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Abstract

Backbone networks are prone to failures due to targeted attacks or large-scale disasters. Network resilience can be improved
by adding new links to increase network connectivity and robustness. However, random link additions without an optimisation
objective function can have insignificant connectivity improvement. In this paper, we develop a heuristic algorithm that optimises
a network by adding links to achieve a higher network resilience by maximising algebraic connectivity and decreasing total cost
via selecting cost-efficient links. We apply our algorithm to five different backbone topologies and measure algebraic connectivity
improvement and the cost incurred while adding new links. For evaluation, we apply three centrality node attacks to the non- and
optimised networks and show the network flow robustness while nodes are removed. Our results show that optimised graphs with
higher algebraic connectivity values are mostly more resilient to centrality-based node attacks.
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1. Introduction and Motivation

Networks in general, and communication networks in partic-
ular, are prone to a variety of challenges and attacks that can
have costly consequences. However, network connectivity can
be improved with careful planning and optimisation, and the
impact of such challenges can be reduced. The design and op-
timisation of cost-efficient networks that are resilient against
challenges and attacks has been studied by many researchers
over the past few decades, but the resilient network design prob-
lem is NP-hard.

In this paper, we approach resilient network design from a
graph theoretic perspective. We develop a heuristic algorithm
that improves the connectivity of a graph in terms of the alge-
braic connectivity metric by adding links. Algebraic connec-
tivity a(G) is defined as the second smallest eigenvalue of the
Laplacian matrix [1] and it is widely used for topological opti-
misations [2, 3, 4]. A secondary objective of our algorithm is
to select the links that improve the algebraic connectivity of the
graph in the least costly fashion in which we capture the cost of
network as the total link length. Furthermore, we parameterise
our optimisation algorithm such that connectivity and cost are
weighted depending on a cost-effect parameter γ.
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The heuristic to increase algebraic connectivity in a graph is
based on adding links to the nodes that have least incident links
(i.e. minimal degree nodes) [2, 4]. Our parameterised heuris-
tic algorithm identifies and selects the links that increase the
algebraic connectivity of a graph depending on the available
budget. Moreover, the search of the best links is computation-
ally less expensive in our algorithm compared to an exhaus-
tive search. We use five commercial service provider physical
networks (AT&T, Level 3, Sprint, Internet2, and CORONET)
to evaluate our algorithm. Our algorithm provides the cost-
efficient new links to improve a network’s resilience measured
by the algebraic connectivity metric.

The rest of the paper is organised as follows: We present a
brief background on network design and optimisation in Sec-
tion 2. The assumptions, objective functions, and our heuristic
algorithm is presented in Section 3. The dataset for the com-
munication networks as well as optimisation evaluation of these
topologies using our algorithm is presented in Section 4. The
robustness evaluation of the non- and optimised graphs is pre-
sented in Section 5. Finally, we summarise our findings as well
as propose future work in Section 6.

2. Background and Related Work

Network design and optimisation has been studied in past
decades [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and many problems
in this field are considered to be NP-hard [15, 16, 17, 18]. Sev-
eral monographs provide in-depth coverage of the topic [19, 20,
21, 22]. The design process includes constructing the network
from the ground up including placement of nodes [8, 9] and
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providing connectivity among nodes to enable services. The
optimisation process includes improvement of the network for
one or multiple objectives. Network optimisation can be ac-
complished by means of rewiring while keeping the number of
edges constant [4] or by means of adding new links to improve
the connectivity of graphs [2]. Moreover, the design process is
different for backbone and access networks, since the topologi-
cal structure of these networks fundamentally differ [8, 9, 10].

