
0018-9162/05/$20.00 © 2005 IEEE July 2005 51

C O V E R F E A T U R E

PP uu bb ll ii ss hh ee dd bb yy tt hh ee II EE EE EE CC oo mm pp uu tt ee rr SS oo cc ii ee tt yy

Configurable
Processors:
A New Era in
Chip Design

M icroprocessor evolution can be
broadly divided into three eras, each
producing chips suited to their time.
During the 1970s, microprocessors
grew from 4-bit logic-replacement

devices to 16- and 32-bit designs that paved the
way for PCs and workstations. Explosive growth
in 32-bit chips wiped out the minicomputer in the
1980s, which also saw the appearance of digital
signal processors and other specialized architec-
tures. Reduced-instruction-set computing domi-
nated the 1990s; even stalwart complex-instruc-
tion-set computing cores such as the x86 evolved
into disguised RISC architectures, and micro-
processors became an integral part of mainframes
and supercomputers.

Over the past three decades, the microprocessor
has emerged as a fixed, stand-alone, reusable block
created by highly skilled specialists. Because devel-
oping good, efficient microprocessor architectures
can take years, many designers have come to regard
them as monolithic entities subject to change only
over long time periods and after careful considera-
tion by an anointed few.

However, the rise of application-specific inte-
grated circuit and system-on-chip (SoC) manufac-

turing technologies in the 1990s has laid the
groundwork for a new, fourth era—that of post-
RISC, configurable processors. Development tools
are now advanced enough to allow any designer to
tailor a microprocessor core for specific application
tasks and to generate the processor’s register trans-
fer level (RTL) description plus all of the requisite
software-development tools for that architecture in
minutes, a shockingly brief time relative to the time
spent designing processors and their associated
development tools in prior eras.

Because of this ability to rapidly tailor processors
for specific application tasks, configurable proces-
sors make excellent building blocks for SoC design,
and developers can use them to quickly create func-
tional blocks that might otherwise require months
of manual labor to develop using handcrafted RTL
descriptions. Consequently, various end products
ranging from network routers to consumer elec-
tronics such as camcorders, printers, and video
games already incorporate multiprocessor SoCs.

Two recent developments have further enmeshed
configurable processors into SoC design:

• fully automated, application-specific instruc-
tion-set tailoring; and

Configurable processors enable system-on-chip designers to leverage the
benefits of nanometer silicon lithography with relatively little manual
effort. These processors can achieve much higher performance than
processors with conventional fixed-instruction-set architectures through
the addition of custom-tailored execution units, registers, and register files
as well as specialized communication interface ports.

Steve Leibson
James Kim
Tensilica

52 Computer

• multiport access to the processor’s internal exe-
cution units.

With automated tools for tailoring processors, SoC
designers can focus more on system architectural
issues to achieve performance goals rather than
spending a lot of time on designing individual func-
tional blocks within the SoC. Multiport access per-
manently shatters the formerly ironclad bus bottle-
neck that has choked microprocessor performance
since the first commercial chip appeared in 1971.

AUTOMATIC PROCESSOR TAILORING
For more than a decade, hardware designers have

struggled to transform system specifications writ-
ten in C, and later C++, into efficient hardware.

Developers often use these languages to write ini-
tial system or application specifications because they
can execute and evaluate the specifications on inex-
pensive PCs. However, even PC hardware is too
costly for many embedded systems designs, espe-
cially in the consumer electronics arena. Designers
have thus continued looking for a tool that reduces
executable specifications written in C or C++ to
hardware.

Various approaches—including behavioral syn-
thesis, C-language hardware synthesis, and elec-
tronic system-level design—have all fallen short of
the mark because they try to solve an essentially
intractable problem: transforming a description
written in a sequentially executable language into
a parallel collection of interoperating, nonpro-
grammable hardware blocks.

