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Abstract—Improving resilience against failures and targeted
attacks is an important aspect of network design. The resilience
and cost of networks are two opposing objectives in which a
designer should consider when building networks. We develop
a heuristic algorithm that balances the centrality of networks
by adding a set of links that minimizes the variance of graph
centrality measures in a least costly fashion. Moreover, our
algorithm limits the addition of links by a budget constraint.
We apply our algorithm to three different realistic topologies
and measure the performance of the improved graphs in terms
of flow robustness when subjected to targeted attacks. Our results
indicate that degree-balanced networks are more resilient than
both betweenness-balanced and closeness-balanced networks.

Index Terms—Network design, optimization, augmentation,
algorithm; Network cost model; Network resilience, survivabil-
ity, connectivity, robustness, dependability, reliability; Centrality
metrics, betweenness, closeness, degree

I. INTRODUCTION AND MOTIVATION

Network design and optimization has been studied by many
researchers in the past decades. From a graph perspective,
the objective is to improve the connectivity of a given non-
empty or empty graph by adding a set of links that maximizes
a given connectivity function. A network cost is associated
with the design and optimization of networks in terms of
nodes, links, or both. The cost and connectivity of graphs are
two opposing objectives that a designer should consider [1],
[2]. The robustness of graphs can be measured in terms of a
number of graph metrics [3]. In this paper, well-known graph
centrality metrics are used to measure the importance of a
node in terms of betweenness, closeness, and degree [4]. The
reason these centrality metrics are chosen is twofold. First,
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an adversary with knowledge of the network topology can
attack the most central nodes with the intention to cause the
most damage [5]. Second, from a load-balancing perspective,
the flows are more evenly distributed in centrality-balanced
graphs. Therefore, centrality metrics provide a good means of
measuring resilience [1] and load-balancing traffic.

In this paper, our assumption is that the cost of wide area
networks is dominated by the link length, and thus we ignore
the cost associated with nodes as well as any variable costs
that allow the cost of a network to be captured in terms of
total link length [5]–[7]. We improve networks by using this
cost model to add links. In this paper, we present a greedy
algorithm that adds links to make a given graph more resilient
against targeted attacks. To increase the resilience, we focus
on improving the graphs to balance their node centrality. The
centrality properties attract adversaries who apply successful
attacks on a targeted network by disrupting a few nodes with
high centrality. To improve the graph, we add links with an
objective function to minimize the centrality variance of the
nodes, which in turn yields a centrality-balanced graph. As a
result, the adversary needs more resources and an increased
work factor to successfully attack.

The rest of the paper is organized as follows: We present a
brief background on network optimization and graph centrality
metrics in Section II. The assumptions, objective functions,
and our heuristic algorithm are presented in Section III. The
dataset for the communication networks as well as evaluation
of these topologies using our algorithm are presented in
Section IV. Finally, we summarize our findings and propose
future work in Section V.
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II. BACKGROUND AND RELATED WORK

Network design and optimization has been studied in the
past decades [8], [9] and many problems in this field are
considered to be NP-hard [10]–[13]. Moreover, adding a set of
links or nodes to graphs to optimally maximize a certain graph
property is known in the literature as graph augmentation and
also proven to be NP-hard [14], even for one objective function
such as optimally increasing the algebraic connectivity [15].
Next, we briefly present some of the recent work relevant to
ours. Algorithms have been developed to add links between a
random pair of nodes and two low-degree nodes to improve the
connectivity of graphs [16]. The largest connected component
has been measured as an objective function on synthetically
generated graphs [16]. Another algorithm to improve the
robustness of the networks was presented in which some links
were rewired [6]. Most relevant to our work in this paper is
an algorithm that minimizes the maximum node betweenness
of a graph applied to synthetically generated Erdős-Rényi
and Barabási-Albert graphs [17], [18]. In addition to these
algorithms, we developed a heuristic algorithm that improves
the connectivity of a graph using the algebraic connectivity
metric by adding links in a cost-efficient fashion in our earlier
work [7], [19].

A plethora of graph metrics exist in the literature [3].
There are also several centrality metrics; however, we focus
on the best known ones: betweenness, closeness, and degree
centrality [20], [21]. Degree centrality is the number of links
incident to a node and can be viewed as the importance of
connectivity of a node [4]. Betweenness is defined as the
number of the shortest paths that flow through a node; it sig-
nifies a node’s importance in communication [22]. Closeness
is the inverse of the sum of the shortest paths from a node
to every other node and indicates efficiency of a message’s
diffusion in a network [4]. While degree centrality provides
local information about a node’s significance, the betweenness
and closeness centrality metrics provide global information
about a node’s significance. These graph centrality metrics
have been used to study performance of networks against
targeted attacks [23], [24].

