
Bridging the Gap between Compilation and Synthesis
in the DEFACTO System1

Pedro Diniz, Mary Hall, Joonseok Park, Byoungro So, Heidi Ziegler2

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{pedro,mhall,joonseok,bso,ziegler}@isi.edu

Abstract. The DEFACTO project - a Design Environment For Adaptive
Computing TechnOlogy - is a system that maps computations, expressed in
high-level languages such as C, directly onto FPGA-based computing platforms.
Major challenges are the inherent flexibility of FPGA hardware, capacity and
timing constraints of the target FPGA devices, and accompanying speed-area
trade-offs. To address these, DEFACTO combines parallelizing compiler
technology with behavioral VHDL synthesis tools, obtaining the
complementary advantages of the compiler’s high-level analyses and
transformations and synthesis’ binding, allocation and scheduling of low-level
hardware resources. To guide the compiler in the search of a good solution, we
introduce the notion of balance between the rates at which data is fetched from
memory and accessed by the computation, combined with estimation from
behavioral synthesis. Since FPGA-based designs offer the potential for
optimizing memory-related operations, we have also incorporated the ability to
exploit parallel memory accesses and customize memory access protocols into
the compiler analysis.

1. Introduction
The extreme flexibility of field programmable gate arrays (FPGAs), coupled with the
widespread acceptance of hardware description languages (HDL) such as VHDL or
Verilog, have made FPGAs the medium of choice for fast hardware prototyping and a
popular vehicle for the realization of custom computing machines. Programming these
reconfigurable systems, however, is an elaborate and lengthy process. The programmer
must master all of the details of the hardware architecture, partitioning both the
computation to each of the computing FPGAs and the data to the appropriate memories.

The standard approach to this problem requires that the programmer manually
translate the program into an HDL representation, applying his or her knowledge of the
FPGA specifics, identifying available parallelism and performing the necessary code
transformations at that time. Using commercially available synthesis tools, typically the
programmer can specify the maximum number of components of a given kind and/or the
maximum area or clock period of the resulting design. The tool then determines the
feasibility of the design by negotiating area and speed trade-offs, and generates a
realizable design. Throughout the process, the burden is on the programmer to ensure that
the intermediate representation of the program is kept consistent with the original version.

We believe the way to make programming of FPGA-based systems more accessible is
1Funded by the Defense Advanced Research Project Agency under contract # F30602-98-2-0113
2Funded through a Boeing Satellite Systems Doctoral Scholars Fellowship

to offer a high-level imperative programming paradigm, such as C, coupled with new
compiler technology oriented towards FPGA designs. Programmers retain the advantages
of a simple computational model via a high-level language but rely on powerful compiler
analyses to identify parallelism, provide high-level loop transformations, and automate
most of the tedious and error-prone mapping tasks. This paper describes preliminary
experiences with DEFACTO - a Design Environment For Adaptive Computing
TechnOlogy[7]. The DEFACTO system integrates compilation and behavioral synthesis to
automatically map computations expressed in C to FPGA-based computing engines.

In DEFACTO, we explore the interaction between compiler transformations, most
notably loop transformations, and their hardware realizations on FPGAs using
commercially available synthesis tools. Since the hardware implementation is bound in
terms of capacity, the compiler transformations must be driven by the space constraints
and timing requirements for the design. Also, high latency and low bandwidth to external
memory, relative to the computation rate, are often performance bottlenecks in FPGA-
based systems, just as in conventional architectures. A compiler using high-level analysis
information such as data dependence analysis, is in a privileged position to make decisions
about which code transformations will lead to good hardware designs. To this end, we
introduce the notion of balance to select the appropriate set of transformations.