Tensilica’s Xtensa processor extension synthesis
(XPRES) compiler uses a simpler, more direct
approach to tackle this problem. Instead of
attempting to create application-specific hardware
from scratch, XPRES starts with a fully functional
microprocessor core (Xtensa), which can already
run any C or C++ program, and then adds hard-
ware to it in the form of additional execution units
and corresponding machine instructions to speed
processor execution for the target application.

XPRES can search the available design space in
less than an hour. This search results in a set of
microprocessor configurations with a range of
application performance and hardware cost char-
acteristics (cost translates into silicon area on the
SoC), as Figure 1 shows. The development team
only needs to pick the configuration with the right
performance/cost tradeoff for the target applica-
tion and then submit it to Tensilica’s Xtensa proces-
sor generator for implementation.

PERFORMANCE OPTIMIZATION
XPRES uses three techniques to create optimized

Xtensa processor configurations: operator fusion;
single instruction, multiple data (SIMD) vectoriza-
tion; and flexible-length instruction extensions
(FLIX).

Operator fusion
This technique notes the frequent occurrence of

simple-operation sequences in program loops.
XPRES combines these operation sequences into
one enhanced instruction, which accelerates code
execution by cutting the number of instructions
executed within the loop, making the loop run
faster, as well as reducing the number of instruc-
tions that must be fetched from memory, thus

Figure 1. Xtensa processor extension synthesis compiler. XPRES creates a series
of microprocessor configurations that provide increasing amounts of application-
specific performance for an increasing amount of silicon area.

Figure 2. XPRES dataflow graph with a series of operations marked as fusible.
In this example, EXPRES estimates that a new instruction that fuses the
subtraction, absolute-value, addition, and bit-field-extraction operations will
require 474 additional gates.

decreasing bus traffic. Figure 2 shows an XPRES-
generated operation dataflow graph, with fusible
operations marked in gray.

SIMD vectorization
Many loops within application programs repet-

itively perform the same operations on an array of
data items. To vectorize such loops, XPRES creates
an instruction with multiple identical execution
units that operate on multiple data items in paral-
lel. XPRES automatically tries two-, four-, and
eight-operation SIMD vectorization in its design-
space exploration. The addition of SIMD instruc-
tions to an Xtensa processor dovetails with
Tensilica’s Xtensa C/C++ (XCC) compiler, which
has the ability to unroll and vectorize application
programs’ inner loops.

The loop acceleration achieved through vector-
ization is usually on the order of the number of
SIMD units within the enhanced instruction. Thus,
a two-operation SIMD instruction approximately
doubles loop performance, and an eight-operation
SIMD instruction speeds up loop execution by
about a factor of eight.

FLIX
Unlike the multiple dependent operations of

fused and SIMD instructions, FLIX instructions
consist of multiple independent operations.
Tensilica’s XCC compiler can pack these operations
into a FLIX-format instruction as needed to accel-
erate code. While fused and SIMD instructions are
24 bits wide, FLIX instructions are either 32 or 64
bits wide to allow the flexibility needed to fully
describe multiple independent operations.

MULTIPLE CONFIGURABLE PROCESSORS
Few applications today can achieve their perfor-

mance goals with a single processor, even with a
configurable processor tailored to the target appli-
cation’s needs. However, the multiprocessor
instruction sets, high-bandwidth interfaces, and
small size of configurable processors encourage
their extensive use in SoC designs. Advanced SoCs
commonly use 10 or more configurable processors,
and some high-end SoC designs use more than 100
complete processors per chip.

The choice of hardware-interconnection mecha-
nisms among processor blocks in a SoC greatly
affects performance and silicon cost, and these
mechanisms must directly support the system
design’s interconnection requirements. Message-
passing software communications naturally corre-
spond to data queues, but message passing can be

implemented using other types of hardware such
as bus-based devices with global memory. Similarly,
the shared-memory software-communications
mode naturally corresponds to bus-based hard-
ware, but techniques exist to physically implement
shared-memory protocols even when no globally
accessible physical memory exists. This implemen-
tation flexibility lets chip designers implement a
spectrum of different task-to-task connections to
optimize performance, power, and cost.

