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Abstract—Network design and optimisation has been one of the
major focuses of the research community over the past decades.
Connectivity of topologies can be improved by simply adding
links; however, this incurs cost for addition of links for increased
resilience. Therefore, topological design and optimisation requires
developing algorithms so that a designer can select optimum
parameters to achieve resilience in the least costly manner. In
this paper, we develop a heuristic algorithm that optimises a
topology based on algebraic connectivity metric that is defined
as the second smallest eigenvalue of the Laplacian matrix.
Furthermore, the connectivity of a topology is improved based on
the available budget, for which we capture network cost in terms
of euclidian distance between two connected nodes. We apply our
algorithm on three realistic sets of backbone service provider
graphs and compare the utility of our algorithm. The heuristic
algorithm we introduce in this paper optimises topologies and is
computationally less costly than an exhaustive optimisation.

Keywords-Network design, optimisation, heuristic algorithm;
Network cost model; Network resilience, connectivity, robustness,
dependability, reliability; Algebraic connectivity; Backbone net-
work

I. INTRODUCTION AND MOTIVATION

Networks in general, and communication networks in par-

ticular, are prone to a variety of challenges and attacks that

can have costly consequences. However, network connectivity

can be improved with careful planning and optimisation, and

the impact of such challenges can be reduced. The design and

optimisation of cost-efficient networks that are resilient against

challenges and attacks has been studied by many researchers

over the past few decades, but the resilient network design

problem is NP-hard.
In this paper, we approach resilient network design from

a graph theoretic perspective. We develop a heuristic algo-
rithm that improves the connectivity of a graph in terms of

the algebraic connectivity metric by adding links. Algebraic

connectivity a(G) is defined as the second smallest eigenvalue

of the Laplacian matrix [1] and it is widely used for topological

optimisations [2]–[4]. A secondary objective of our algorithm

is to select the links that improve the algebraic connectivity

of the graph in the least costly fashion in which we capture

the cost of network as the total link length. Furthermore, we

parameterise our optimisation algorithm such that connectivity

and cost are weighted depending on a cost-effect parameter

named γ.

The heuristic to increase algebraic connectivity in a graph

is based on adding links to the nodes that have least incident

links (i.e. minimal degree nodes) [2], [4]. Our parameterised

heuristic algorithm identifies and selects the links that in-

creases the algebraic connectivity of a graph depending on

the available budget. Moreover, the search of the optimal links

is computationally less expensive in our algorithm compared

to an exhaustive search. We use three commercial service

provider networks (AT&T, Level 3, and Sprint) with their

corresponding physical- and logical-level graphs to analyse our

algorithm. Our algorithm provides the cost-efficient new links

to improve a network’s resilience measured by the algebraic

connectivity metric.

The rest of the paper is organised as follows: We present

brief background on network design and optimisation in

Section II. The assumptions, objective functions, and our

heuristic algorithm is presented in Section III. The dataset for

the communication networks as well as evaluation of these

topologies using our algorithm is presented in Section IV.

Finally, we summarise our findings as well as propose future

work in Section V.

II. BACKGROUND AND RELATED WORK

Network design is a NP-hard problem [5], [6] that has been

studied in the past decades by many network researchers [7]–

[16]. The design process includes constructing the network

from the ground up including placement of nodes [10], [11]

and providing connectivity among nodes to enable services.

The optimisation process includes improvement of the network

for one or multiple objectives. Network optimisation can be

accomplished by means of rewiring while keeping the number

of edges constant [4] or by means of adding new links to

improve the connectivity of graphs [2]. Moreover, the design

process is different for backbone and access networks, since

the topological structure of these networks fundamentally

differ [10]–[12].
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Network design and optimisation objectives are cost, ca-

pacity, reliability, and performance [9]–[11]. Network cost is

incurred by the number of nodes required, capacity of nodes

required, and number of links. Previously, we provided a

network cost model as:

Ci,j = f + v × di,j (1)

where f is the fixed cost associated with the link (including

termination), v is the variable cost per unit distance for the

link, and di,j is the length of the link [17], [18]. Moreover, in

a modest attempt to capture the total cost of fibre topologies, if

we assume that the fibre length dominates wide-area network

cost and ignore the fixed cost associated with each link, the

network cost can be written as:

C =
∑

i

li (2)

where li is the length of the i-th link [19], [20].