Network design and optimisation objectives are cost, capac-
ity, reliability, and performance [7, 8, 9]. Network cost is in-
curred by the number of nodes required, capacity of nodes re-
quired, and number of links. Previously, we provided a network
cost model to add a link between node i and node j as:

Ci, j = f + v × di, j (1)

where f is the fixed cost associated with the link (including ter-
mination), v is the variable cost per unit distance for the link,
and di, j is the length of the link [23, 24]. Moreover, if we as-
sume that the fibre length dominates wide-area network cost
and ignore the fixed cost associated with each link, the network
cost can be written as:

C =
∑

i

li (2)

where li is the length of the i-th link [25, 26].
Topological connectivity is another objective that can be

measured by means of many graph metrics such as average
degree, betweenness, closeness, and graph diversity [4, 5, 6,
27, 28, 29]. In this paper, we measure the connectivity of
a graph in terms of algebraic connectivity metric. Algebraic
connectivity a(G) is defined as the second smallest eigenvalue
of the Laplacian matrix [1]. The Laplacian matrix of G is:
L(G) = D(G) − A(G) where D(G) is the diagonal matrix of
node degrees, dii = deg(vi), and A(G) is the symmetric adja-
cency matrix with no self-loops. The algebraic connectivity of
a complete graph (i.e. full mesh) is n where n is the number of
nodes, and it is 0 for a disconnected graph with more than one
component.

Topology design using algebraic connectivity has been stud-
ied by several researchers [2, 3, 4]. It has been shown that al-
gebraic connectivity is more informative and accurate than av-
erage node degree when characterising network resilience [3].
Moreover, we have shown algebraic connectivity [26, 30] and
diversity [29] are predictive of flow robustness of graphs. Three
synthetically generated topologies (i.e. Watts-Strogatz, Gilbert,
Barabási-Albert) have been optimised using edge rewiring in
which the objective is to increase the algebraic connectivity [4].
It was shown that algebraic connectivity increases the most
if edges are rewired between weakly connected nodes. An-
other study optimised synthetically generated Erdős-Rényi and
Barabási-Albert graphs in terms of adding links to the existing
topology [2]. It was concluded that adding links between a low
degree node and a random node is computationally less expen-
sive than an exhaustive search. In this paper, we present an al-
gorithm for topological optimisation in terms of adding links,

which maximises algebraic connectivity and aims to choose
links so that the cost is minimal among given choices.

3. Topology Optimisation Algorithm

In this section, we describe our algorithm that optimises con-
nectivity and cost of a topology. Our heuristic algorithm is im-
plemented using Python. Furthermore, we assume that node
locations are given for a graph to apply optimisation algorithm,
as would be the case for a deployed service provider.

3.1. Objectives
The objective of this algorithm is to identify the best links to

be added to improve the connectivity of the graph. In this paper,
we use algebraic connectivity as a measure of connectivity, but
we note that any graph connectivity property, such as average
node degree, clustering coefficient, or diversity can be used with
our heuristic. For example, the clustering coefficient can be
used to replace the algebraic connectivity or both the clustering
coefficient and the algebraic connectivity can be used with a
tuning parameter to control their effect in selecting the links.

3.2. Algorithm
The topology optimisation algorithm has three inputs: an in-

put graph Gi, a number of required links Lr, and a cost-effect
parameter γ. The input graph Gi has a number of nodes ni with a
number of links li. The number of required links Lr is the num-
ber of links that should be added to the graph. The cost-effect
parameter γ is a tuning parameter between cost and algebraic
connectivity. When γ = 0, the cost term of the rank function
is neglected since it is zeroed. As a result, the algorithm se-
lects the link that maximises the algebraic connectivity. On the
other hand, when γ = 1, the algebraic connectivity is neglected
and the least link cost is selected in each iteration. The algo-
rithm adds links to the graph with Lr iterations. To keep track
of the selected links in each iteration, the algorithm adds these
links to a list. In each iteration, the algorithm starts by adding
the selected links from previous iterations to the graph. Then,
the rank value is computed for each candidate link and the link
with the maximum rank value is selected to be added. A rank-
ing function is used to select the best candidate in each iteration.
The rank value r is computed using:

r = (1 − γ)a(G) + γ(1 −C) (3)

where C represents the length of the ranked link. This algorithm
uses four functions: cost function cost(L), algebraic connectiv-
ity function algConn(G), maxLink(D), and candidate(G). The
cost function cost(L) returns the cost of adding a link L. In
this paper, the cost is defined as the Euclidean distance between
the two ends of the link. The algebraic connectivity function
algConn(G) takes a graph G and returns the second smallest
eigenvalue of its Laplacian matrix. The maxLink(D) function
returns the maximum ranked link. The candidate(G) takes a
graph G as input and returns a set of candidate links to be added
to the graph. The candidate links are a set of links that are ex-
amined every time a link is added to a graph. One option to use
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for the candidate links is the set of complement links of a graph
is denoted as Ḡ, which can be determined as the set of links in
full mesh subtracted from the current links in a graph G. The
number of complement links (cf. shown in column 4 Table 2)
is computed as:

ni(ni − 1)
2

− li (4)