Configurable processors offer significant flexibil-
ity in supporting arbitrated access to shared devices
and memory. The basic topologies for shared-mem-
ory buses are accessing remote global memory over
a general processor bus, accessing local processor
memory over a general processor bus, and accessing
multiported local memory over a local bus.

Accessing global memory over a general bus
The processor can implement a general-purpose

interface that allows a wide variety of bus transac-
tions. If the processor determines that correspond-
ing data is not local during a read, based on the
target address or due to a cache miss, it must make
a nonlocal reference over its main bus. The proces-
sor requests control of the bus, acquires bus con-
trol, and then sends the target read address over the
bus. The appropriate device—for example, mem-
ory or an I/O interface—decodes that address and
supplies the requested data back over the bus to the
processor, as Figure 3a shows.

July 2005 53

Processor
1

Processor
interface

Bus

Instruction
memory

Data
memory

Processor
2

Processor
interface

Instruction
memory

Data
memory

I/O
device

I/O
device

Shared
global
RAM

Processor
1

Processor
interface

Bus

Instruction
memory

Data
memory

Processor
2

Processor
interface

Instruction
memory

Data
memory

(a)

(b)

(c)

Processor
1

Instruction
memory

Data
memory

Local
shared

memory

Processor
2

Local
interface

Local
interface

Instruction
memory

Data
memory

Figure 3. Shared-memory bus topologies using configurable processors. (a) Two
processors access global memory over a bus. (b) One processor accesses the
local data memory of a second processor over a bus. (c) Two processors share
access to local data memory.

54 Computer

When two processors communicate through
global shared memory on the bus, one processor
must acquire bus control to write the data; the
other processor must later acquire bus control to
read it. Each word transferred in this fashion
requires two bus transactions.

This approach requires modest hardware and
maintains high flexibility because the global memo-
ries and I/O interfaces are accessible over a common
bus. However, using global memory is inefficient and
does not scale well with the number of processors
and devices because increased bus traffic leads to
long and unpredictable contention latency.

Accessing local memory over a general bus
Configurable processors can allow local data

memories to participate in general-purpose bus
transactions. These data memories are primarily
used by the processor to which they are closely cou-
pled. However, the processor controlling the local
data memory can serve as a bus slave and respond
to requests on the general-purpose bus, as Figure
3b shows.

In this case, the read by processor 1 can require
access arbitration when processor 1 requests access
to the general-purpose bus and again when the read
request reaches processor 2. The read request arrives
over processor 2’s interface and might contend with
other requests for local-data-memory access from
tasks running on processor 2. These two levels of
arbitration can increase the access latency that
processor 1 encounters, but processor 2 avoids
access latency almost entirely because latency to local
data memory is short—usually one or two cycles.

This latency asymmetry between processors 1
and 2 encourages push communication: When
processor 1 sends data to processor 2, it writes the
data over the bus into processor 2’s local data mem-
ory. If the write is buffered, processor 1 can con-
tinue execution without waiting for the write to
complete. Thus, the long latency of data transfer
to processor 2 is hidden. Processor 2 sees minimal
latency when it reads the data because the data is
local. Similarly, when processor 2 wants to send
data back to processor 1, it writes the data into
processor 1’s local data memory.

Accessing multiported local memory
over a local bus

When data flows in both directions between
processors and latency is critical, a locally shared
data memory is often the best choice for intertask
communications. Each processor uses its local-
data-memory interface to access shared memory,
as Figure 3c shows. This memory could have two
physical access ports (which can handle two mem-
ory references each cycle), or it could be controlled
by a simple arbiter that holds off one processor’s
access for a cycle while the other processor is using
the single physical access port.

Arbitration for a single port is preferred in area-
and cost-sensitive applications, especially when
shared-memory utilization is modest, because a
true dual-ported memory is about twice as big per
bit as single-ported RAM. However, true dual-
ported memory may be preferable when the shared
memory is very small or when the application
requires absolute determinism of access latency.

