
0

OPB Interrupt Controller
(v1.00c)

DS473 December 1, 2005 0 0 Product Specification

Introduction
An Interrupt Controller is composed of a bus-centric
wrapper containing the IntC core and a bus interface.
The IntC core is a simple, parameterized interrupt
controller that, along with the appropriate bus
interface, attaches to the OPB (On-chip Peripheral Bus)
Bus. It can be used in embedded PowerPC™ systems
(Virtex-II Pro devices), and in MicroBlaze™ soft
processor systems.

In this document, IntC and Simple IntC are used
interchangeably to refer to functionality or interface
signals common to all variations of the Simple Interrupt
Controller.

Features
• Priority between interrupt requests is determined

by vector position. The least significant bit (LSB, in
this case bit 0) has the highest priority.

• Modular design provides a core interrupt controller
functionality instantiated within a bus interface
design

• OPB v2.0 bus interface with byte-enable support
(IBM SA-14-2528-01 64-bit On-chip Peripheral Bus
Architecture Specifications, Version 2.0)

• Supports data bus widths of 8-bits, 16-bits, or
32-bits for OPB interface

• Number of interrupt inputs configurable up to the
width of data bus

LogiCORE™ Facts

Core Specifics

Supported Device
Family

QPro™-R Virtex™-II,
QPro Virtex-II, Spartan™-II,

Spartan-IIE, Spartan-3,
Spartan-3E, Virtex, Virtex-II,

Virtex-II Pro, Virtex-4, Virtex-E

Version of Core opb_intc v1.00c

Resources Used

Min Max

I/O 55 116

LUTs 42 395

FFs 63 342

Block RAMs 0 0

Provided with Core

Documentation Product Specification

Design File Formats VHDL

Constraints File N/A

Verification N/A

Instantiation Template N/A

Reference Designs None

Design Tool Requirements

Xilinx Implementation
Tools

5.1i or later

Verification N/A

Simulation ModelSim SE/EE 5.6e or later

Synthesis XST

Support

Support provided by Xilinx, Inc.
DS473 December 1, 2005 www.xilinx.com 1
Product Specification

© 2005 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and
registered trademarks are the property of their respective owners. All specifications are subject to change without notice.
NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature, application,
or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require for your implemen-
tation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that this imple-
mentation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

OPB Interrupt Controller (v1.00c)

2

Features (contd)

• Easily cascaded to provide additional interrupt inputs

• Interrupt Enable Register for selectively disabling individual interrupt inputs

• Master Enable Register for disabling interrupt request output

• Each input is configurable for edge or level sensitivity; edge sensitivity can be configured for rising
or falling; level sensitivity can be active-high or -low

• Automatic edge synchronization when inputs are configured for edge sensitivity

• Output interrupt request pin is configurable for edge or level generation — edge generation
configurable for rising or falling; level generation configurable for active-high or -low

Functional Description

Interrupt Controller Overview

Interrupt controllers are used to expand the number of interrupt inputs a computer system has
available to the CPU and, optionally, provide a priority encoding scheme. Modern CPUs provide one
or more interrupt request input pins that allow external devices to request service by the CPU.

There are two main interrupt request mechanisms used by CPUs. Auto vectoring interrupt schemes
provide an interrupt request signal to the processor and during the interrupt acknowledge cycle, the
interrupt controller provides all or some portion of the address of the interrupt service routine.

Hard vector interrupt schemes provide one or more fixed locations in memory, one for each interrupt
request input, or one location for all interrupt inputs. In either case, some interrupt controllers allow
you to program the polarity of the interrupt inputs and whether they are level or edge sensitive.

Some may allow the priority of an interrupt to be programmed as well. Some popular embedded
processors and their associated interrupt controllers and mechanisms are described in the following
paragraphs.

Intel 8051

As in many single chip solutions, the interrupt controller for the 8051 is embedded into the
functionality of the CPU and on-chip peripherals. The 8051 micro controller utilizes a hard vector
approach for handling interrupts.

There is a unique, hard vector address associated with external interrupt 0, timer 0, external interrupt
1, timer 1 and the serial port. Interrupts may be programmed for high or low priority. There is an
interrupt enable bit for each interrupt source as well as a bit for enabling or disabling all interrupts.

The two external interrupt inputs may be programmed to be either edge sensitive (falling edge) or level
sensitive (active low).

Zilog Z80

The Z80 supports both hard vector and auto vector modes for interrupts. The Non-Maskable Interrupt
(NMI) input utilizes a hard vector and cannot be disabled by software. This interrupt is an active low,
level sensitive interrupt.

The other interrupt input (INT), which is also an active low, level sensitive interrupt, supports three
different modes. Mode 0 provides compatibility with the 8080 microprocessor.
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
During an interrupt acknowledge cycle the interrupting device jams a restart instruction onto the data
bus, which causes program execution to continue at one of eight hard coded locations.

Mode 1 is a hard vector interrupt with a single hard vector, similar to the NMI but at a different
location.

Mode 2 is a fully auto vectored interrupt mode. In this mode the interrupt controller is actually
distributed between the processor and the Z80 family peripherals.

During an interrupt acknowledge cycle the interrupting device places the low eight bits of the interrupt
service routine address on the data bus.