A balanced solution is one where data is fetched from memory at approximately the
same rate as it is consumed by the computation. To determine balance, we must examine
the output of synthesis for a candidate design. Due to the complexity of resource binding
and other by-products of synthesis, the compiler cannot accurately predict a priori the
performance and space characteristics of the resulting design. Completely synthesizing a
design is prohibitively slow (hours to days) and further, the compiler must try several
designs to arrive at a good solution. For these reasons, we exploit estimation from
behavioral synthesis tools such as Mentor Graphics’ MonetTM[15] to determine specific
hardware parameters (e.g., size and speed) with which the compiler can quantitatively
evaluate the application of a high-level transformation to derive a balanced and feasible
implementation of the loop nest computation. The compilation system uses data
dependence and related analyses in combination with estimation information from a
commercially available behavioral synthesis tool for the rapid evaluation of
implementation options to steer a successful implementation of a selected portion of the
computation to hardware. DEFACTO performs several code transformations that are
useful for tailoring code to space constraints, such as loop tiling, and loop unrolling.

An additional focus of optimization in the DEFACTO system is to decrease latency
and increase the effective bandwidth to external memory. While many locality
optimizations used in conventional systems can be applied (e.g., loop permutation, tiling,
unrolling, scalar replacement), new optimizations are possible such as parallelization of
memory accesses and customization of memory access protocols. Further, the
configurability of FPGA hardware leads to new decision procedures for applying existing
transformations. In this paper we describe how these techniques borrowed and adapted
from compiler technology have been combined with a commercial behavioral synthesis
tool, to automatically derive balanced and optimized designs on FPGA-based
architectures.

The rest of this paper is organized as follows. In the next section we compare
parallelizing compiler technology with behavioral synthesis technology used in
2

commercially available tools. Section 3 presents an overview of the DEFACTO system.
Section 4 describes analyses to uncover data reuse and exploit this knowledge in the
context of FPGA-based data storage structures. Section 5 describes a transformation
strategy for automating design space exploration in the presence of multiple loop
transformations. This strategy uses a specific performance metric that takes data reuse and
the space and time estimates derived by behavioral synthesis estimation. Section 6
describes the application of data partitioning and customization of memory controllers to
substantially reduce the costs of accessing external memory from the FPGA. We survey
related work in section 7. In section 8 we describe the current status of the DEFACTO
system implementation and present some preliminary conclusions of its applicability to
simple kernel applications.

2. Comparing Parallelizing Compiler Technology and Behavioral
Synthesis
Behavioral synthesis tools map computations expressed in hardware-oriented
programming languages, such as VHDL or Verilog, to FPGA and ASIC hardware designs.
Behavioral specifications, as opposed to lower level logic or structural specifications,
specify their computations without committing to a particular hardware implementation.
In the same way that behavioral synthesis has raised the level of abstraction from logic
synthesis, permitting designers to develop much more complex designs than previously
possible, the goal of the DEFACTO system is to raise the level of abstraction even higher,
to the C application level. While at first glance it may seem obvious that a compiler can
straightforwardly generate correct VHDL code from a C input (in fact, some commercial
systems already do this for restricted C dialects), what is less obvious is that existing
compiler technology, developed for parallelization and optimizing memory hierarchies,
can automate important optimizations that are difficult for a human designer to perform
and exceed the capabilities of today’s synthesis tools.

While there are some similarities between the optimizations performed in these two
technologies, in many ways they offer complementary capabilities, as shown in Table 1.

Behavioral synthesis performs three core functions: (1) binding operators and registers in
the specification to hardware implementations (e.g., selecting a ripple-carry adder to
implement an addition); (2) resource allocation (e.g., deciding how many ripple-carry

Behavioral Synthesis Parallelizing Compiler

Optimizations only on scalar variables Optimizations on scalars and arrays

Optimizations only inside loop body Optimizations inside loop body and across
loop iterations

Supports user-controlled loop unrolling Analysis guides automatic loop transforma-
tions

Manages registers and inter-operator
communication

Optimizes memory accesses; evaluates trade-
offs of different storage, on- and off-chip

Considers only single FPGA System-level view: multiple FPGAs, memories

Performs allocation, binding and scheduling of
hardware resources

No knowledge of hardware implementation of
computation

Table 1: Comparison of Capabilities.
3

adders are needed); and, (3) scheduling operations in particular clock cycles. In addition,
behavioral synthesis supports some optimizations, but relies heavily on programmer
pragmas to direct some of the mapping steps. For example, after loop unrolling, the tool
will perform extensive optimizations on the resulting inner loop body, such as
parallelizing and pipelining operations and minimizing registers and operators to save
space. However, deciding the unroll amount is left up to the programmer.