DIRECT-CONNECT PORTS
Direct processor-to-processor connections re-

duce communication cost and latency by allowing
data to move directly from one processor’s regis-
ters to the registers and execution units of another.
Figure 4 shows a simple example of direct connec-
tion. This example exploits the exporting of regis-
ter state and imported wire values—features found
in some extensible processors—to create an addi-
tional dedicated interface within each processor
and to directly connect them.

When processor 1 writes a value to the output
register, usually as part of some computation, that
value automatically appears on the processor’s out-
put port. That same value is immediately available
as an input value to operations in processor 2. Wire
connections can be arbitrarily wide, allowing the
quick and easy transfer of large and non-power-of-
two-sized operands.

The operation that produces data for the output
state register can be a simple register-to-register
transfer or a complex logic function based on many
other processor state values. Similarly, the receiv-
ing processor can simply transfer the input value
to a processor state (register or memory) within
itself, or it could use the value as one input to a
complex logic function.

DATA QUEUES
The highest-bandwidth mechanism for task-to-

task communication is hardware implementation
of data queues. One data queue can sustain data

Processor
1

Instruction
memory

Data
memory

Processor
2

Instruction
memory

Data
memory

Data
production

Processor
extension

Processor
extensionData

consumption

New
output
wires

New
input
wires

St
at

e
re

gi
st

er
Figure 4. Direct processor-to-processor ports. Direct connection allows data to
move directly from one processor’s registers to the registers and execution units
of another, reducing communication cost and latency.

rates as high as one transfer every cycle, or more
than 10 Gbytes per second for wide operands (tens
of bytes per operand at a clock rate of hundreds of
MHz) because queue widths need not be tied to a
processor’s bus width or general-register width. The
handshake between data producer and consumer
is implicit in the interfaces between the processors
and the queue’s head and tail.

Push and pop operations
The data producer pushes the data into the tail of

the queue, assuming the queue is not full; if the
queue is full, the producer stalls. When ready, the
data consumer pops data from the head of the
queue, assuming the queue is not empty; if the
queue is empty, the consumer stalls.

The SoC designer also can create nonblocking
push and pop operations for queues. Such queue
operations in the data producer explicitly check for
a full queue before attempting a push. The data
consumer can explicitly check for an empty queue
before attempting a pop. These mechanisms let the
data producer or consumer move to other work in
lieu of stalling.

Application-specific processors’ instruction-set
extensions allow direct implementation of queues.
An instruction can specify a queue as one of the
destinations for result values or use an incoming
queue value as one operand source. Such opera-
tions can create a new data value or use an incom-
ing data value during each cycle on each queue
interface.

As Figure 5 shows, a complex processor exten-
sion can perform multiple queue operations per
cycle, combining input from two input queues with
local data and sending values to two output queues.
A queue’s high aggregate bandwidth and low con-
trol overhead enable using application-specific
processors for applications with very high data
rates, which processors with conventional bus or
memory interfaces cannot handle.

Queue sizing
Queues decouple the performance of one task

from another. If the data production and con-
sumption rates are uniform, the queue can be shal-
low. If either the production or consumption rate is
highly variable, a deep queue can mask this mis-
match and ensure throughput at the average data
producer and consumer rates, rather than at their
minimum rate.

Queue sizing is an important optimization dri-
ven by good system-level simulation. If the queue
is too shallow, the processor at one end of the com-

munication channel can stall when the other
processor slows for some reason; if the queue is too
deep, the silicon cost will be excessive.

