4, 0) 0.50 4,058
(3, 4) (4, 2) 0.50 1,988

V. ANALYSIS AND RESULTS

In this section, we present topological data we use. Next, we
apply our heuristic improvement algorithm on three realistic
backbone networks and study the results. Then, we apply three
centrality-based attacks to non- and improved graphs and show
how the robustness changes for each graph.

A. Topological Dataset

We study physical level communication networks that are
geographically located within the continental United States.
Therefore, we only include the 48 contiguous US states,
the District of Columbia, and exclude Hawaii, Alaska, and
other US territories. We make use of the publicly available
CORONET [25], Internet2 [26], and Level 3 [27] fiber-level
topologies.

TABLE II
PHYSICAL TOPOLOGICAL DATASET

Network Nodes Links Avg. Degree Diameter Avg. Hop
CORONET 75 99 2.64 17 6.45

Internet2 57 65 2.28 14 6.69
Level 3 99 132 2.67 19 7.65

In Table II, we list a number of relevant quantities for each
of the provider networks. A detailed analysis of graph metrics
for the given physical networks was presented in our earlier
work [12]. Next, we apply our improvement algorithm on the
CORONET, Internet2, and Level 3 fiber-level topologies.

B. Improvement Analysis

In this section, we apply the improvement algorithm on
three realistic backbone service provider graphs and study the
TGD improvement and the cost incurred for each graph as we
add 20 links. We vary the value of h while the scaling-constant
λ is set to 0.5 and the value of k is set 12.

The hop-count threshold h is a parameter that controls the
length of the shortest path returned by the k diverse algorithm
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Fig. 2. Impact of varying h hop-count threshold on TGD and cost

introduced in Section III-C. Therefore, to get the optimal
diverse paths, the value of h should be larger or equal to the
diameter of the graph in order to examine all of the possible
paths in the graph. However, for large graphs, large values of
h may take an impractical time to calculate. Here, we apply
the algorithm with several values of hop-count thresholds
h = {5, 10, 15}. These values show how varying the parameter
h affects the value of TGD. Figure 2 depicts the results of
each hop-count threshold, which shows the TGD improvement
as links are added, cost incurred with added links, and the
TGD achieved as cost increases. As the hop-count threshold
increases, the size of the candidate set also increases, which
in turn increases the probability to have a higher EPD value.
As a result, a 5 hop-count threshold has the lowest TGD while
10 and 15 have the median and the highest TGD respectively
for all graphs as shown in Figures 2a, 2d, and 2g. However,
the cost does not follow a pattern as the hop-count threshold
increases since the cost for the highest EPD link for the
10 hop-count threshold could be less than the cost of the
highest EPD for 15 hop threshold and vice versa as shown

in Figures 2b, 2e, and 2h. Thus, the cost incurred depends
on the initial topological properties such as the number of
nodes and links, average degree, and node locations. The cost
needed to achieve a certain TGD for all graphs are shown
in Figures 2c, 2f, and 2i, which show that as the hop-count
threshold increases, the cost to achieve a given TGD decreases
in general.

C. Robustness Evaluation

In this section, we present the set of attacks used to evaluate
the robustness of the resulting non and improved. Then, we
apply these attacks and show the results.

1) Flow robustness: Flow robustness [22] is a graph metric
that measures the ratio of possible number of pair-connections,
to the maximum number of pair-connection, n(n− 1). If the
graph is partitioned, the possible number of pair-connections
is the sum of n(n− 1) connections for each component. The
range of flow robustness value is [0,1], and the flow robustness
is 1 if the graph is not partitioned and 0 if the graph has no
links.
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(h) Level 3 closeness-based attack
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Fig. 3. Flow robustness analysis of non- and improved graph

2) Graph centrality attacks: We use a graph-theoretic
model to attack a given graph and show how its flow ro-
bustness changes after each node removal. We have three
attack models, in which nodes with the highest centrality (i.e.
betweenness, closeness, and degree) are removed. The list of
removed nodes is determined adaptively for each attack model
(i.e next-best candidate is recomputed after each removal). The
adaptive removal of nodes gives a more correct selection for
the highest centrality than the non-adaptive removal [28].

3) Lowest degree improvement: For comparison purposes,
we introduce an intuitive improvement algorithm that improves
the connectivity of a given graph by adding links to the
smallest degree nodes. This algorithm adds one link repeatedly
until number of links requested by the user is added. On each
iteration, one end of the link is connected to the least degree
node and the other end is connected to the next least degree
node. If there are multiple least degree candidate links, the
least cost link is selected to be added.

4) Robustness evaluation results: We show the results of
applying the graph centrality attacks to path diversity improved
(PD-improved), lowest degree improved (LD-improved), and
non-improved topologies in Figure 3. For the set of PD-
improved graphs, we choose the set generated using the hop-
count threshold h = 15 and the number of diverse-path
threshold k = 12 because both have more diverse and accurate
results. For each graph, we apply the attack by removing
half of its original number of nodes and calculate the flow
robustness after each node removal. The node betweenness
attack has the highest negative impact on flow robustness
because it targets the most vital nodes in the graph as shown
in Figures 3a, 3d, and 3g. The second highest negative impact
on flow robustness is achieved by the closeness node attack
since the target node has the highest closeness to all the other
nodes in terms of hop count. The least negative impact on
flow robustness comes from the highest degree node since it
has a higher number of neighbors but is not necessarily used
by most number of shortest paths.
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Among the three provider graph analyses, the PD-improved
graphs are more resilient than the LD-improved and non-
improved graphs for betweenness and closeness attacks. For
degree-based centrality attack, LD-improved graphs have
higher flow robustness since links are added to the lowest
degree nodes, which are targeted the least as shown in Fig-
ures 3c and 3f. Therefore, the links connected to the lowest
degree nodes using LD-improved contribute more to flow
robustness than links added using PD-improved during the
degree-based attack. In Figure 3i, the degree attack for the
Level 3 topology does not follow this pattern because we
speculate that the links are added in the PD-improved are
connected to relativity low degree nodes. Thus, these links
are not prone to degree-based attacks and yet they improve
the TGD of this graph. PD-improved graphs have higher
flow robustness in most physical-level graphs because in PD-
improved graphs, links are added to increase the number of
diverse paths the most among all communicating nodes in the
graph. Thus, when a node is removed from a PD-improved
graph, it slightly affects the other communicating nodes since
they have more alternative paths to reroute their traffic

VI. CONCLUSIONS AND FUTURE WORK

Network design and optimization is a major area of research.
We introduce a k-diverse path algorithm that considers both
the diversity of the nodes and links in the returned paths.
We present a heuristic algorithm that improves the total path
diversity of a given graph. This algorithm improves the TGD
of a graph by adding the cost-efficient link that increases
the lowest EPD pair the most. We apply our algorithm to
three service provider physical-level topologies. Using the flow
robustness graph metric, the path diversity improved graphs
are compared to both lowest degree non- and improved graphs
as they are attacked using node removal based on highest node
centrality graph metrics. The path diversity improved graphs
show better resilience to these attacks compared to the lowest
degree non- and improved graphs.
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