The processor provides the upper eight bits from a dedicated register that is loaded by software. NMI
always has a higher priority than INT. Multiple devices can be attached to either interrupt input using
a wired-or configuration.

Additionally, in Mode 2, devices on the INT input can be daisy-chained to provide additional interrupt
priorities. The INT input can be masked by software.

Motorola 68332

The 68332 has seven active low, level sensitive interrupt request inputs (IRQ1 to IRQ7). These inputs
correspond to the seven interrupt request levels of the CPU32 core. Devices (internal or external)
request service by activating a particular interrupt level.

If that level is not masked then the processor acquires the appropriate interrupt vector number and
obtains the service routine address from a 256 location interrupt vector table, indexed by the interrupt
vector number.

The interrupt vector number is determined on a per device basis, and is either at a fixed location
relative to the interrupt request level or is supplied by the interrupting device as part of the interrupt
acknowledge cycle.

Interrupt request level seven is non-maskable and the other six levels can be masked by software.
Interrupt request level one has the lowest priority and interrupt request level seven has the highest
priority. All the peripherals on-chip can be programmed to request an interrupt on any of the seven
levels.

Interrupt request levels one through six behave as level sensitive interrupts in that as long as that level
is active interrupt requests will be generated. The level must be maintained by the interrupting device
until the interrupt has been acknowledged by the processor.

Interrupt request level seven behaves like an edge sensitive interrupt because only one interrupt
request is generated each time that level is entered and the level must be exited and re-entered to
generate another interrupt.

MIPS

MIPS CPUs have eight interrupt sources, six of which are for hardware interrupts and the remaining
two are for software interrupts. There is no priority, all interrupts are considered equal.

Each interrupt can be masked by the software and there is a global interrupt enable. MIPS only
supports a hard vector mechanism but the vector address can be programmed to be in a non-cacheable
or cacheable memory segment.
ember 1, 2005 www.xilinx.com 3
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

4

An external interrupt controller could provide additional interrupt inputs and a priority encoding
scheme but there is no mechanism for providing auto vectoring. As a result, the job of prioritizing
interrupts and branching to the proper interrupt service routine is done by the software.

ARM

The ARM architecture provides two external interrupt inputs: FIQ and IRQ. FIQ is higher priority than
IRQ but both can be masked by software. Each interrupt has a hard vector associated with it and its
own status register and subset of general purpose registers. An external interrupt controller could
provide additional interrupt inputs with priority but there is no auto vectoring capability.

IBM PowerPC 405GP Universal Interrupt Controller (UIC)

The UIC for the PowerPC 405GP provides 19 internal and 7 external interrupts. Eighteen of the internal
interrupts are active high, level sensitive. The other internal interrupt is edge sensitive and active on the
rising edge.

The seven external interrupts are programmable as to polarity and sensitivity. Each interrupt source
can be programmed to source the critical or non-critical input to the 405 core. All interrupts can be
masked and the current interrupt state can be read by the processor.

The UIC supports prioritized auto vectoring for the critical interrupts, either through a vector table or
the actual address of the service routine. The UIC does not support vector generation for the
non-critical interrupts, relying instead on the interrupt vector generation mechanism within the 405
core.

This mechanism is similar to a hard vector, except that the vector used is programmable by the
software.

Simple IntC

The interrupt controller described in this document is intended for use in a hard vector interrupt
system. It does not directly provide an auto vectoring capability. However, it does provide a vector
number that can be used in a software based vectoring scheme.

Basic terminology and pros and cons of edge and level sensitive inputs are described in the remainder
of this section. The functionality of the IntC is described in the sections that follow.

Edge Sensitive Interrupts

Figure 1 illustrates the three main types of edge generation schemes, using rising edges for the active
edge in this example. In all three schemes, the device generating the interrupt provides an active edge
and some time later the generator produces an inactive edge in preparation for generating a new
interrupt request.

In the first scheme, the inactive edge is depicted as occurring when the interrupt is acknowledged. This
is identical to generating a level sensitive interrupt.

The second scheme shows the inactive edge occurring immediately after the active edge.

The third scheme shows the inactive edge occurring immediately before the active edge. All three
schemes are possible and should be detected by the interrupt detection circuitry without missing an
interrupt or causing spurious interrupts.

A potential problem with edge sensitive interrupt schemes is their susceptibility to noise glitches. Also,
it may be more difficult to remember and propagate multiple interrupts when the interrupt service
routine does not handle all active interrupts.
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
In non-auto vectoring interrupt designs, it may be necessary for the software interrupt handler to
service the highest priority interrupt and then check the status for any additional interrupts that may
have arrived before returning from the interrupt handler.

Synchronization logic is usually necessary to avoid metastability problems with asynchronous inputs.

Figure 1: Schemes for Generating Edges

Figure Top x-ref 1

Scheme 1

Scheme 3

Scheme 2

Interrupt
Occurs

Interrupt
Acknowledge

Level Sensitive Interrupts

In principle, level sensitive interrupts are somewhat simpler to manage. They are simpler to propagate
when multiple sources are present and usually don’t require additional synchronization logic.