Queue interfaces
Queue interfaces to processor execution units are

an unusual feature of commercial microprocessor
cores. They become part of an Xtensa LX proces-
sor through the Tensilica instruction extension
(TIE) language syntax, which defines the queue’s
name, width, and direction:

queue <queue-name> <width> in|out

One Xtensa LX processor can have more than
300 queue interfaces of variable width up to 1,024
bits each. These limits are set beyond the routing
limits of current silicon technology so that the
processor core’s architecture is not the limiting fac-
tor in a system’s design. The designer sets the prac-
tical limit based on system requirements, computer-
aided design flow, and process technology selec-
tion. Using queues, designers can trade off fast and
narrow processor interfaces with slower and wider
interfaces to achieve bandwidth, performance, and
power goals.

Figure 6 shows how TIE queues easily connect
to simple DesignWare first-in, first-out memories.
FIFO empty and full status signals gate TIE queue
push and pop requests to comply with the
DesignWare FIFO specification. The diagn_input
is driven high, and the almost_full, half_full,
almost_empty, and error outputs are unused. More
elaborate FIFO memory implementations might be
able to exploit the request signals when FIFO mem-
ory is nearly empty or full.

TIE queues serve directly as input and output
operands of TIE instructions, just like a register
operand, state, or memory interface. The follow-
ing TIE syntax creates a new instruction that accu-
mulates values from an input queue into a register
file:

operation QACC {inout AR ACC} {in IQ1} {
assign ACC = ACC + IQ1;

}

July 2005 55

Processor
1

Instruction
memory

Data
memory

Processor
2

Instruction
memory

Data
memory

Processor
extension

Processor
extensionData

consumptionfull
push

empty
pop

Data
production

Figure 5. Data-queue mechanism. A complex processor extension can perform
multiple queue operations per cycle, combining input from two input queues with
local data and sending values to two output queues.

56 Computer

Figure 7 shows how TIE queues can function just
like other instruction operands in an Xtensa LX
processor. The figure also illustrates a key differ-
ence between queue interfaces and memory inter-
faces: The system designer can customize the width
of each queue interface port to the exact value
desired, either wider or narrower than the proces-
sor’s standard memory interface ports.

Queue buffering
Whereas memory accesses often exploit tempo-

ral locality, queue data is naturally transient.
Consequently, queue storage can typically be
smaller than a general-purpose memory buffer used
for similar purposes. The Xtensa LX processor
includes two-entry buffering for every TIE queue
interface that the system designer defines. A queue
interface’s two-entry buffer consumes a substan-
tially smaller area than a memory load/store unit,
which can have large combinational blocks for
alignment, rotation, and sign extension of data as
well as cache-line buffers, write buffers, and com-
plicated state machines. Thus, the processor area
that TIE queue interface ports consume is under
the designer’s direct control and can be quite small
or as large as necessary.

The FIFO buffering incorporated into the Xtensa
LX processor for TIE queues serves three distinct
purposes. First, it provides a registered and syn-
chronous interface to the external agent (the actual
FIFO memory), which portable IP blocks need to
meet timing requirements under widely varying
uses. Second, for output queues, buffering provides
two entries that buffer the processor from stalls
when the attached external FIFO memory is full.
Third, it hides the processor’s speculative instruc-
tion executions from the external FIFO memory.

HANDLING SPECULATION
Speculative loads occur on input queue interfaces

because instructions operate on the queue data
before these instructions are guaranteed to have
completed all operations (before they reach the
processor’s commit stage). Activating a queue inter-
face after the commit stage could be nonspecula-
tive, but it would also be less useful, because a
subsequent instruction that operated on that queue

DW_fifo_s1_sf

push_req_n

data_in

full

pop_req_n

data_out

empty

clk rst_n

Xtensa LX processor
(data producer)

TIE_ OQ1_PushReq

TIE_OQ1_Empty

TIE_OQ1

BResetCLK

Xtensa LX processor
(data producer)

TIE_IQ1_PopReq

TIE_IQ1_Empty

TIE_IQ1

BResetCLK

Figure 6. DesignWare synchronous first-in, first-out controller used with TIE queues. FIFO buffering provides a
registered and synchronous interface to the external agent. Two entries buffer the processor from stalls when the
attached external FIFO controller is full. In addition, buffering hides the processor’s speculative execution from the
external FIFO controller.