Topological connectivity is another objective that can be

measured by means of many graph metrics such as average

degree, betweenness, closeness, and graph diversity [4], [7],

[8], [21]–[23]. In this paper, we measure the connectivity of

a graph in terms of algebraic connectivity metric. Algebraic

connectivity a(G) is defined as the second smallest eigenvalue

of the Laplacian matrix [1]. The Laplacian matrix of G
is: L(G) = D(G) − A(G) where D(G) is the diagonal

matrix of node degrees, dii = deg(vi), and A(G) is the

symmetric adjacency matrix with no self-loops. The algebraic

connectivity of a complete graph (i.e. full mesh) is n where n
is the number of nodes, and it is 0 for a disconnected graph

with more than one component.

Topology design using algebraic connectivity has been

studied by several researchers [2]–[4]. It has been shown

that algebraic connectivity is more informative and accurate

than average node degree when characterising network re-

silience [3]. Moreover, we have shown algebraic connectiv-

ity [20], [24] and diversity [23] are predictive of flow robust-

ness of graphs. Three synthetically generated topologies (i.e.

Watts-Strogatz, Gilbert, Barabási-Albert) have been optimised

using edge rewiring in which the objective is to increase

the algebraic connectivity [4]. It was shown that algebraic

connectivity increases the most if edges are rewired between

weakly connected nodes. Another study optimised syntheti-

cally generated Erdős-Rényi and Barabási-Albert graphs in

terms of adding links to the existing topology [2]. It was

concluded that adding links between a low degree node and

a random node is computationally less expensive than an

exhaustive search. In this paper, we present an algorithm

for topological optimisation in terms of adding links, which

maximises algebraic connectivity and aims to choose links so

that the cost is minimal among given choices.

III. TOPOLOGY OPTIMISATION ALGORITHM

In this section, we describe our algorithm that optimises

connectivity and cost of a topology. Our heuristic algorithm is

implemented using Python. Furthermore, we assume that node

locations are given for a graph to apply optimisation algorithm,

as would be the case for a deployed service provider.

A. Objectives

The objective of this algorithm is to identify the best links

to be added to improve the connectivity of the graph. In

this paper, we use algebraic connectivity as a measure of

connectivity, but we note that any graph connectivity property,

such as average node degree, clustering coefficient, or diversity

can be used with or instead. For example, the clustering

coefficient can be used to replace the algebraic connectivity or

both the clustering coefficient and the algebraic connectivity

can be used with a tuning parameter to control their effect in

selecting the links.

B. Algorithm

The topology optimisation algorithm has three inputs: an

input graph Gi, a number of required links Lr, and a cost-

effect parameter γ. The input graph Gi has a number of nodes

ni with a number of links li. The number of required links

Lr is the number of links that should be added to the graph.

The cost-effect parameter γ is a tuning parameter between

cost and algebraic connectivity. When γ = 0, the cost term of

the rank function is neglected since it is zeroed. As a result,

the algorithm selects the link that maximises the algebraic

connectivity. On the other hand, when γ = 1, the algebraic

connectivity is neglected and the least link cost is selected in

each iteration. The algorithm adds links to the graph with Lr

iterations. To keep track of the selected links in each iteration,

the algorithm adds these links to a list. In each iteration, the

algorithm starts by adding the selected links from previous

iterations to the graph. Then, the rank value is computed for

each candidate link and the link with the maximum rank value

is selected to be added. A ranking function is used to select the

best candidate in each iteration. The rank value r is computed

using:

r = (1− γ)a(G) + γ(1− C) (3)

where C represents the length of the ranked link. This

algorithm uses four functions: cost function cost(L), alge-

braic connectivity function algConn(G), maxLink(D), and

candidate(G). The cost function cost(L) returns the cost of

adding a link L. In this paper, the cost is defined as the

euclidean distance between the two ends of the link. The alge-

braic connectivity function algConn(G) takes a graph G and

returns the second smallest eigenvalue of its Laplacian matrix.