The major problem with level sensitive interrupts stems from their inherent susceptibility to spurious
interrupts, and to missed interrupts due to problems that arise when trying to avoid spurious
interrupts.

Interrupt Controller Organization

The Simple IntC is organized into the following three functional units:

• Interrupt detection and request generation

• Programmer registers

• Bus interface

Interrupt Detection

Interrupt detection can be configured for either level or edge detection for each interrupt input. If edge
detection is chosen, synchronization registers are also included. Interrupt request generation is also
configurable as either a pulse output for an edge sensitive request or as a level output that is cleared
when the interrupt is acknowledged.

Programmer Registers

The interrupt controller contains the following programmer accessible registers:

• Interrupt Status Register (ISR) is a read / write register that, when read, indicates which interrupt
inputs are active (pre enable bits). Writing to the ISR allows software to generate interrupts until the
HIE bit has been enabled.
ember 1, 2005 www.xilinx.com 5
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

6

• Interrupt Pending Register (IPR) is a read only register that provides an indication of interrupts that
are active and enabled (post enable bits). The IPR is an optional register in the simple IntC and can
be parameterized away to reduce FPGA resources required by an IntC.

• Interrupt Enable Register (IER) is a read / write register whose contents are used to enable selected
interrupts.

• Interrupt Acknowledge Register (IAR) is not an actual register. It is a write-only location used to
clear interrupt requests.

Note: The next two address locations are not registers, but provide helper functions that make
setting and clearing IER bits easier.

• Set Interrupt Enables (SIE) is a write only location that provides the ability to set selected bits
within the IER in one atomic operation, rather than requiring a read / modify / write sequence.

• Clear Interrupt Enables (CIE) is a write-only location that provides the ability to clear selected bits
within the IER in a single atomic operation. Both SIE and CIE are optional in the Simple IntC and
can be parameterized out of the design to reduce FPGA resource consumption by the IntC.

• Interrupt Vector Register (IVR) is a read-only register that contains the ordinal value of the highest
priority interrupt that is active and enabled. The IVR is optional and can be parameterized out of
the design to reduce IntC FPGA resources.

• Master Enable Register (MER) is a read / write, two-bit register used to enable or disable the IRQ
output and to enable hardware interrupts (when hardware interrupts are enabled, software
interrupts are disabled until the IntC is reset).

Bus Interface

The core interrupt controller functionality is designed with a simple bus interconnect interface. For a
particular bus interface, all that is required is a top level (bus centric) wrapper that instantiates the IntC
core and the desired bus interface module.

The On-chip Peripheral Bus (OPB) interface provides a slave interface on the OPB for transferring data
between the OPB IntC and the processor. The OPB IntC registers are memory mapped into the OPB
address space and data transfers occur using OPB byte enables.

The register addresses are fixed on four byte boundaries and the registers and the data transfers to and
from them are always as wide as the data bus.

The number of interrupt inputs is configurable up to the width of the data bus, which is also set by a
configuration parameter. In either bus interface, the base address for the registers is set by a
configuration parameter.

Because the inputs and the output are configurable, several Simple IntC instances can be cascaded to
provide any number of interrupt inputs, regardless of the data bus width. A block diagram of the IntC
is shown in Figure 2.
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Figure 2: Interrupt Controller Block Diagram

Figure Top x-ref 2

Reg_addr

Valid_rd

Valid_wr

Data_in

Data_out

Ack

Clk

Rst

Irq
Int_inputs

D
at

a

A
dd

re
ss

C
on

tr
ol

ISR

IPR

IER

IAR

SIE

CIE

IVR

MER

Level / Edge
Detection and

Synchronization

IRQ
Generation

Bus
Interface

Bus Wrapper

IntC Core

interrupt_controller_block_diagram

OPB Bus

Programming Model

Register Data Types and Organization

All IntC registers are accessed through the OPB bus interface. The base address for these registers is
provided by a configuration parameter. For an OPB IntC each register is accessed on a 4-byte boundary
offset from the base address, regardless of the width of the registers, providing conformance to the
OPB-IPIF register location convention.

Because OPB addresses are byte addresses, OPB IntC register offsets are located at integral multiples of
four from the base address. Table 1 illustrates the registers and their offsets from the base address for an
OPB IntC. Normally, an OPB IntC is configured to be a 32-bit, 16-bit, or an 8-bit OPB peripheral that
corresponds to the width of the processor data bus width. Figure 3 shows the address offsets and
alignment for the OPB IntC for these three bus widths.