Register
file

Memory

32

32

160

8

128

Processors

Processors

64

8

157

Input
queues

Load
store

Register transfer
level

Register transfer
level

Devices

Devices

Memory

States

Register
file

Output
queues

Load
storeStates

Figure 7. TIE queues used as instruction operands. The system designer can
customize each queue interface port to the exact value desired, either wider or
narrower than the processor’s standard memory interface ports.

July 2005 57

data would have to wait several cycles for the read-
after-write hazard to resolve.

Speculative buffering
The processor can handle speculative loads from

FIFO memory more effectively via speculative
buffering, as Figure 8 shows. As an instruction reads
data to be used as an operand from a TIE queue
input interface, the queue’s dedicated speculative
buffer stores a copy of that data. The speculative
buffer frees this entry only when the instruction
commits. If the instruction does not commit—due
to an exception, interrupt, or branch—the queue
data remains in the buffer until the processor exe-
cutes the next queue-reading instruction. This sec-
ond execution obtains the internally buffered data,
rather than reading a new value from the external
FIFO memory, thereby preserving the ordering and
coherence of queue references.

Figure 9 shows an example of speculative buffer
timing. In cycle 3, the QACC0 instruction reads the
input queue IQ1. Before the instruction can com-
mit, an interrupt in cycle 5 kills it. The next instruc-
tion to execute that reads the input queue IQ1 is
the QACC1 instruction. When this instruction exe-
cutes, it uses the buffered queue data rather than
issuing a new pop request to the associated FIFO
memory in cycle 13.

Speculative writes to output queues
Speculative writes to output queues are much

simpler and work similarly to speculative writes to

the processor’s register files and states. That is,
writes to output queues are only visible outside of
the processor when the instruction commits.
Speculation within the processor is handled by
pipelining results to the commit stage.

For example, in Figure 9, if the input queue
indicates that it is not ready by asserting
TIE_IQ1_Empty, by default, the queue is blocked
and processor execution stalls until data becomes
available. The same would be true for a write to a
full output queue. This hardware blocking mech-
anism permits a simple and straightforward
approach to synchronization between a producer
and a consumer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I R E M W

P I R E M W

R E M W

I R E M W

0XD

TIE_ IQ1_PopReq

PCLK

QACC0

InterruptVector

QACC1

ReturnFromVector

TIE_ IQ1_Empty

TIE_IQ1

The interface is not
accessed the next
time an instruction
using that queue is
executed.

An interrupt kills
the instruction.

Input interface
accessed when
instruction is in
the E-stage.

Figure 8. Speculative buffering. The processor handles speculative loads from a FIFO controller by keeping a temporary copy of data read from
an input interface in a special buffer.

Other
operands

Speculative
buffer

Figure 9. Example of speculative buffer timing. If the input queue indicates that it
is not ready by asserting TIE_IQ1_Empty, by default, a queue is blocked, and
processor execution stalls until it becomes available.

58 Computer

In contrast, synchronizing communications using
a shared-memory model is accomplished through
semaphores and synchronization primitives, which
is far more complicated. First, semaphores and data
must use separate address spaces. The producer and
consumer both poll the semaphore location to read
each other’s status. In addition, the data producer’s
synchronization software must guarantee the
ordering of writes to the semaphore relative to
writes to the data array to ensure the data consumer
does not read the updated semaphore before all
writes to data memory have completed.

There are many different approaches to memory
ordering and synchronization, but all this effort is
unnecessary when using a queue implementation
that employs built-in hardware synchronization
through FIFO memory’s empty and full mecha-
nisms.

Nonblocking queue accesses
Using nonblocking code for queue accesses is

preferable when other tasks or processes can exe-
cute concurrently on the processor and when queue
stalls can take many cycles. During these stalls it
would be useful to switch to another task and
return to the current thread later when the queue
becomes available.