The key advantage of parallelizing compiler technology over behavioral synthesis is
the ability to perform data dependence analysis on array variables, used as a basis for
parallelization, loop transformations and optimizing memory accesses. This technology
permits optimization of designs with array variables, where some data resides in off-chip
memories. Further, it enables reasoning about the benefits of code transformations (such
as loop unrolling) without explicitly applying them.

In DEFACTO, we combine these technologies, as will be described in the next
section. Behavioral VHDL specifications permit use of variables and high-level control
constructs such as loops and conditions, reducing the gap between parallelizing compiler
technology and logic synthesis tools.

3. Overview of DEFACTO Compilation and Synthesis System
3.1 Design Flow
Figure 1 shows the steps of automatic application mapping in the DEFACTO compiler. In
the first step, the DEFACTO compiler takes an algorithm description written in C or
FORTRAN, and performs pre-processing and several common optimizations. In the
second step, the optimized code is partitioned into what will execute in software on the
host and what will execute in hardware on the FPGAs. The following steps are loop

transformations and analyses to optimize the parallelism and data locality. Loop
permutation[16] changes the nesting order of loops; we use it in DEFACTO to move loops
that carry the most data reuse to the innermost loops where it can be better exploited. Loop
unrolling[16] duplicates the loop body. Tiling[21] divides computation and data that are
allocated to an FPGA into blocks. The next step is data reuse analysis, which identifies
multiple accesses to the same memory location. Scalar replacement[6] makes the data

Host CPU

Program

Good
Design

No

General

Place & Route

Logic Synthesis

Yes

SUIF2VHDL

Compiler Optimizations

Estimation

Scalar Replacement

Tiling

Permutation
Unrolling

Loop Transformations

Library Functions
Target Architecture

Exploration
Design Space

Reuse Analysis

Partitioning
Source Code

Memory Access

Protocols

Memory Access

Parallelization

FPGA−boards

Figure 1. DEFACTO Design Flow
4

reuse explicit by using the same register for read/write references that access the same
memory location. SUIF2VHDL translates from SUIF to VHDL, which is the input to the
synthesis process.

When the final computation part of the behavioral VHDL design has been derived, we
optimize memory accesses by reorganizing data, and customizing memory access
protocols. The resulting design is sent on to logic synthesis and place-and-route.
Invocations to library functions are added to the portion of the code that will execute in
software to load FPGA configurations and memories, synchronize and retrieve results.

A major issue in the automation process in DEFACTO is to understand how much and
which set of loop transformations to apply and what are the good metrics by which to
evaluate the resulting design. Our approach uses the estimation features of commercially
available synthesis tools, which deliver fast (and presumably reasonably accurate)
estimates for a given design. The synthesis tool provides area estimates and the number of
clock cycles required for its scheduling. Using this information, DEFACTO refines the set
of constraints for the design and evaluates what the resulting implementation estimate is.
This estimation helps the DEFACTO system to quickly explore area and speed trade-offs
in the design space.

3.2 Target Architectures
The compilation techniques designed for DEFACTO focus on targeting board-level
systems similar to the WildStar/PCI board from Annapolis Micro Systems, depicted in
Figure 2. Such systems consist of multiple interconnected FPGAs; each can access its own
local memories. A larger shared system memory and general-purpose processor (GPP) are
directly connected to the FPGA (this connection varies significantly across boards). The
GPP is responsible for orchestrating the execution of the FPGAs by managing the flow of
control and data from local memory to shared system memory in the application.