The IntC registers are read as big-endian data. The bit and byte labeling for big-endian data types is
shown in Figure 4.
ember 1, 2005 www.xilinx.com 7
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

8

Figure 3: OPB-based Register Offsets and Alignment

Figure Top x-ref 3

MSB

MSB

MSB

LSB

LSB

LSB32-bit Implementation

16-bit Implementation

8-bit
Implementation

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4

OPB Address

BAR + 0

BAR + 28

BAR + 24

BAR + 20

BAR + 16

BAR + 12

BAR + 8

BAR + 4

ISR

IPR

IER

IAR

SIE

CIE

IVR

MER

ISR

IPR

IER

IAR

SIE

CIE

IVR

MER

ISR

IPR

IER

IAR

SIE

CIE

IVR

MER
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Figure 4: OPB Big-Endian Data Types

Figure Top x-ref 4

MS Byte

LS Byte

LS Byte

MS Bit

0 1 2 3

n n+2 n+3n+1Byte address

Byte label

Byte significance

Bit label

Bit significance

0 31

MS Byte

LS Bit

LS Byte

MS Bit

0 1

n n+1Byte address

Byte label

Byte significance

Bit label

Bit significance

0 15

Word

Halfword

Byte

MS Byte

LS BitMS Bit

0

nByte address

Byte label

Byte significance

Bit label

Bit significance

0 15

opb_big_endian_data_types

IntC Registers

The eight registers visible to the programmer are shown in Table 1 and described in this section. In the
diagrams and tables that follow, w refers to the width of the data bus (DB).

Note: If the number of interrupt inputs is less than the data bus width, the inputs will start with
INT0. INT0 maps to the LSB of the ISR, IPR, IER, IAR, SIE, and CIE, and additional inputs
correspond sequentially to successive bits to the left.

Unless stated otherwise any register bits that are not mapped to inputs return zero when read and do
nothing when written.

Table 1: IntC Registers and Base Address Offsets

Register Name Abbreviation OPB Offset

Interrupt Status Register ISR 0 (00h)

Interrupt Pending Register IPR 4 (04h)

Interrupt Enable Register IER 8 (08h)

Interrupt Acknowledge Register IAR 12 (0Ch)

Set Interrupt Enable Bits SIE 16 (10h)
ember 1, 2005 www.xilinx.com 9
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

10
Interrupt Status Register (ISR)

When read, the contents of this register indicate the presence or absence of an active interrupt signal
regardless of the state of the interrupt enable bits. Each bit in this register that is set to a 1 indicates an
active interrupt signal on the corresponding interrupt input. Bits that are 0 are not active.

The ISR register is writable by software until the Hardware Interrupt Enable (HIE) bit in the MER has
been set. Once that bit has been set, software can no longer write to the ISR. Given these restrictions,
when this register is written to, any data bits that are set to 1 will activate the corresponding interrupt,
just as if a hardware input became active. Data bits that are zero have no effect.

This allows software to generate interrupts for test purposes until the HIE bit has been set. Once HIE
has been set (enabling the hardware interrupt inputs), then writing to this register does nothing. If there
are fewer interrupt inputs than the width of the data bus, writing a 1 to a non-existing interrupt input
does nothing and reading it will return zero. The Interrupt Status Register (ISR) is shown in the
following diagram and the bits are described in Table 2.

Figure 5: Interrupt Status Register (ISR)

Figure Top x-ref 5

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

Interrupt_status_register.eps

INTn-1 INTn-3

Bits Name Description Reset Value

0 to (w –1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
0 Read – Not active; Write – No action
1 Read – Active; Write – SW interrupt

0

Interrupt Pending Register (IPR)

This is an optional register in the simple IntC and can be parameterized out of an implementation.
Reading the contents of this register indicates the presence or absence of an active interrupt signal that
is also enabled.

Each bit in this register is the logical AND of the bits in the ISR and the IER. If there are fewer interrupt
inputs than the width of the data bus, reading a non-existing interrupt input will return zero. The

Clear Interrupt Enable Bits CIE 20 (14h)

Interrupt Vector Register IVR 24 (18h)

Master Enable Register MER 28 (1Ch)

Table 2: Interrupt Status Register

Table 1: IntC Registers and Base Address Offsets

Register Name Abbreviation OPB Offset
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Interrupt Pending Register (IPR) is shown in the following diagram and the bits are described in
Table 3.

Figure 6: Interrupt Pending Register (IPR)

Figure Top x-ref 6

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

Interrupt_pending_register.eps

INTn-1 INTn-3

Bits Name Description Reset Value

0 to (w – 1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
0 – Not active
1 – Active

0

Interrupt Enable Register (IER)

This is a read / write register. Writing a 1 to a bit in this register enables the corresponding interrupt
input signal. Writing a 0 to a bit disables, or masks, the corresponding interrupt input signal. Note
however, that disabling an interrupt input is not the same as clearing it. Disabling an active interrupt
blocks that interrupt from reaching the IRQ output, but as soon as it is re-enabled the interrupt will
immediately generate a request on the IRQ output. An interrupt must be cleared by writing to the
Interrupt Acknowledge Register as described below. Reading the IER indicates which interrupt inputs
are enabled, where a one indicates the input is enabled and a zero indicates the input is disabled.

If there are fewer interrupt inputs than the width of the data bus, writing a 1 to a non-existing interrupt
input does nothing and reading it will return zero. The Interrupt Enable Register (IER) is shown in the
following diagram and the bits are described in Table 4.

Figure 7: Interrupt Enable Register (IER)

Figure Top x-ref 7

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

Interrupt_enable_register.eps

INTn-1 INTn-3

Table 3: Interrupt Pending Register
ember 1, 2005 www.xilinx.com 11
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

12
Bits Name Description Reset Value

0 to (w – 1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
1 – Interrupt enabled
0 – Interrupt disabled

0

Interrupt Acknowledge Register (IAR)

The IAR is a write only location that clears the interrupt request associated with selected interrupt
inputs.