III. IMPROVEMENT ALGORITHM

In this section, we describe our algorithm that balances
graph centrality by minimizing the centrality variance of a
given graph based on a given centrality function. The centrality
functions used in this paper are node betweenness, node
closeness, and node degree.

A. Algorithm

The objective of this algorithm is to balance graph centrality
among all the nodes of a given graph by adding a set of
links constrained by a cost budget. To achieve this objective,
our algorithm minimizes the variance of the node centralities
measured by one of the three node centrality functions: node
betweenness, node closeness, and node degree. If there are
multiple links that yield the same minimum variance value, the

lowest cost link is selected. The pseudocode of our algorithm
is shown in Algorithm 1.

Functions:
cost(l) := cost of link l
nBtwn(G) := betweenness for all nodes in graph G
nClos(G) := closeness for all nodes in graph G
nDeg(G) := degree for all nodes in graph G
candidate(G) := candidate links function
var(L) := computes variance of list L
bestLink(L) := affordable low variance in list L
Input:
G := input graph
B := available budget
Output:
selectedLinks := an ordered list of the selected links
begin

centralityFunc = nBtwn | nClos | nDeg
selectedLinks = [] ; empty ordered list
varAndCost = [] ; empty ordered list
totalCost = 0; initial total cost is zero
while B >= totalCost ∧
selectedLinks 6= candidate(G) do

G.addlinks(selectedLinks)
for l in candidate(G) do

centralityVar = var(centralityFunc(G))
varAndCost.append((l, centralityVar, cost(l)))

end
selectedLink = bestLink(varAndCost)
selectedLinks.add(selectedLink)
totalCost += cost(selectedLink)

end
return selectedLinks

end
Algorithm 1: Balancing centrality algorithm

There are two inputs for this algorithm: an input graph G
and a budget constraint B. The input graph G has a number
of nodes n with a number of links l and the node positions.
The budget constraint B is measured in meters to specify
the allowed total length for link addition. The algorithm adds
links to the graph iteratively. To keep track of the selected
links in each iteration, the algorithm adds these links to the
selectedLinks list. Moreover, to keep track of the selected
links cost, the algorithm increments the totalCost by the cost
of each added link.

For the candidate set, all possible candidate links are in the
graph’s complement. However, this set may contain very long
links that are not practical to be added to a physical graph. For
example, adding a physical fiber link between Los Angeles and
Boston is unlikely to be feasible for providers given the high
cost incorporated by adding this link. Therefore, this raises
the question of what the best threshold value should be. In
this paper, we choose the maximum link length in the input
graph to be the threshold for removing long links from the
graph complement links. We assume this value gives a good
indicator for the maximum link length a provider can afford.
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There are seven functions used by this algorithm. The cost
function cost(l) returns the cost of adding a link l that is
defined as the Euclidean distance between the two ends of the
link. The function nBtwn(G) computes the node betweenness
of all the nodes in graph G. The function nClos(G) com-
putes the closeness for every node in graph G. The function
nDeg(G) computes the number of links connected to every
node in graph G. The bestLink(L) function returns the best
candidate link given that it is an affordable link and it has the
minimum-variance value and lowest cost in case of multiple
tie minimum-variance values. The var(L) function returns the
variance of the values in list L. The candidate(G) function
returns candidate links in graph G.

The centrality function centralityFunc is selected from the
three options: nBtwn, nClos, and nDeg. For each link in the
candidate set, the algorithm temporarily adds the link to the
graph and computes the variance value and the cost incurred
by that link, which are added to the varAndCost list. After
that, the temporary link is removed and the next candidate
link is added to undergo the same process. The link with the
minimum variance and the lowest cost is selected using the
bestLink function and then it is added to the selectedLinks
list. Inside the bestLink function, if the minimum variance link
cost plus the total cost exceeds the budget, a next minimum
link is examined until a link with affordable cost is found.
This process is repeated until no link can be added without
exceeding the given budget or there are no more available links
in the candidate set.