We chose a board-level architecture as a target for DEFACTO because it can be
assembled with commodity parts, and commercial systems composed of such components
are available. We expect the compilation approaches to form a solid foundation for a
multi-board system, and also be applicable to system-on-a-chip devices that have multiple
independent memory banks, each with configurable logic. The WildStar/PCI board in
Figure 2 consists of three Xilinx Virtex FPGAs parts with up to a million gates each. One
FPGA serves as a controller; the other two FPGAs are connected by a 64-bit channel, and
each has two local SRAMs with 32-bit dedicated channels. The three FPGAs share
additional system memory. When logic is effectively mapped to the FPGAs, the rate data

sshhaarreedd
mmeemmoorryy00

sshhaarreedd
mmeemmoorryy22

sshhaarreedd
mmeemmoorryy33

sshhaarreedd
mmeemmoorryy11

FFPPGGAA 11 FFPPGGAA 00 FFPPGGAA 22

SSRRAAMM11

SSRRAAMM00

SSRRAAMM33

SSRRAAMM22

PPCCII
CCoonnttrroo lllleerr

To Off-Board

32bits
64bits

Figure 2. Target Architecture Example - WildStar/PCI Board
5

is consumed by the computation is significantly higher than the rate the local memories
can provide making it desirable to exploit temporal reuse within the FPGA.

3.3 Target Applications and Examples
Image processing applications are one of the primary domains for the DEFACTO system.
These applications typically manipulate large volumes of fine-grain data that, despite
recent increases in FPGA capacity, must be mapped to external memories and then
streamed through the FPGAs for processing. These applications typically combine the
manipulation data organized as images in a regular fashion. They also tend to combine bit-
level operations with sliding-window techniques making them amenable for data
dependence and data reuse analysis which are a significant part of the focus of the
DEFACTO compilation flow. In the next section we introduce these analyses and present a
running example - a binary image correlation kernel application - that fits this class of
applications. In addition, the example offers opportunities for the application of loop level
transformations, such as loop unrolling and tiling, and because of its complexity, requires
that the compiler negotiate the space-time trade-off.

4. Analyses and Transformations to Exploit Data Reuse
We next describe data reuse analysis for FPGA-based computing engines. While the core
of this analysis uses data dependence information developed for parallelization and
memory hierarchy optimizations in conventional architectures, FPGAs have no cache to
reduce the latency of memory accesses. As a result, reuse analysis and optimizations are
even more critical to our domain. Further, reuse analysis must precisely capture exact
dependence distances so that data reuse can be exploited in compiler-controlled hardware
structures, such as in internal registers. Thus, reuse analysis and associated
transformations in our context more closely resemble what is required in register
allocation for conventional architectures[6], rather than the large body of prior work on
exploiting reuse in cache.

There are also several distinctions in the transformations that are performed in FPGA-
based systems. The number of registers is not fixed as in a conventional architecture, so it
is possible to tailor the number of registers to the requirements of the design. Second,
customized hardware structures, not just registers, can be used to exploit the reuse in a
way that maps to a time- and space-efficient design. The remainder of this section
describes these differences.

4.1 Data Reuse Analysis
Data reuse analysis, as implemented in our compiler, identifies reuse opportunities, and
builds a reuse graph for a given loop nest. A reuse graph G=(V,E) includes all reuse-
carrying array references (V) and the reuse edges (E) between them. Reuse edges are
represented by the reuse distance between two array references. The reuse distance is
defined by the difference in iteration counts between the dependent references. The reuse
distance is different from the dependence distance in two ways. First, only input and true
dependences are candidates for data reuse. Our analysis also considers output
dependences as candidates for redundant write access elimination, which also reduces
memory accesses. Anti-dependences are not considered, as they do not represent data
reuse. Secondly, as reuse analysis must precisely capture the distance between
dependences, we do not include dependences with an inconsistent distance, where the
6

iteration counts between the dependent references are not always constant. These
references require a non-constant number of registers to exploit reuse. Further, the
candidate array references for data reuse must be in the affine domain. In other words, the
array access expression is composed of linear functions of loop indices and constants.