Writing a one to a bit location in the IAR will clear the interrupt request that was generated by the
corresponding interrupt input. An interrupt input that is active and masked by writing a 0 to the
corresponding bit in the IER will remain active until cleared by acknowledging it. Unmasking an active
interrupt will cause an interrupt request output to be generated (if the ME bit in the MER is set).

Writing zeros does nothing as does writing a one to a bit that does not correspond to an active input or
for which an interrupt input does not exist. The Interrupt Acknowledge Register (IAR) is shown in the
following diagram and the bits are described in Table 5.

Figure 8: Interrupt Acknowledge Register (IAR)

Figure Top x-ref 8

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

Interrupt_acknowledge_register.eps

INTn-1 INTn-3

Bits Name Description Reset Value

0 to (w – 1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
1 Clear Interrupt
0 no action

n/a

Set Interrupt Enables (SIE)

SIE is a location used to set IER bits in a single atomic operation, rather than using a
read / modify / write sequence.

Writing a one to a bit location in SIE will set the corresponding bit in the IER.

Writing zeros does nothing, as does writing a one to a bit location that corresponds to a non-existing
interrupt input. The SIE is optional in the simple IntC and can be parameterized out of the
implementation.

The Set Interrupt Enables (SIE) register is shown in the following diagram and the bits are described in
Table 6.

Table 4: Interrupt Enable Register

Table 5: Interrupt Acknowledge Register
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Figure 9: Set Interrupt Enables (SIE) Register

Figure Top x-ref 9

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

Interrupt_acknowledge_register.eps

INTn-1 INTn-3

Bits Name Description Reset Value

0 to (w – 1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
1 Set IER bit
0 no action

n/a

Clear Interrupt Enables (CIE)

CIE is a location used to clear IER bits in a single atomic operation, rather than using a
read / modify / write sequence.

Writing a one to a bit location in CIE will clear the corresponding bit in the IER.

Writing zeros does nothing, as does writing a one to a bit location that corresponds to a non-existing
interrupt input. The CIE is also optional in the simple IntC and can be parameterized out of the
implementation.

The Clear Interrupt Enables (CIE) register is shown in the following diagram and the bits are described
in Table 7.

Figure 10: Clear Interrupt Enables (CIE) Register

Figure Top x-ref 10

0 1 2 3 4 5 w-2 w-1

INTn

INTn-5 - INT1

INTn-2 INTn-4 INT0

clear_interrupt_enables_register.eps

INTn-1 INTn-3

Bits Name Description Reset Value

0 to (w – 1)
INTn – INT0
(n w 1–≤)
where w is DB width

Interrupt Input n – Interrupt Input 0
1 Clear IER bit
0 no action

n/a

Table 6: Set Interrupt Enables

Table 7: Clear Interrupt Enables
ember 1, 2005 www.xilinx.com 13
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

14
Interrupt Vector Register (IVR)

The IVR is a read-only register and contains the ordinal value of the highest priority, enabled, active
interrupt input. INT0 (always the LSB) is the highest priority interrupt input and each successive
input to the left has a correspondingly lower interrupt priority.

If no interrupt inputs are active then the IVR will contain all ones. The IVR is optional in the simple IntC
and can be parameterized out of the implementation. The Interrupt Vector Register (IVR) is shown in
the following diagram and described in Table 8.

Figure 11: Interrupt Vector Register (IVR)

Figure Top x-ref 11

0 w-1

Interrupt Vector Number
interrupt_vector_register.eps

Bits Name Description Reset Value

0 to (w – 1) Interrupt Vector Number
Ordinal of highest priority, enabled, active interrupt
input

all ones

Master Enable Register (MER)

This is a two bit, read / write register. The two bits are mapped to the two least significant bits of the
location.

The least significant bit contains the Master Enable (ME) bit and the next bit contains the Hardware
Interrupt Enable (HIE) bit.

Writing a 1 to the ME bit enables the IRQ output signal. Writing a 0 to the ME bit disables the IRQ
output, effectively masking all interrupt inputs.

The HIE bit is a write once bit. At reset this bit is reset to zero, allowing software to write to the ISR to
generate interrupts for testing purposes, and disabling any hardware interrupt inputs.

Writing a one to this bit enables the hardware interrupt inputs and disables software generated inputs.

Writing a one also disables any further changes to this bit until the device has been reset.

Writing ones or zeros to any other bit location does nothing. When read, this register will reflect the
state of the ME and HIE bits.

All other bits will read as zeros. The Master Enable Register (MER) is shown in the following diagram
and is described in Table 9.

Table 8: Interrupt Vector Register
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Figure 12: Master Enable Register (MER)

Figure Top x-ref 12

w-2 w-1

Reserved

HIE ME

master_enable_register.eps

Bits Name Description Reset Value

0 to (w – 3) Unused Not used 0

(w – 2) HIE

Hardware Interrupt Enable
0 Read – SW interrupts enabled
 Write – no effect
1 Read – HW interrupts enabled
 Write – Enable HW interrupts

0

(w – 1) ME
Master IRQ Enable
0 IRQ disabled – all interrupts disabled
1 IRQ enabled – all interrupts enabled

0

Programming the IntC

This section provides an overview of software initialization and communication with an IntC.