B. Improvement Example

In this section, we explain how our heuristic algorithm
balances the centrality of a small-size graph. Figure 1 shows a
sample graph connecting major US cities with 7 nodes and 7
links. In this example, we apply our algorithm to add a single
link using three objective functions one at a time.
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2: Kansas City, MO 

3: Chicago, IL 

4: Boston, MA 

5: Los Angeles, LA 

6: Houston, TX 
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Fig. 1. Improvement graph example

To find the best candidate, the algorithm finds the candidate
set, which contains the links of the complement graph that are
not longer than the current maximum link in the graph. The
number of links in this complement graph is 7×6

2 − 7 = 14
links. In this example, the longest link of the input graph
is between nodes 5 and 6 that has a length of 2,177 km.

TABLE I
CENTRALITY VARIANCE AND COST FOR CANDIDATE LINKS

Candidate Betweenness Closeness Degree Cost [m]links variance variance variance
(1, 3) 0.0125 0.0085 0.4897 1,453,452
(1, 5) 0.0374 0.0086 0.4897 1,259,832
(1, 6) 0.0323 0.0099 0.4897 1,070,221
(2, 4) 0.0379 0.0076 0.4897 1,988,059
(2, 5) 0.0459 0.0115 0.7755 2,143,391
(3, 6) 0.0125 0.0085 0.4897 1,043,873

Therefore, 8 links that have a length greater than this value
are removed from the candidate link set and 6 links remain
in the candidate set. For each candidate link, the algorithm
determines the centrality variance across all nodes after adding
the candidate link and the cost incurred as shown in Table I.
According to this algorithm, the link resulting in the minimum
centrality variance is selected. For example, using closeness
variance as an objective function, the link (2,4) is selected
because it gives the minimum variance value of 0.0076. In case
there are multiple identical minimum values, the link with the
least cost is selected among those minimum variance links. For
example, using betweenness variance as an objective function,
there are two links with the minimum value of 0.0125, namely
links (1,3) and (3,6). Next, the algorithm chooses the link with
the minimum cost, which is (3,6) in this example.

IV. RESULTS AND ANALYSIS

In this section, first we present the topological data. Next,
we apply the optimization algorithm on three realistic net-
works and study the results. Then, we apply three centrality-
based attacks to the resulting improved graphs and show how
the robustness changes during each attack.

A. Topological Dataset

We study physical infrastructure communication networks
that are geographically located within the continental United
States. Therefore, we only include the 48 contiguous US states,
the District of Columbia, and exclude Hawaii, Alaska, and
other US territories. We make use of the publicly available
Internet2 [25], Level 3 [26], and CORONET [27], [28], fiber-
level topologies. Important graph metrics for these physical-
level topologies are shown in Table II and a detailed analysis
of graph metrics for the given physical networks was presented
in our earlier work [5]. Next, we apply our improvement
algorithm on the Internet2, CORONET, and Level 3 fiber-level
topologies.

B. Improvement Analysis

In this section, we apply our improvement algorithm on
three service provider graphs and study the improvement and
the cost incurred for each graph as links are added. We choose
an upper limit of the budget constraint to be 5× 107 meters,
such that the number of added links across the three different
size physical-level graphs demonstrate distinctive centrality
improvement. The budget is measured as the sum of the length
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TABLE II
TOPOLOGICAL CHARACTERISTICS OF PHYSICAL-LEVEL TOPOLOGIES

Network Nodes Links Node Degree Diameter Radius Hopcount Node Closeness Node Betweenness
(min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

Internet2 57 65 (2.0 / 2.28 / 4.0) 14 8 6.69 (0.12 / 0.15 / 0.21) (15 / 159 / 630)
CORONET 75 99 (2.0 / 2.64 / 5.0) 17 9 6.45 (0.10 / 0.16 / 0.22) (6 / 201 / 1,090)

Level 3 99 130 (1.0 / 2.67 / 5.0) 19 10 7.65 (0.09 / 0.14 / 0.18) (0 / 325 / 1,622)

of the added links. We note that this value can be modified
according to a provider’s available budget. The results for all
of the objective functions are shown in Figure 2.