The maxLink(D) function returns the maximum ranked link.

The candidate(G) takes a graph G as input and returns a set

of candidate links to be added to the graph. The candidate links

are a set of links that are examined every time a link is added

to a graph. One option to use for the candidate links is the set

of complement links of a graph is denoted as Ḡ, which can

be determined as the set of links in full mesh subtracted from

the current links in a graph G. The number of complement

links (cf. shown in column 4 Table II) is computed as:



ni(ni − 1)

2
− li (4)

However, this number is computationally expensive as the

number of nodes ni gets larger, which results in a complexity

of O(Lrn
2
i ). In an attempt to decrease the number of candidate

links, we only examine the links connected to the lowest

degree node in the graph. As a result, the algorithm complexity

decreases to O(Lrni).
Both the algConn(G) and cost(L) functions are normalised

to have a maximum value of one. Since the theoretical

maximum value for the algebraic connectivity of a given graph

is the number of its nodes, it is normalised by dividing it by

the number of nodes. To normalise the cost function, it is

divided by the maximum possible distance between any nodes

in the graph. The pseudocode of our algorithm is shown in

Algorithm 1.

Functions:

cost(L):= cost function

algConn(G):= algebraic connectivity function

candidate(G):= candidate links function

maxLink(D):= max value of a dictionary

Input:
Gi:= input graph

Lr:= number of required links

γ:= cost effect parameter

Output:
an ordered list of the added links

begin
selectedLinks = [] ; empty ordered list

rank = {} ; empty dictionary

while Lr > 0 do
G = Gi

G.addlinks(AddedLinks)

for link in candidate(G) do
rank[link]=(1− γ)algConn(G) +
γ(1−cost(link))

end
selectedLinks.add(maxLink(rank))

Lr = Lr − 1
end
return selectedLinks

end
Algorithm 1: Topology Optimisation Algorithm

C. Options

In this paper, we target two graph types: physical and logical

level graphs [24]. For the logical level graph, the algorithm

is applied with no additional conditions. However, for the

physical level graph, we have added a filter that removes very

long links from the candidate links set. This is because it

is not practical to add very long links between cities such

as a physical fibre link between Los Angeles and New York

City. Therefore this raises the question of what the maximum

length should be chosen. In our implementation, we have it as

a variable that can be set by the user. We choose the maximum

length link in the input graph to be the threshold for long links

in the dataset, which gives a good indicator for the maximum

link length a provider can afford.

IV. ANALYSIS

In this section, first we describe our algorithm on a small

size graph. Next, we present the topological dataset we use

to apply our algorithm, followed by cost and connectivity

analysis of commercial backbone providers.

A. Algorithm Evaluation

In this section, we explain how our heuristic algorithm

optimises a topology on a small-size graph. Figure 1 shows

a sample graph with 8 nodes and 9 links as solid lines. The

initial algebraic connectivity of this sample graph is 0.3432

and the initial cost (i.e., total link length in km) of the graph is

8,203. Our heuristic algorithm adds links to the least connected

nodes, which in the example are nodes 0 and 7. The six

candidate links for node 0 are shown as square dots, whereas

five candidate links for node 7 are shown as long dashes and

dots. Throughout this example, we describe how our algorithm

operates if we are going to add one link Lr = 1 to the sample

graph shown in Figure 1.
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Fig. 1. Sample graph

There can be a maximum of 28 links in this 8-node graph

(maximum links can be calculated by
n(n−1)

2 ). Since there

are 9 links in the graph, if we were to do an exhaustive

search, there would be 28 − 9 = 19 candidate links (i.e. the

complement links). In the sample graph shown in Figure 1,

there are six candidate links that can be added to node 0 and

there are five links for node 7 using our heuristic algorithm.