Terminology

The number of interrupt inputs that an IntC has is set by the C_NUM_INTR_INPUTS generic described
in Table 12. The first input is always Int0 and is mapped to the LSB of the registers (except IVR and
MER).

A valid interrupt input signal is any signal that provides the correct polarity and type of interrupt
input. Examples of valid interrupt inputs are rising edges, falling edges, high levels, and low levels
(hardware interrupts), or software interrupts if HIE has not been set.

Each interrupt input can be selectively enabled or disabled (masked). The polarity and type of each
hardware interrupt input is specified in the IntC generics C_KIND_OF_INTR, C_KIND_OF_EDGE,
and C_KIND_OF_LVL (see Table 12).

Software interrupts do not have any polarity or type associated with them, so, until HIE has been set,
they are always valid. Any valid interrupt input signal that is applied to an enabled interrupt input will
generate a corresponding interrupt request within the IntC.

All interrupt requests are combined (an OR function) to form a single interrupt request output that can
be enabled or disabled (masked).

Table 9: Master Enable Register
ember 1, 2005 www.xilinx.com 15
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

16
Initialization and Communication

During power-up or reset, an IntC is put into a state where all interrupt inputs and the interrupt request
output are disabled. In order for the IntC to accept interrupts and request service, the following steps
are required:

1. Each bit in the IER corresponding to an interrupt input must be set to a one. This allows the IntC to
begin accepting interrupt input signals. Int0 has the highest priority, and it corresponds to the least
significant bit (LSB) in the IER.

2. The MER must be programmed based on the intended use of the IntC. There are two bits in the
MER: the Hardware Interrupt Enable (HIE) and the Master IRQ Enable (ME). The ME bit must be
set to enable the interrupt request output.

3. If software testing is to be performed, the HIE bit must remain at its reset value of zero. Software
testing can now proceed by writing a one to any bit position in the ISR that corresponds to an
existing interrupt input. A corresponding interrupt request is generated if that interrupt is enabled,
and interrupt handling proceeds normally.

4. Once software testing has been completed, or if software testing is not performed, a one is written
to the HIE bit, which enables the hardware interrupt inputs and disables any further software
generated interrupts.

5. After a one has been written to the HIE bit, any further writes to this bit have no effect. This feature
prevents stray pointers from accidentally generating unwanted interrupt requests, while still
allowing self-test software to perform system tests at power-up or after a reset.

Reading the ISR indicates which inputs are active. If present, the IPR indicates which enabled inputs
are active. Reading the optional IVR provides the ordinal value of the highest priority interrupt that is
enabled and active.

For example, if the IVR is present, and a valid interrupt signal has occurred on the Int3 interrupt input
and nothing is active on Int2, Int1, and Int0, reading the IVR will provide a value of three. If Int0
becomes active then reading the IVR provides a value of zero.

If no interrupts are active or it is not present, reading the IVR returns all ones.

Acknowledging an interrupt is achieved by writing a one to the corresponding bit location in the IAR.
Note that disabling an interrupt by masking it (writing a zero to the IER) does not clear the interrupt.
That interrupt will remain active but blocked until it is unmasked or cleared.

An interrupt acknowledge bit clears the corresponding interrupt request. However, if a valid interrupt
signal remains on that input (another edge occurs or an active level still exists on the corresponding
interrupt input), a new interrupt request output is generated.

Also, all interrupt requests are combined to form the Irq output so any remaining interrupt requests
that have not been acknowledged will cause a new interrupt request output to be generated.

The software can disable the interrupt request output at any time by writing a zero to the ME bit in the
MER. This effectively masks all interrupts for that IntC. Alternatively, interrupt inputs can be
selectively masked by writing a zero to each bit location in the IER that corresponds to an input that is
to be masked.

If present, SIE and CIE provide a convenient way to enable or disable (mask) an interrupt input without
having to read, mask off, and then write back the IER. Writing a one to any bit location(s) in the SIE sets
the corresponding bit(s) in the IER without affecting any other IER bits.
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Writing a one to any bit location(s) in the CIE clears the corresponding bit(s) in the IER without
affecting any other IER bits.

Implementation
The IntC is implemented to minimize area. Consequently, all configurable elements within the design
are based on generics (parameters) and any unused or unselected capabilities are not implemented (see
the Parameterization section).

I/O Summary

The following tables provide information on I/O signals. I/Os that are common for all IntC types are
shown in Table 10. Table 11 shows I/Os that are specific to an OPB IntC.

Port
Name

Direction Description Type Range

Intr in Interrupt intputs Std_Logic_Vector
C_NUM_INTR_INPUTS
– 1 downto 0(1)

Irq out IntC interrupt request output Std_Logic n/a

Notes:
1. Bit 0 is always the highest priority interrupt and each successive bit to the left has a corresponding lower

interrupt priority.