1) Balanced Betweenness Analysis: We apply our algo-
rithm to the three physical graphs while the objective function
is set to minimize betweenness. In other words, links are added
to uniformly utilize all nodes in terms of forwarding traffic
along shortest paths. The variance changes while links are
added is shown in Figure 2a. For all providers, the betweenness
variance starts around 7×10−3. While adding the first 20 links
the variance decreases significantly to 1 × 10−3; these links
contribute significantly to minimizing the variance and the
remaining links do not have any significant impact. Therefore,
the variance slowly decreases as the rest of the links are
added because the graphs have been already balanced in terms
of their betweenness values variance. The costs incurred as
links are added for all providers are shown in Figure 2b.
The cost is increasing on a similar pace for all providers
but their slopes are different. The cost of adding the first 20
links is growing faster than afterwards because these links are
selected regardless of their expensive cost since they contribute
significantly to minimizing the betweenness. Level 3 has the
lowest slope, which gives the highest number of added links.
This is because Level 3 has the largest number of nodes, which
gives more affordable candidate links to select from. On the
other hand, the incurred cost while adding links to Internet2
grows faster than the other two because it has a lower number
of nodes, which in turn yields a lower number of candidate
links. As a result, more expensive links are selected, which
consumes the budget more quickly.

2) Balanced Closeness Analysis: While selecting the objec-
tive function to minimize the variance of the node closeness
of the graph, we apply our algorithm to the three graphs. In
other words, links are added to make the shortest path distance
between all the nodes more uniform. The variance changes
while links are added is shown in Figure 2c. The variance of
closeness values are different for the three providers. For Level
3 the closeness variance decreases overall. On the other hand,
for Internet2 and CORONET, the variance decreases while
adding the first several links and then it fluctuates around
5.5 × 10−4. However, why the fluctuations happen only for
closeness-based optimization is not known and the reasons for
the occurrence of this phenomenon will be the subject of future
work. The costs incurred as links are added for all providers
are shown in Figure 2d. Here, the costs are similar with no
phase changes since the added links do not have a significant

contribution to minimize closeness variance for Internet2 and
CORONET. For Level 3, the cost exhibits the same slope of the
other two providers overall. However, while adding the 60th
link, we observe a small jump in the cost, which corresponds
to a significant decrease in the variance for the same link.
This is because the algorithm selects links that minimize the
variance regardless of their cost, which in this case is higher
than other selected links.

3) Balanced Degree Analysis: Here, we apply our algo-
rithm to the three physical graphs while the objective function
is set to minimize degree variance. In other words, links are
added to increase the uniformity of node degree. The variance
changes while links are added as shown in Figure 2e. For all
the providers, the degree variance starts from different initial
values but they are not monotonically decreasing, but rather
oscillating. To explain this phenomenon, let us start with a
uniform node degree graph, where each node has a degree of
k, which gives a graph with zero degree variance. To add links
to the graph, the variance has to increase no matter where the
links are placed. The variance increases until it reaches a top
point and then it decreases to reach the zero where the graph
has a k + 1 node degree. If the number of links needed to
increase k to k + 1 is x, then the top points must be located
near adding the next x/2 links. Now, we can observe that
the degree variance in Figure 2e does not reach zero for any
providers. This is because long links can not be selected due
to the cost constraints. The costs incurred as links are added
for all providers are shown in Figure 2f. For all providers, the
cost increases overall with a similar pattern of phase changes.
For example, Level 3 link addition cost increases at the same
rate. Then, the rate increases until the 27th link is added, which
slows the rate of cost increase. The point where the cost slows
down corresponds to the point where the degree variance is at a
minimum. This happens because at this point, the graph has the
maximum number of candidate links to get the next minimum
degree variance of the graph. However, after adding a few
links with the low cost, the remaining links in the candidate
set are all expensive. Therefore, the algorithm has to select
one of these links, and the links added before reaching the
lowest variance are more expensive than links selected after
passing this point.

4) Improvement Method vs. Number of Added links: Using
the improvement results shown in Figure 2, we observe that
while limiting the budget to a constant value for all the
graphs, the actual number of added links for a given graph
differ based on the used improvement method. For example,
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Fig. 2. Optimizing physical-level topologies with 50M budget constraint
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for the Internet2 graph, the numbers of added links using
betweenness, closeness, and degree are: 112, 122, and 112,
respectively. For the CORONET graph, the numbers of added
links using betweenness, closeness, and degree are: 154, 174,
and 141, respectively. For the Level 3 graph, the number of
added links using betweenness, closeness, and degree are: 203,
224, and 171, respectively. From these numbers, we observe
that closeness improvement methods always yield the highest
number of added links, which implies that it tends to select
shorter links. On the other hand, both betweenness and degree
improvement yield a fewer number of links. The Degree-
based improvement method yields the lowest number of links
added with small differences with respect to betweenness-
based improvement.