The reuse distance is represented in the same form as dependence vectors, i.e. a vector
with the same number of elements as the number of loops in the loop nest. For example, a
reuse distance of (1, 2) means that there are two loops in the nest and the reuse occurs in
one iteration of the outer loop and two iterations of the inner loop. A loop-independent
data reuse represented by a vector of all zeros, occurs when the same array element is
referenced multiple times in the same iteration of the loop nest. A reuse chain includes all
the array references that access the same memory location, a set of reuse instances. A
reuse instance includes two array references, one source and one sink, and the reuse
distance vector (reuse edge) between the two array references. References with no
incoming reuse edges are called generators; each reuse chain has one generator. A
generator provides the data that is used by all the references in the reuse chain.

Figure 3(a) shows an example, organized as a four-deep loop nest with a conditional
accumulation. At each iteration the code determines whether or not a pixel of the input
image should be accumulated with a running sum depending on the value of a mask array.
An array reference mask[i][j] is read in every iteration of loops m and n. The reuse
distance (*,*,0,0) from mask[i][j] to itself means the same array element is referenced
repeatedly in every iteration of loop m and n. The array image also carries reuse, but the
reuse distance is not consistent to avoid the accesses to the same memory location using a
fixed number of registers. Therefore, we give up the reuse opportunities and the array
image is read from memory.

4.2 Scalar Replacement
When the code shown in Figure 3(a) is mapped to an FPGA-based system, it will result in
repeated accesses to the same external memory location. The compiler must transform the
code to guide behavioral synthesis to exploit the reuse that the previously described
analysis has identified.

Scalar replacement replaces certain array references with temporary scalar variables
that will be mapped to on-chip registers by behavioral synthesis. Scalar replacement
makes the data reuse explicit, resulting in a reduction in the memory accesses. It also
avoids multiple write references by writing the redundant memory writes to a register and
only writing the data to memory for the last write. Our scalar replacement has more
freedom than previously proposed work[6] in that it can utilize the flexibility of FPGAs,
i.e., the number of registers to keep the frequently used data does not have a rigid limit,
and is only constrained by the space limitation of the FPGA device and the complexity of
designs involving very large numbers of registers.

The reuse distance between the generator and the tail reference in a reuse chain
decides the required number of registers to exploit a possible data reuse. Intuitively, all the
array references in the reuse chain can be replaced by accesses to the same register, and
the generators are assigned data from memory.

Figure 3(b) shows the output of our scalar replacement. From the reuse information
given by the reuse analysis, the reuse carrying array reference mask[i][j] is replaced with a
scalar variable mask_0. Each array element mask[i][j] is kept in 16 different registers,
mask_0 through mask_15. Data in these registers are loaded when m and n are 0 and
7

int th[60][60];
char mask[4][4];
char image[63][63];
for(m=0; m<60; m++){
 for(n=0; n<60; n++){
 sum = 0;
 for(i=0; i<4; i++){
 for(j=0; j<4; j++){
 if(mask[i][j] != 0)

 sum += image[m+i][n+j];
 }
 }
 th[m][n] = sum;
 }
}

(a) Source Code & Reuse Graph

for(m = 0; m < 60; m++){
 for(n = 0; n < 60; n++){
 sum = 0;
 for(i = 0; i < 4; i++){
 for(j = 0; j < 4; j++){
 if (m == 0 && n == 0)
 mask_0 = mask[i][j];
 if (mask_0 != 0)
 sum += image[m+i][n+j];
 rotate_register(mask_0,

mask_1,mask_2,mask_3,
mask_4,mask_5,mask_6,
mask_7,mask_8,mask_9,
mask_10,mask_11,mask_12,
mask_13,mask_14,mask_15);

 }
 }
 th[m][n] = sum;
 }
}

mask[i][j](*,*,0,0)

(b) Scalar Replacement

for (m = 0; m < 60; m++) {
 for (n = 0; n < 60; n++) {
 sum = 0;
 for (i_tile = 0; i_tile < 2; i_tile++) {
 if (m == 0 && n == 0) {

mask_0_0 = mask[2*i_tile][0]; mask_1_0 = mask[2*i_tile][1];
mask_2_0 = mask[2*i_tile][2]; mask_3_0 = mask[2*i_tile][3];
mask_4_0 = mask[2*i_tile+1][0]; mask_5_0 = mask[2*i_tile+1][1]
mask_6_0 = mask[2*i_tile+1][2]; mask_7_0 = mask[2*i_tile+1][3]