Port Name Direction Description Type Range

OPB_Clk in OPB clock Std_Logic n/a

OPB_Rst in OPB reset, active high Std_Logic n/a

OPB_select in OPB select Std_Logic n/a

OPB_ABus in OPB address bus Std_Logic_Vector 0 to C_OPB_AWIDTH – 1

OPB_RNW in
OPB read not write enable
(read high, write low)

Std_Logic n/a

OPB_BE in OPB byte enables Std_Logic_Vector
0 to (C_OPB_DWIDTH / 8)
– 1

OPB_DBus in OPB data bus (OPB to IntC) Std_Logic_Vector 0 to C_OPB_DWIDTH – 1

IntC_DBus out IntC data bus (IntC to OPB) Std_Logic_Vector 0 to C_OPB_DWIDTH – 1

IntC_xferAck out IntC transfer acknowledge Std_Logic n/a

IntC_ErrAck out IntC error acknowledge Std_Logic n/a

OPB_seqAddr in
OPB sequential address
enable

Std_Logic n/a

IntC_toutSup out IntC timeout suppress Std_Logic n/a

IntC_retry out IntC retry request Std_Logic n/a

Table 10: Core IntC I/O Summary

Table 11: OPB IntC I/O Summary
ember 1, 2005 www.xilinx.com 17
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

18
Parameterization

The following characteristics of the IntC can be parameterized:

• Base address for the Simple IntC registers and the upper address of the memory space occupied by
the IntC (C_BASEADDR, C_HIGHADDR).

• Edge or level sensitivity on interrupt inputs as well as the polarity (C_KIND_OF_INTR,
C_KIND_OF_EDGE, C_KIND_OF_LVL).

• Edge (pulse) or level IRQ generation, and the polarity of the IRQ output (C_IRQ_IS_LEVEL,
C_IRQ_ACTIVE).

• Address bus width (C_OPB_AWIDTH.

• Bus interface: Normally 8-bit, 16-bit or 32-bit data widths for the OPB IntC (C_OPB_DWIDTH.

• The number of interrupt inputs is parameterizable up to the width of the data bus
(C_NUM_INTR_INPUTS).

• The presence of the IPR (C_HAS_IPR).

• The presence of the SIE and CIE (C_HAS_SIE, C_HAS_CIE).

• The presence of the IVR (C_HAS_IVR).

Table 12 lists the top level generics (parameters) that are common to all variations of an IntC.

Table 12: Generics (Parameters) Common to all IntC Instantiations

Generic Name Description Type Valid Values

C_FAMILY
Target FPGA family type
(not currently used).

String
"spartan2", "spartan2e",
"virtex", "virtexe",
"virtex2", "virtex2pro"

C_Y
Row placement directive
(not currently used).

Integer
Any valid row value for the
selected target family.

C_X
Column placement
directive (not currently
used).

Integer
Any valid column value for the
selected target family.

C_U_SET
User set for grouping (not
currently used).

String "intc"

C_BASEADDR
Base address for
accessing the IntC
registers.

Std_Logic_Vector
Any valid 32-byte boundary
address for the IntC instance. 1

C_HIGHADDR

Upper address value of the
memory map entry for the
IntC. Used in conjunction
with C_BASEADDR to
determine the number of
upper address bits to use
for address decoding.

Std_Logic_Vector

Any valid address for the IntC
instance that is at least 32 bytes
(8 words) greater than
C_BASEADDR. 2

C_BASEADDR must be a
multiple of the range, where the
range is C_HIGHADDR -
C_BASEADDR +1.

C_NUM_INTR_INPUTS Number of interrupt inputs. Integer 1 up to the width of the data bus.
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
C_KIND_OF_INTR

Type of interrupt for each
input
X = none
1 = edge
0 = level.

Std_Logic_Vector

A little-endian vector the same
width as the data bus containing a
0 or 1 in each position
corresponding to an interrupt
input.

C_KIND_OF_EDGE

Type of each edge
sensitive input
X = n/a
1 = rising
0 = falling.

Std_Logic_Vector

A little-endian vector the same
width as the data bus containing a
0 or 1 in each position
corresponding to an interrupt
input.

C_KIND_OF_LVL

Type of each level sensitive
input
X = n/a
1 = high
0 = low.

Std_Logic_Vector

A little-endian vector the same
width as the data bus containing a
0 or 1 in each position
corresponding to an interrupt
input.

C_HAS_IPR
Indicates the presence of
IPR.

Integer
0 = not present
1 = present

C_HAS_SIE
Indicates the presence of
SIE.

Integer
0 = not present
1 = present

C_HAS_CIE
Indicates the presence of
CIE.

Integer
0 = not present
1 = present

C_HAS_IVR
Indicates the presence of
IVR.

Integer
0 = not present
1 = present

C_IRQ_IS_LEVEL
Indicates whether the Irq
output uses level (or edge)
generation.

Integer
0 = edge generation
1 = level generation

C_IRQ_ACTIVE
Indicates the sense of the
Irq output

Std_Logic
’0’ = falling / low
’1’ = rising / high

Notes:
1. C_BASEADDR must begin on a 32-byte address boundary. This means the low 5 address bits must be zero.
2. C_HIGHADDR is required to be at least C_BASEADDR + 31 to provide space for the eight 32-bit addresses

used by the simple IntC registers. However, a bigger memory map space allocated to the simple IntC will
reduce the FPGA resources required for decoding the address. For example:
C_BASEADDR = 0x70800000
C_HIGHADDR = 0x7080001F
provides the maximum address decode resolution, requiring the upper 27 address bits to be decoded. This
choice will increase the number of FPGA resources required for implementation and may adversely affect the
maximum operating frequency of the system. Conversely,
C_BASEADDR = 0x70000000
C_HIGHADDR = 0x7FFFFFFF
will significantly reduce the address decoding logic for an OPB IntC (only the 4 upper address bits), resulting
in a smaller and faster implementation.