However, this number is computationally expensive as the num-
ber of nodes ni gets larger, which results in a complexity of
O(Lrn2

i ). In an attempt to decrease the number of candidate
links, we only examine the links connected to the lowest de-
gree node in the graph. As a result, the algorithm complexity
decreases to O(Lrni).

Both the algConn(G) and cost(L) functions are normalised to
have a maximum value of one. Since the theoretical maximum
value for the algebraic connectivity of a given graph is the num-
ber of its nodes, it is normalised by dividing it by the number of
nodes. To normalise the cost function, it is divided by the max-
imum possible distance between any nodes in the graph. The
pseudocode of our algorithm is shown in Algorithm 1.

Functions:
cost(L) := cost function
algConn(G) := algebraic connectivity function
candidate(G) := candidate links function
maxLink(D) := max value of a dictionary
Input:
Gi := input graph
Lr := number of required links
γ := cost effect parameter
Output:
an ordered list of the added links
begin

selectedLinks = []; empty ordered list
rank = {}; empty dictionary
while Lr > 0 do

G = Gi
G.addlinks(AddedLinks)
for link in candidate(G) do

rank[link]=(1−γ)algConn(G)+γ(1−cost(link))
end
selectedLinks.add(maxLink(rank))
Lr = Lr − 1

end
return selectedLinks

end
Algorithm 1: Topology optimisation algorithm

3.3. Algorithm options

In this paper, we consider physical networks. Hence, we have
added an option that removes very long links from the candi-
date link set. This is because it is not practical to add very long
links between cities such as a physical fibre link between Los
Angeles and New York City. Therefore this raises the question

of what the maximum length should be chosen. In our imple-
mentation, we have it as a variable that can be set by the user.
We choose the maximum length link in the input graph to be
the threshold for long links in the dataset, which gives a good
indicator for the maximum link length a provider can afford.

4. Analysis

In this section, first we describe our algorithm on a small
size graph. Next, we present the topological dataset we use to
apply our algorithm, followed by cost and connectivity analysis
of commercial backbone providers.

4.1. Algorithm Evaluation

In this section, we explain how our heuristic algorithm op-
timises a topology on a small-size graph. Figure 1 shows a
sample graph with 8 nodes and 9 links as solid lines. The initial
algebraic connectivity of this sample graph is 0.3432 and the
initial cost (i.e., total link length in km) of the graph is 8,203.
Our heuristic algorithm adds links to the least connected nodes,
which in the example are nodes 0 and 7. The six candidate links
for node 0 are shown as square dots, whereas five candidate
links for node 7 are shown as long dashes and dots. Through-
out this example, we describe how our algorithm operates if we
are going to add one link Lr = 1 to the sample graph shown in
Figure 1.

7

6

4

5

1

3 2

0

Figure 1: Sample graph

There can be a maximum of 28 links in this 8-node graph
(maximum links can be calculated by n(n−1)

2 ). Since there are
9 links in the graph, if we were to do an exhaustive search,
there would be 28 − 9 = 19 candidate links (i.e. the comple-
ment links). In the sample graph shown in Figure 1, there are
six candidate links that can be added to node 0 and there are
five links for node 7 using our heuristic algorithm. Therefore,
the candidate link set is reduced to 11, because our algorithm
only considers candidate links from the least connected nodes.
The algebraic connectivity and cost value of adding each link
individually for γ = 0 and γ = 1 is shown in Table 1.