Therefore, the candidate link set is reduced to 11, because

our algorithm only considers candidate links from the least

connected nodes. The algebraic connectivity and cost value of

adding each link individually for γ = 0 and γ = 1 is shown

in Table I.

When γ = 0, our algorithm ignores the cost associated with

adding a link and selects the additional link that increases the

algebraic connectivity of the graph the most. For γ = 0, the

algorithm adds the link between node 1 and 7 in the example

graph since it provides the highest algebraic connectivity

among the 11 candidate links. When γ = 1, the cost is the

dominant factor determining the addition of a link. Therefore,

our heuristic algorithm selects the link between node 0 and



TABLE I
a(G) AND COST VALUES FOR THE SAMPLE GRAPH

Link γ = 0 γ = 1
a(G) Δa(G) cost Δ cost

0 ↔ 2 0.3485 0.0053 9,275 1,072
0 ↔ 3 0.3588 0.0156 9,405 1,202
0 ↔ 4 0.3659 0.0227 9,848 1,645
0 ↔ 5 0.4079 0.0647 10,624 2,421
0 ↔ 6 0.5908 0.2476 11,228 3,025
0 ↔ 7 0.7713 0.4281 11,843 3,640
7 ↔ 1 0.8345 0.4913 11,302 3,099
7 ↔ 2 0.7071 0.3639 12,061 3,858
7 ↔ 3 0.6651 0.3219 10,915 2,712
7 ↔ 4 0.5918 0.2486 10,207 2,004
7 ↔ 5 0.5075 0.1643 9,463 1,260

2, since it incurs the lowest cost among the candidate set

of links. The selection of links via our heuristic algorithm

is highlighted bold in Table I. Moreover, we performed an

exhaustive search on the sample graph shown in Figure 1,

and find that the link between node 1 and 7 has the highest

algebraic connectivity among 19 possible links. The result of

the exhaustive search for the least incurred cost link indicated

that the link between node 3 and 4 is the best option, however,

as mentioned above, our algorithm adds links to the minimal

degree nodes. Therefore our algorithm selects the link between

node 0 and 2 when γ = 1. We note that for physical-level

networks γ → 1 makes sense due to the significant cost of

deploying fibre. On the other hand, γ → 0 is more appropriate

since the cost of virtual link deployment is negligible, whereas

delay is a dominant factor in logical overlays. To conclude,

our heuristic algorithm optimises graphs cost-efficiently while

selecting the links that improves the algebraic connectivity the

most based on the γ parameter value.

B. Topological Dataset

We study physical- and logical-level topologies of three tier-

1 service provider networks. We use Rocketfuel-inferred [25]

logical-level topologies of AT&T, Level 3, and Sprint.

Physical-level topologies of the three service providers were

constructed using a third party map [26]. The details of

generating physical-level topologies are presented in our other

work [19], [24].

TABLE II
PHYSICAL AND LOGICAL TOPOLOGICAL DATASET

Network Nodes Links Complement links
AT&T phy. 383 488 72,665

Level 3 phy. 99 132 4,719
Sprint phy. 264 313 34,403
AT&T log. 107 140 5,531

Level 3 log. 38 376 3,276
Sprint log. 28 76 302

In general, logical-level topologies are richly connected

compared to their physical-level graphs and they are smaller in

size and order. Comparison of characteristics of these different

topologies is beyond the scope of this paper and presented

in our earlier work [24]. The number of nodes, links, and

complement links of these graphs are shown in Table II.

C. Backbone Provider Network Analysis

Our algorithm is applied to three ISPs by adding 100 links.