C. Robustness Evaluation

In this section, we present the set of attacks used to evaluate
the robustness of the resulting non- and improved graphs.
Then, we apply these attacks and show the results.

1) Flow Robustness: Flow robustness [29], [30] is a graph
metric that measures the ratio of possible number of pair-
connections, to the maximum number of pair-connections
n(n − 1). If the graph is partitioned, the possible number of
pair-connections is the sum of n(n− 1) connections for each
component. The range of flow robustness value is [0,1], with
the flow robustness is 1 if the graph is not partitioned and 0
if the graph has no links.

2) Graph Centrality Attacks: We use a graph theoretic
model to attack a given graph and show how its flow robust-
ness changes after each node removal. In this paper, we use
three centrality metrics: node betweenness, node closeness,
and node degree. Thus, we have three attack models, in which
the node with the highest centrality is removed. The node
betweenness attack targets the node through which the highest
number of shortest paths pass. The node closeness attack
targets the closest node to all the other nodes in terms of
hop count. The highest degree node attack targets the node
with the highest number of neighbors. The list of removed
nodes is determined adaptively for each attack model. This
means the node centrality values are calculated after each
node is removed and the highest is selected to be the next
node to be removed. The adaptive removal of nodes gives a
more correct selection for the highest centrality than the non-
adaptive removal, in which the highest targeted number of
nodes are selected based on a single evaluation [23].

3) Robustness Evaluation Results: In this section, we show
the results of applying the graph centrality attacks to non- and
improved graphs while computing the flow robustness of the
graph as nodes are removed during the attack, which causes
the removal of 50 nodes from each graph. The results of
applying the attacks on non- and improved graphs are depicted
in Figure 3. The sum of flow robustness values (i.e. the area
under each curve in Figure 3) are shown in Table III. By
comparing the sum of flow robustness values of the non-
and improved graphs, we can see that the betweenness attack
overall yields lower flow robustness values, which implies that

the betweenness attack is the most destructive attack on these
physical graphs. Using the same approach, the closeness attack
is next, and the degree attack is the least destructive attack.

TABLE III
SUM OF FLOW ROBUSTNESS

Provider Improvement Betweenness Closeness Degree
method attack attack attack

Internet2

non-improved 4.09 5.00 4.71
betweenness 8.65 12.99 15.88

closeness 6.96 10.28 15.48
degree 8.68 8.86 16.95

CORONET

non-improved 7.43 7.84 9.87
betweenness 10.43 12.55 19.72

closeness 8.76 11.66 20.03
degree 10.60 11.79 21.28

Level 3

non-improved 5.68 8.86 16.95
betweenness 11.63 15.36 25.81

closeness 9.56 18.71 21.54
degree 11.08 12.07 25.62

The results of applying three centrality attacks on Internet2
non- and improved graphs are shown in Figures 3a, 3b, 3c.
For the betweenness attack on Internet2 non- and improved
graphs, we observe that the degree-improved graph has the
highest value of flow robustness at 8.68. Furthermore, the
betweenness-improved graph comes second in terms of flow
robustness with very small difference at 8.65. Even though the
closeness-improved graph has more added links, it yields the
lowest flow robustness among the improvement methods for
the Internet2 graph as shown in Table III. For the closeness
attack, the betweenness-improved graph outperforms the other
methods with flow robustness of 12.99, while closeness and
degree flow robustness are 10.28 and 8.86, respectively. For the
degree attack, the degree-improved graph again has the highest
flow robustness of 16.95. The betweenness and closeness
improvement methods come next with flow robustness values
of 15.88 and 15.48 respectively. By observing all the flow
robustness values for the scenarios we study, the degree
improvement is more resilient to attacks for Internet2, and the
closeness improvement is the weakest method for the same
graph.

Using the same method for analyzing Internet2 flow ro-
bustness values, we study both CORONET and Level 3 non-
and improved graphs. We observe that the degree improved
graphs have the highest flow robustness compared to the other
approaches. Next, the betweenness improved graphs have the
second highest flow robustness while closeness has the worst
flow robustness values.