When γ = 0, our algorithm ignores the cost associated with
adding a link and selects the additional link that increases the al-
gebraic connectivity of the graph the most. For γ = 0, the algo-
rithm adds the link between node 1 and 7 in the example graph
since it provides the highest algebraic connectivity among the
11 candidate links. When γ = 1, the cost is the dominant factor
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Table 1: a(G) and cost values for the sample graph

Link γ = 0 γ = 1
a(G) ∆a(G) cost ∆ cost

0↔ 2 0.3485 0.0053 9,275 1,072
0↔ 3 0.3588 0.0156 9,405 1,202
0↔ 4 0.3659 0.0227 9,848 1,645
0↔ 5 0.4079 0.0647 10,624 2,421
0↔ 6 0.5908 0.2476 11,228 3,025
0↔ 7 0.7713 0.4281 11,843 3,640
7↔ 1 0.8345 0.4913 11,302 3,099
7↔ 2 0.7071 0.3639 12,061 3,858
7↔ 3 0.6651 0.3219 10,915 2,712
7↔ 4 0.5918 0.2486 10,207 2,004
7↔ 5 0.5075 0.1643 9,463 1,260

determining the addition of a link. Therefore, our heuristic al-
gorithm selects the link between node 0 and 2, since it incurs the
lowest cost among the candidate set of links. The selection of
links via our heuristic algorithm is highlighted bold in Table 1.
Moreover, we performed an exhaustive search on the sample
graph shown in Figure 1, and find that the link between node 1
and 7 has the highest algebraic connectivity among 19 possible
links. The result of the exhaustive search for the least incurred
cost link indicated that the link between node 3 and 4 is the best
option, however, as mentioned above, our algorithm adds links
to the minimal degree nodes. Therefore our algorithm selects
the link between node 0 and 2 when γ = 1.

4.2. Topological Dataset

We study physical level topologies of five service provider
networks. Among the five provider networks we study, the
AT&T [31], Level 3 [32], and Sprint [33] are the commercial
backbone providers. The Internet2 [34] is a research network
whereas CORONET is a synthetic fiber topology [35, 36]. Se-
lection of five different providers with different network size
and order graphs demonstrates the applicability of our algo-
rithm. Physical-level topologies of the five service providers
were constructed using a third party map [37]. The details of
generating physical-level topologies are presented in our previ-
ous work [25, 30].

Table 2: Physical Topological dataset

Network Nodes Links Complement links
AT&T 383 488 72,665

Level 3 99 132 4,719
Sprint 264 313 34,403

Internet2 57 65 1,531
CORONET 75 99 2,676

4.3. Backbone Provider Network Analysis
Our algorithm is applied to five ISPs by adding 100 physical

links. We show the graph algebraic connectivity and the cost
incurred in terms of meters after adding each link. Moreover,
we show the relation of cost and algebraic connectivity and the
slope in these figures shows how the cost increases as the graph
connectivity improves.

4.3.1. Selection of γ values
The γ parameter that ranges 0 to 1 controls the outcome of the

algorithm as described in Section 3.2. In Equation 3, we have
two terms: (1−γ)a(G) and γ(1−C). The a(G) is the normalised
algebraic connectivity value, which is low for sparse graphs and
one for a full mesh graph. The value of C denotes the nor-
malised cost of adding a link and it is low when the maximum
possible link length in the input graph is larger than the average
link length in the candidate set. Therefore, choosing the value
of γ depends on the initial properties of the input graph. For
these physical graphs, we choose γ = {0, 10−9, 10−7, 10−5, 1}
because the cost term is larger than the γ term about six order
of magnitude for physical level graphs.

4.3.2. Physical level topology analysis
As explained in Section 3, an option is added in our heuris-

tic algorithm to discard the links that are longer than the actual
maximum link of the graph. The connectivity and cost optimi-
sation of physical level provider graphs are shown in Figure 2.
Algebraic connectivity improvement of the five physical level
topologies after adding 100 links iteratively is depicted in Fig-
ures 2a, 2d, 2g, 2j, and 2m. The algebraic connectivity is higher
for γ = 0 than the other values of γ, and for γ = 1 our al-
gorithm considers minimising the cost, but not improving the
algebraic connectivity. Moreover, we observe the occurrence
of possible phase transition when γ = 1 for the physical-level
graphs. For example, algebraic connectivity improvement of
the AT&T physical topology starts with a moderate increase,
and after about 50th link addition, the improvement (i.e., the
slope of the curve) gets steeper. Moreover, the algebraic con-
nectivity improvement of CORONET topology has two phase
changes at 35th and 79th links. The reasons for the occurrence
of this phenomenon will be the subject of future work.