We show the graph algebraic connectivity and the cost incurred

in terms of meters after adding each link. Moreover, we show

the relation of cost and algebraic connectivity and the slope

in these figures shows how the cost increases as the graph

connectivity improves.

1) Selection of γ values: γ parameter that ranges 0 to 1

controls the outcome of the algorithm as described in Sec-

tion III-B. In Equation 3, we have two terms: (1−γ)a(G) and

γ(1− C). The a(G) is the normalised algebraic connectivity

value, which is low for sparse graphs and one for a full mesh

graph. The value of C denotes the normalised cost of adding

a link and it is low when the maximum possible link length

in the input graph is larger than the average link length in

the candidate set. Therefore, choosing the value of γ depends

on the initial properties of the input graph. For the physical

graphs, we choose for γ = {0, 10−9, 10−7, 10−5, 1} because

the cost term is larger than the γ term about six order of mag-

nitude for physical level graphs. For the logical level graphs,

we choose different values of γ = {0, 0.0001, 0.001, 0.01, 1}
because the cost term is larger than the algebraic connectivity

term about two order of magnitude.

2) Physical level topology analysis: As explained in Sec-

tion III, an option is added in our heuristic algorithm to discard

the links that are longer than the actual maximum link of the

graph. Furthermore, physical level graphs have more nodes

than the logical level graphs, which increases the number of

shorter links for the candidate set. For these reasons, optimi-

sation on physical level graphs results in selection of shorter

links. The connectivity and cost optimisation of physical level

provider graphs are shown in Figure 2. Algebraic connectivity

improvement of the three physical level topologies after adding

100 links iteratively is depicted in Figures 2a, 2d, and 2g. The

algebraic connectivity is higher for γ = 0 than the other values

of γ, and for γ = 1 our algorithm considers minimising the

cost, but not improving the algebraic connectivity. Moreover,

we observe the occurrence of possible phase transition when

γ = 1 for the physical-level graphs. For example, algebraic

connectivity improvement of the AT&T physical topology

starts with a moderate increase, and after about 50th link

addition, the improvement (i.e., the slope of the curve) gets

steeper. The reasons for the occurrence of this phenomenon

will be the subject of future work.

The cost incurred when adding 100 links iteratively to the

physical level topologies are shown in Figures 2b, 2e, and 2h.

The cost in physical topology is the length of links to be laid

between nodes, thus, short links are favorable in physical level

topology optimisation for γ = 1. The relationship between

connectivity and cost for physical level topologies are shown

in Figure 2c, 2f, and 2i. For the Level 3 example shown in

Figure 2f, if the cost is the constraint (i.e. γ = 1), the designer
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Fig. 2. Analysis of physical topologies

can improve the algebraic connectivity to 0.05 by adding 100

links. On the other hand, if there is available budget (i.e. γ =
0) the algebraic connectivity of the Level 3 topology can be

improved more than 0.3.

3) Logical level topology analysis: The optimisation of

logical level topologies are shown in Figure 3. The algorithm

has more candidate link options since it is not constrained by

the maximum length of links in the input graph for logical

level topologies. Therefore, the improvement of algebraic

connectivity as links are added is higher than for physical

level topologies. The algebraic connectivity improvement of

up to two orders of magnitude, can be seen clearly for the

logical level topologies in Figures 3a, 3d, and 3g. The cost

incurred after adding 100 links for the logical level topologies

is shown in Figures 3b, 3e, and 3h. Similar to the physical level

topologies, as the value of γ increases, the cost of building

more connected graphs decreases. The trade-offs between

cost and connectivity for logical level topologies is shown in

Figures 3c, 3f, and 3i. For example, to improve the algebraic

connectivity of the Level 3 logical topology to a value of

10.0 in Figure 3f, we should select the links returned from

the algorithm when γ is 0.01 since it incurs the lowest cost.