Code running on an Xtensa LX processor can
perform nonblocking queue accesses by explicitly
checking the queue’s status and branching before
executing the queue instruction itself, as shown in
the following code snippets.
Assembly code for nonblocking queue access:

TASKA:
check_queue_full b1 // queue status

assigned to bool
bnez b1, TASKB // switch tasks if

queue is full
write_queue a1 // write to queue

[...]

TASKB:

C for nonblocking queue access:

if(!check_queue_full()) {
write_queue(value);

} else {
[task b]

}

FLOW-THROUGH PROCESSING
The availability of ports and queues tied directly

to a configurable processor’s execution units per-
mits the use of processors in an application domain
previously reserved for hand-coded RTL logic
blocks: flow-through processing. Combining input
and output queue interfaces with designer-defined
execution units makes it possible to create a
firmware-controlled processing block within a
processor that can read values from input queues,
perform a computation on those values, and output
the results with a pipelined throughput of one com-
plete input-compute-output cycle per clock.

Figure 10 illustrates a simple design of such a sys-
tem with two 256-bit input queues, one 256-bit out-
put queue, and a 256-bit adder/multiplexer (mux)
execution unit. Although this processor extension
runs under firmware control, its operation bypasses
the processor’s memory buses and load/store unit
to achieve hardware-like processing speeds.

Despite substantial hardware in this processor
extension, its definition consumes only four lines
of TIE code:

queue InData1 256 in
queue InData2 256 in
queue OutData 256 out
operation QADD {} { in InData1, in InData2,

in SumCtrl, out OutData} { assign OutData
= SumCtrl ? (InData1 + InData2) : InData1;
}

InData1_Empty

InData1<255:0>

InData1_PopReq
256-bit

adder and
mux

Flow
control and
speculation

handling

Queue 1

InData2_Empty

InData2<255:0>

InData2_PopReq

Flow
control and
speculation

handling

Queue 2

256

256

256 Flow
control and
speculation

handling

QADD execution unit

OutData_Full

OutData<255:0>

OutData_PushReq

Queue 3

External queue
hardware

Execution units
Pipeline control

Register file

Xtensa LX processor

External queue
hardware

Figure 10. Flow-
through processing.
Combining queues
with execution units
adds flow-through
processing to a
configurable
processor core.

The first three lines define the 256-bit input and
output queues, and the fourth line defines a new
processor instruction, QADD, which performs
256-bit additions or passes 256-bit data from input
to output. Defining the instruction in TIE tells the
Xtensa processor generator to automatically add
the appropriate hardware to the processor and to
add the new instruction to the processor’s software-
development tool set.

F ixed-core processors with a fixed instruction
set and limited numbers of I/O ports and
load/store units were appropriate in the days

when microprocessors came in pin-limited pack-
ages, software development tools were handcrafted
over a period of months or years, and system
designs were undertaken at the board level.
However, for 21st-century SoC design, such con-
straints are obsolete.

The configurable processor represents the next
evolutionary step in microprocessor development,
paving the way for many new and interesting system
architectures that employ multiple, heterogeneous

processor cores and exploit the qualities of
advanced semiconductor lithography. Configurable
processors provide SoC designers with building
blocks that achieve performance rivaling hand-built
RTL hardware blocks with postfabrication flexi-
bility and firmware programmability but with much
lower block-development and verification costs. !

Steve Leibson is technology evangelist for Tensilica
Inc. (www.tensilica.com), based in Santa Clara,
California. His research interests include proces-
sor architectures and advanced system-level design.
Leibson received a BSEE from Case Western
Reserve University. He is a senior member of the
IEEE and a 30-year member of the IEEE Com-
puter Society. Contact him at sleibson@tensilica.
com.

James Kim is a senior design engineer in the hard-
ware group at Tensilica Inc. His research interests
include high-bandwidth processor interfaces and
low-power design. Kim received an MSEE from
Stanford University. Contact him at jameskim@
tensilica.com.

July 2005 59