3. C_BASEADDR must be a multiple of the range, where the range is C_HIGHADDR - C_BASEADDR +1.

Table 12: Generics (Parameters) Common to all IntC Instantiations (Contd)

Generic Name Description Type Valid Values
ember 1, 2005 www.xilinx.com 19
ecification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

20
Table 13 lists the top level generics (parameters) that are present in an OPB IntC.

Generic Name Description Type Valid Values

C_OPB_AWIDTH Width of the OPB address bus. Integer 32

C_OPB_DWIDTH Width of the OPB data buses. Integer 32

Core Usage in EDK
If you are using this core with the EDK design tools, see solution record SR18804 for details

Design Implementation

Device Utilization and Performance Benchmarks

Table 14 contains benchmark information for a Virtex-II Pro-7 FPGA using multipass place and route.

Table 13: Generics (Parameters) for an OPB IntC

Table 14: OPB_Intc FPGA Performance and Resource Utilization Benchmarks (Virtex-II Pro-7)

Parameter Values Device Resources fMAX

C
_N

U
M

_I
N

T
R

_I
N

P
U

T
S

C
_H

A
S

_I
P

R

C
_H

A
S

_S
IE

C
_H

A
S

_C
IE

C
_H

A
S

_I
V

R

Slices
Slice
Flip-
flops

LUTs
fMAX

(MHZ)

1 0 0 0 0 69 86 48 149

1 1 0 0 0 55 64 41 222

1 0 1 0 0 54 63 40 201

1 0 0 1 0 54 63 40 213

1 0 0 0 1 55 65 42 200

1 1 1 1 1 54 66 45 209

1 0 0 0 0 55 63 42 215

2 1 1 1 1 62 72 50 220

2 0 0 0 0 59 68 45 225

4 1 1 1 1 81 90 70 196

4 0 0 0 0 74 82 60 208

8 1 1 1 1 121 126 113 158

8 0 0 0 0 105 110 95 156

16 1 1 1 1 196 198 196 152
www.xilinx.com DS473 December 1, 2005
Product Specification

http://www.xilinx.com

OPB Interrupt Controller (v1.00c)

DS473 Dec
Product Sp
Revision History

Date Version Revision

04/11/01 1.0 Initial Xilinx release.

05/04/01 2.0 Changed to reflect EA IntC programmer interface

05/10/01 2.1 Added HIE to MER and changed functionality of ISR to match

09/17/01 2.2 Fixed errors in figures; added I/O and parameterization tables

10/04/01 2.3 Changed C_BASE_NUM_BITS to C_HIGHADDR and added note

11/07/01 2.4 Added Programming the IntC section

12/04/01 3.0
Changed to a core IntC with bus centric wrappers (opb_intc v1.00b and dcr_intc
v1.00a); separate figures and tables for OPB and DCR

12/07/01 3.1
Changed DCR signal names to match internal standardization; added type and
range columns to I/O tables and type and valid values to generics tables.

03/20/02 4.0 Updated for MDK 2.2

05/23/02 4.1 Update to EDK 1.0

07/22/02/ 4.2 Add XCO parameters for System Generator

07/31/02 4.3
Add additional text to XCO parameters; fixed some typos; added text for IAR
operation

09/11/02 4.4 Added resource utilization table

11/05/02 4.5 Rev hardware to 1.00c

01/08/03 4.6 Update for EDK SP3

07/24/03 4.7 Update to new template

07/28/03 4.7.1 Change DS number from 207 because of duplicates

12/05/03 4.8 Add notes to table 11 to fix CR 179857

01/22/04 4.8.1 Update page 1 and add Core Usage in EDK section for CR 182552

8/18/04 4.9 Updated for Gmm; updated trademarks and supported device family listing.

1/10/04 5.0
Converted to new DS template; updated images to Xilinx graphic standards;
removed all conditional text; removed all references to the DCR interface.

12/1/05 5.1 Added Spartan-3E to supported family devices.

16 0 0 0 0 168 166 159 151

32 1 1 1 1 369 342 395 151

32 0 0 0 0 307 278 315 150

Table 14: OPB_Intc FPGA Performance and Resource Utilization Benchmarks (Virtex-II Pro-7) (Contd)
ember 1, 2005 www.xilinx.com 21
ecification

http://www.xilinx.com

	OPB Interrupt Controller (v1.00c)
	Introduction
	Features
	Functional Description
	Interrupt Controller Overview
	Interrupt Controller Organization
	Programming Model
	Register Data Types and Organization
	IntC Registers
	Programming the IntC
	Implementation
	I/O Summary
	Parameterization
	Core Usage in EDK
	Design Implementation
	Device Utilization and Performance Benchmarks
	Revision History