The cost incurred when adding 100 links iteratively to the
physical level topologies are shown in Figures 2b, 2e, 2h, 2k,
and 2n. The cost in physical topology is the length of links to
be laid between nodes, thus, short links are favorable in physical
level topology optimisation for γ = 1. The relationship between
connectivity and cost for physical level topologies are shown in
Figure 2c, 2f, 2i, 2l, and 2o. For the Level 3 example shown in
Figure 2f, if the cost is the constraint (i.e. γ = 1), the designer
can improve the algebraic connectivity to 0.05 by adding 100
links. On the other hand, if there is available budget (i.e. γ =

0) the algebraic connectivity of the Level 3 topology can be
improved more than 0.3.

4.3.3. Optimisation comparison of backbone networks
Finally, we compare the optimisation output of the five back-

bone provider topologies using γ = 0 and γ = 1 as shown in
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(c) Connectivity and cost for AT&T
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(d) Level 3 connectivity improvement
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(e) Level 3 cost incurred with adding links
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(f) Connectivity and cost for Level 3
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(g) Sprint connectivity improvement
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(h) Sprint cost incurred with adding links
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(i) Connectivity and cost for Sprint
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(j) Internet2 connectivity improvement

co
st

 [m
]

number of links added

γ=0.00
γ=1E-9
γ=1E-7
γ=1E-5
γ=1.00

0.0E+0

1.0E+7

2.0E+7

3.0E+7

4.0E+7

5.0E+7

6.0E+7

7.0E+7

8.0E+7

0 20 40 60 80 100

(k) Internet2 cost incurred with adding links
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(l) Connectivity and cost for Internet2
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(m) CORONET connectivity improvement
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(n) CORONET cost incurred with adding links
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Figure 2: Analysis of physical topologies
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Figure 3: Algebraic connectivity and cost effect

Figure 3a and Figure 3b, respectively. Sprint and AT&T physi-
cal level topologies have similar results using γ = 0 with about
the same algebraic connectivity as when we add 100 links as
shown in Figure 3a. This is because both Sprint and AT&T
have a relatively large number of nodes compared to the other
providers. Hence, they need more links than a smaller graph
to achieve the same algebraic connectivity. On the other hand,
the Level 3, Internet2, and CORONET physical level topologies
start from an even higher initial algebraic connectivity and sig-
nificantly improve to a higher algebraic connectivity with larger
cost than the others as shown in Figure 3a. These three physical
topologies have smaller number of nodes, therefore addition of
100 links significantly change the algebraic connectivity of the
graph. Similar conclusions can also be drawn when we com-
pare our optimisation algorithm output for γ = 1 as shown in
Figure 3b. The main difference is that when there is no budget
constraint (i.e. γ = 0), the algebraic connectivity and cost is
an order of magnitude higher. As a result, we can see that with
the same number of link added, smaller graphs gain higher al-
gebraic connectivity improvement.

5. Robustness Evaluation

In this section, we present the set of attacks used to evalu-
ate the robustness of the resulting optimised and non-optimised
topologies. Moreover, we study the resilience of optimised
and non-optimised topologies in terms of flow robustness graph
metric.

5.1. Flow robustness

Flow robustness [29, 38] is a graph metric that measures the
ratio of possible number of pair-connections, to the maximum
number of pair-connections, n(n−1). If the graph is partitioned,
the possible number of pair-connections is the sum of n(n − 1)
connections for each component. The range of flow robustness
value is [0,1], and the flow robustness is 1 if the graph is not
partitioned and 0 if the graph has no links.

5.2. Graph centrality attacks

We use a graph theoretic model to attack a given graph and
show how its flow robustness changes after each node removal.
In this paper, we use three centrality metrics: node between-
ness, node closeness, and node degree [39]. Thus, we have
three attack models, in which the node with the highest central-
ity is removed. The node betweenness attack targets the node
through which the highest number of shortest paths pass. The
node closeness attack targets the closest node to all the other
nodes in terms of hop count. The highest degree node attack
targets the node with the highest number of neighbours. The
list of removed nodes is determined adaptively for each attack
model. This means the node centrality values are calculated af-
ter each node is removed and the new highest is selected to be
the next node to be removed. This is done repeatedly until all
nodes are selected. The adaptive removal of nodes gives a more
correct selection for the highest centrality than the non-adaptive
removal, in which the highest targeted number of nodes are se-
lected based on a single evaluation [26, 40].