Finally, we compare the results of the three improvement
methods’ flow robustness values against the number of added
links shown in Figure 2 and discussed in Section IV-B4. We
observe that even though the closeness-based improvement
consistently yields the highest number of added links, it fails
to provide better flow robustness values than both betweenness
and degree improvement methods in most attacks. This implies
that having a larger number of links in a given graph does
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(c) Internet2 degree-based attack
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(d) CORONET betweenness-based attack
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(e) CORONET closeness-based attack

flo
w

 r
ob

us
tn

es
s

number of nodes removed

betweenness-improved
closeness-improved

degree-improved
non-improved

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40 45 50

(f) CORONET degree-based attack

flo
w

 r
ob

us
tn

es
s

number of nodes removed

betweenness-improved
closeness-improved

degree-improved
non-improved

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40 45 50

(g) Level 3 betweenness-based attack
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(h) Level 3 closeness-based attack
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(i) Level 3 degree-based attack

Fig. 3. Flow robustness analysis of non- and improved topologies with 50M meters budget constraint

not necessarily guarantee a better resilience. Moreover, adding
links without a careful improvement of networks may not yield
any gain in terms of resilience and performance.

V. CONCLUSIONS AND FUTURE WORK

Network design and optimization is a major area of re-
search. Here, we study the improvement of several real-
world providers’ physical-level graphs by adding links that
cost below a certain budget. We introduce an algorithm that
minimizes the node centrality variance of a given graph based
on three centrality functions: node betweenness, node close-
ness, and node degree. Then, we apply this algorithm using
each function on three physical graphs and study the variance
minimization and cost incurred while adding the links. Then,
we study resilience of the non- and improved graphs using
the centrality attacks via the same centrality functions. For
each attack, we study the flow robustness of each non- and

improved graph. Overall, the results show the degree-improved
graphs outperform the other two improvement methods for
these physical graphs. Then, with a similar outcome, the be-
tweenness comes next, and the weakest improvement method
is closeness minimization.
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[2] J. P. Sterbenz, E. K. Çetinkaya, M. A. Hameed, A. Jabbar, Q. Shi,
and J. P. Rohrer, “Evaluation of Network Resilience, Survivability, and
Disruption Tolerance: Analysis, Topology Generation, Simulation, and
Experimentation (invited paper),” Telecommunication Systems, vol. 52,
no. 2, pp. 705–736, 2013.

[3] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas,
“Characterization of complex networks: A survey of measurements,”
Advances in Physics, vol. 56, no. 1, pp. 167–242, 2007.

[4] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, pp. 215–239, 1978–1979.
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[7] M. J. F. Alenazi, E. K. Çetinkaya, and J. P. G. Sterbenz, “Network
Design and Optimisation Based on Cost and Algebraic Connectivity,”
in Proceedings of the 5th IEEE/IFIP International Workshop on Reli-
able Networks Design and Modeling (RNDM), (Almaty), pp. 193–200,
September 2013.

[8] R. S. Wilkov, “Analysis and design of reliable computer networks,” IEEE
Transactions on Communications, vol. 20, no. 3, pp. 660–678, 1972.

[9] H. Frank and W. Chou, “Topological optimization of computer net-
works,” Proceedings of the IEEE, vol. 60, no. 11, pp. 1385–1397, 1972.

[10] M. O. Ball, “Complexity of network reliability computations,” Networks,
vol. 10, no. 2, pp. 153–165, 1980.

[11] M. O. Ball, “Computational complexity of network reliability analysis:
An overview,” IEEE Transactions on Reliability, vol. 35, no. 3, pp. 230–
239, 1986.

[12] S. Khuller and B. Raghavachari, “Graph and Network Algorithms,” ACM
Comput. Surv., vol. 28, no. 1, pp. 43–45, 1996.

[13] H. Noltemeier, H.-C. Wirth, and S. O. Krumke, “Network Design and
Improvement,” ACM Comput. Surv., vol. 31, no. 3es, pp. 1–5, 1999.

[14] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM Journal
on Computing, vol. 5, no. 4, pp. 653–665, 1976.

[15] D. Mosk-Aoyama, “Maximum algebraic connectivity augmentation is
NP-hard,” Operations Research Letters, vol. 36, no. 6, pp. 677–679,
2008.

[16] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish, “Improving net-
work robustness by edge modification,” Physica A: Statistical Mechanics
and its Applications, vol. 357, no. 3–4, pp. 593–612, 2005.

[17] B. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, “Optimal transport on
complex networks,” Phys. Rev. E, vol. 74, p. 046106, Oct 2006.

[18] B. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, “Transport optimization
on complex networks,” Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 17, no. 2, 2007.
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