However, to improve the algebraic connectivity of AT&T to

0.7 as shown in Figure 3c, we have no choice but to select

the links when γ = 0 since the other γ values do not improve

the algebraic connectivity to 0.7.

4) Optimisation comparison of backbone networks: Finally,

we compare the optimisation output of the three backbone

provider topologies using γ = 0 and γ = 1 as shown in

Figure 4 and Figure 5, respectively. Even though Sprint and

AT&T physical level topologies have a different number of

nodes and links, the optimisation for γ = 0 results in about

the same algebraic connectivity as when we add 100 links as

shown in Figure 4a. On the other hand, the Level 3 physical

level topology starts from an even higher initial algebraic

connectivity and significantly improves to a higher algebraic
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(g) Sprint connectivity improvement
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(h) Sprint cost incurred with adding links
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Fig. 3. Analysis of logical topologies

connectivity with larger cost than the others as shown in

Figure 4a. Similar conclusions can also be drawn when we

compare our optimisation algorithm output for γ = 1 as shown

in Figure 5a. The main difference is that when there is no

budget constraint (i.e. γ = 0), the algebraic connectivity and

cost is an order of magnitude higher. Moreover, the slope in

these figures shows how the cost increases as we improve the

connectivity of the graph. Small slope value of a curve implies

high gain in the graph connectivity for a given budget, which

is favorable. On the other hand, large slope value means that

the cost is high while the improvement is low.

The tradeoffs between cost and algebraic connectivity for

the logical topology graphs when γ = 0 is shown in Figure 4b.

For AT&T, we see that algebraic connectivity does not improve

for adding the first links, with total cost around 1.5 × 108.

On the other hand, for Level 3 and Sprint, the algebraic

connectivity increases significantly as links are added as shown

in Figure 4b. When γ = 1, which means the least cost links

are selected, the algebraic connectivity does not improve much

as links are added to the graph compared to γ = 0 as shown

in Figure 4 and Figure 5. Another interesting result is that

the Sprint and Level 3 topologies incur about the same cost

after adding 100 links, however the algebraic improvement

for Level 3 is twice or more for γ = 0 and γ = 1 values.

Finally, physical level topologies have lower gain in terms of

the algebraic connectivity since long links are removed from

the candidate set and these links can be the highest contributors

to the algebraic connectivity.

V. CONCLUSIONS AND FUTURE WORK

Network design and optimisation is a major area of research.

In this paper, we present a new heuristic algorithm that opti-

mises the connectivity of a given graph with node locations.

We use algebraic connectivity as a measure to improve the

connectivity of the graph. This algorithm minimises the cost

of adding new links by selecting shorter links with high
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Fig. 4. Algebraic connectivity and cost effect for γ = 0
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Fig. 5. Algebraic connectivity and cost effect for γ = 1

algebraic connectivity. We introduce a tuning parameter γ to

control the effect of the cost function while selecting new

links. Furthermore, the candidate links that are being added

to improve the connectivity of the graph can be constrained

by a length limit in our algorithm. We apply this algorithm

to physical- and logical-level topologies of three backbone

providers. The results show trade-offs between improving

algebraic connectivity and minimising cost, from which a cost-

efficient set of link addition can be chosen based on the value

of γ. We show that the algebraic connectivity improvement for

the physical level graphs are less than the logical level graphs

because of the differences in their structural characteristics, as

well as the link length limitation imposed on the candidate

links that are added to the physical level topologies.

For our future work, we would like to run our heuristic

algorithm using graph properties such as clustering coefficient,

betweenness, and graph diversity [23]. For example, we can

add clustering coefficient to replace the algebraic connectivity

or we can add both with a parameter to weight their effect in

ranking the links that need to be added to improve connectivity

of the graph. We will also modify our algorithm to achieve a

specified graph metric value with a constrained budget. Finally,

we will investigate the occurrence of a phase transition phe-

nomenon in physical-level topologies and compare backbone

provider graphs with synthetic topologies.
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