5.3. Robustness evaluation results

In this section, we show the results of applying the graph
centrality attacks to non- and optimised graphs by removing 50
nodes from each graph. From the optimised graphs, we select
the graphs generated using γ = {0, 10−7, 1} since they represent
lowest, middle, and highest γ values. The optimised graphs
when γ = 0 are expected to be the most resilient since new
links are selected purely to improve algebraic connectivity with
no cost consideration. The optimised graphs when γ = 10−7 are
expected to be the second most resilient graphs since new links
are selected to improve algebraic connectivity while favoring
least cost links with a threshold related to 10−7. The optimised
graphs when γ = 1 are expected to be the least resilient graphs
since new links are selected to purely decrease the total cost.

The results of applying the attacks are depicted in Figure 4.
The node betweenness attack is consistently the most destruc-
tive since flow robustness decreases faster than the other two
centrality attacks as shown in Figures 4a, 4d, 4g, 4j, and 4m.
The second most destructive centrality attack among the three
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(a) AT&T betweenness-based attack
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(b) AT&T closeness-based attack
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(c) AT&T degree-based attack

flo
w

 r
ob

us
tn

es
s

number of nodes removed

a(G)-optimised:γ=0
a(G)-optimised:γ=1E-7

a(G)-optimised:γ=1
non-optimised

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50

(d) Level 3 betweenness-based attack
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(e) Level 3 closeness-based attack
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(f) Level 3 degree-based attack
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(g) Sprint betweenness-based attack
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(h) Sprint closeness-based attack
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(i) Sprint degree-based attack
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(j) Internet2 betweenness-based attack
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(k) Internet2 closeness-based attack
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(l) Internet2 degree-based attack
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(m) CORONET betweenness-based attack
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(n) CORONET closeness-based attack
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Figure 4: Flow robustness analysis of optimised and non-optimised topologies
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Table 3: Sum of flow robustness

Provider
Optimisation Betweenness Closeness Degree

Method attack attack attack

AT&T

non-optimised 11.70 15.15 25.66
a(G)-optimised: γ = 0 21.90 27.32 41.34
a(G)-optimised: γ = 1−7 21.14 30.31 38.89
a(G)-optimised: γ = 1 13.01 15.60 35.55

Level 3

non-optimised 5.68 7.15 7.30
a(G)-optimised: γ = 0 13.81 16.58 23.32
a(G)-optimised: γ = 1−7 10.96 12.22 21.33
a(G)-optimised: γ = 1 7.96 10.61 21.05

Sprint

non-optimised 8.46 11.10 14.31
a(G)-optimised: γ = 0 14.50 20.64 29.39
a(G)-optimised: γ = 1−7 13.87 16.38 31.68
a(G)-optimised: γ = 1 10.41 15.10 26.75

Internet2

non-optimised 4.09 5.00 4.71
a(G)-optimised: γ = 0 8.98 10.20 15.47
a(G)-optimised: γ = 1−7 8.74 9.23 15.94
a(G)-optimised: γ = 1 8.12 8.37 13.84

CORONET

non-optimised 7.43 7.84 9.87
a(G)-optimised: γ = 0 10.82 17.23 18.60
a(G)-optimised: γ = 1−7 10.39 14.38 18.61
a(G)-optimised: γ = 1 8.70 10.62 19.60

is the closeness attack since it shows higher impact on the flow
robustness. The least destructive attack is the degree attack as
it has the lowest impact on flow robustness. Table 3 shows the
sum of flow robustness values, which represent the area under
the flow robustness curve after the 50 nodes are removed. The
a(G)-optimised graphs are more resilient than non-optimised
graphs because they have 100 additional links.

For AT&T non- and optimised graphs, the results of applying
three centrality attacks are shown in Figures 4a, 4b, and 4c. For
the betweenness attack on AT&T non- and optimised graphs,
we observe that the a(G)-optimised graph when γ = 0 has the
highest sum of flow robustness of 21.90 as shown in Table 3.
Next, the a(G)-optimised graph when γ = 10−7 graph comes
second in terms of flow robustness with insignificant difference
of 21.14. Optimised graphs when γ = 1 and non-optimised
graphs have the lowest flow robustness values of 13.01 and
11.70 respectively. For the closeness attack, the a(G)-optimised
graph when γ = 10−7 graph has the highest flow robustness
value of 30.31 and the second highest is when γ = 0 with a flow
robustness sum of 27.32. Similar to betweenness attack results,
optimised graphs when γ = 1 and non-optimised graphs have
the lowest flow robustness values of 15.60 and 15.15 respec-
tively. For the degree attack, the a(G)-optimised graph when
γ = 0 graph has the highest flow robustness value of 41.34
and the second highest is when γ = 10−7 with a flow robust-

ness sum of 38.89. Similar to betweenness attack results, op-
timised graphs when γ = 1 and non-optimised graphs have
the lowest flow robustness values of 15.60 and 15.15 respec-
tively. Given the previous flow robustness for all the attacks on
AT&T non- and optimised graphs, we see that a(G)-optimised
graph when γ = 0 is mostly more resilient than the other γ val-
ues. However, in some cases, the γ = 10−7 yields very similar
flow robustness results to the graphs optimised using γ = 0. In
these cases, the costs associated adding links should be consid-
ered and based on the user optimisation objective, the feasible
graphs can be selected. For example, for the betweenness attack
on AT&T, the flow robustness sums difference between γ = 0
and γ = 10−7 is 21.90 − 21.14 = 0.76, which is insignificant.
On the other hand, the cost difference between the two is about
5.3× 107 − 4.0× 107 = 1.3× 107 m, which is significantly high
cost. At this point, it depends on the user to decide that if this
additional flow robustness is worth 1.3 × 107 m.

Using the same method, we study the flow robustness values
for the other providers non- and optimised graphs for each cen-
trality attack presented in Table 3. From these results, we can
see very clearly the same pattern in AT&T non- and optimised
graphs. The graphs optimised using γ = 0 are the most resilient
to any centrality attacks for the examined physical graphs. This
is not always the case, we have four cases where γ = 10−7 yields
flow robustness sums than γ = 0. The first case happens in the
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AT&T graphs with closeness attack and the other three cases
happen for the degree attack on the three providers: Sprint, In-
ternet2, and CORONET. By looking at the corresponding alge-
braic connectivity values for each case, we see that the algebraic
connectivity values are higher for γ = 0 even though γ = 10−7

have higher flow robustness sums for these cases. However,
for the other 11 cases the flow robustness sums are higher for
graphs with higher algebraic connectivity values.

6. Conclusions and Future Work

Network design and optimisation is a major area of research.
In this paper, we present a new heuristic algorithm that opti-
mises the connectivity of a given graph with node locations. We
use algebraic connectivity as a measure to improve the connec-
tivity of the graph. This algorithm minimises the cost of adding
new links by selecting shorter links with high algebraic connec-
tivity. We introduce a tuning parameter γ to control the effect
of the cost function while selecting new links. Furthermore,
the candidate links that are being added to improve the connec-
tivity of the graph can be constrained by a length limit in our
algorithm. We apply this algorithm to physical-level topologies
of the five backbone providers. The results show trade-offs be-
tween improving algebraic connectivity and minimising cost,
from which a cost-efficient set of link addition can be chosen
based on the value of γ. Moreover, we apply centrality attacks
on the non- and optimised graphs and study their resilience in
terms of flow robustness. We show that graphs with higher alge-
braic connectivities have mostly higher flow robustness values,
which means that they are more resilient.

For our future work, we would like to run our heuristic al-
gorithm using graph properties such as clustering coefficient,
betweenness, and graph diversity [29]. For example, we can
add clustering coefficient to replace the algebraic connectivity
or we can add both with a parameter to weight their effect in
ranking the links that need to be added to improve connectivity
of the graph. We will also modify our algorithm to achieve a
specified graph metric value with a constrained budget. Finally,
we will investigate the occurrence of a phase transition phe-
nomenon in physical-level topologies and compare backbone
provider graphs with synthetic topologies.
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