 }
 if (mask_0_0 != 0) sum += image[m+2*i_tile][n];
 if (mask_1_0 != 0) sum += image[m+2*i_tile][n+1];
 if (mask_2_0 != 0) sum += image[m+2*i_tile][n+2];
 if (mask_3_0 != 0) sum += image[m+2*i_tile][n+3];
 if (mask_4_0 != 0) sum += image[m+2*i_tile+1][n];
 if (mask_5_0 != 0) sum += image[m+2*i_tile+1][n+1];
 if (mask_6_0 != 0) sum += image[m+2*i_tile+1][n+2];
 if (mask_7_0 != 0) sum += image[m+2*i_tile+1][n+3];
 swap_reg(mask_0_0, mask_0_1); swap_reg(mask_1_0, mask_1_1);
 swap_reg(mask_2_0, mask_2_1); swap_reg(mask_3_0, mask_3_1);
 swap_reg(mask_4_0, mask_4_1); swap_reg(mask_5_0, mask_5_1);
 swap_reg(mask_6_0, mask_6_1); swap_reg(mask_7_0, mask_7_1);
 }
 th[m][n] = sum;
 }
}

(d) Tiling

for(m=0; m<60; m++) {
 for(n=0; n<60; n++) {
 sum = 0;
 for(i=0; i<4; i++) {
 for(j=0; j<4; j += 2) {
 if(mask[i][j] != 0)sum += image[m+i][n+j];
 if (mask[i][j+1] != 0) sum += image[m+i][n+j+1];
 }
 }
 th[m][n] = sum;
 }
}

(c) Loop Unrolling

Figure 3. ATR Kernel
8

rotated in each iteration of the j loop so that mask_0 always contains the correct data,
avoiding checking loop variable i and j repeatedly. The rotate operation can be done in
parallel in hardware.

Our compiler also performs loop peeling to isolate the condition (m==0 && n==0) to
eliminate the conditional read to memory. For clarity of presentation, the results of this
transformation are not shown here.

4.3 Tapped Delay Lines
An alternative to scalar replacement can be used if reuse is further restricted to input
dependences with a consistent dependence carried by the innermost loop in a nest (or
other loops in the nest if inner loops are fully unrolled). For example, if a computation
accesses consecutive and overlapping elements of a given array (such as scanning an array
corresponding to rows or columns of an image) over consecutive iterations of a loop, it is
possible to store the values across iterations in a linearly-connected set of registers -
known as tapped delay lines. The data accessed in one iteration differs from the data in the
previous iteration by an ajacent memory location. All but one element of the delay line can
be reused, substantially reducing the number of memory accesses. This important
improvement opportunity has long been recognized by experienced designers who map
computations by hand to hardware, by mapping elements in memory to tapped delay lines.
As part of our previous work, we developed several compiler analyses that recognize and
exploit opportunities in the source program for data reuse and can be subsequently
mapped to tapped delay lines [8,16].

The application reuses the data in different registers by moving in tandem, across loop
iterations, the data stored in all of the registers in the tapped delay line. By doing this
shifting operation, the computation effectively reuses the data in all but one of the registers
in the tapped delay line, therefore reducing the number of memory accesses. Although the
same sort of reuse could be exploited by scalar replacement, the tapped delay line
structure results in a more efficient hardware mapping, as we can incorporate a library
with hand-placed components.

Our approach for identifying this reuse and exploiting tapped delay lines in FPGA
designs is described elsewhere[10]. While the current analysis for tapped delay lines is
limited to input data dependences on innermost loops, we feel this covers a substantial set
of image processing applications that scan subsections of images stored in arrays.

5. Transformation Strategy for Automating Design Space Exploration
Current practice when developing designs for FPGA-based systems is for the application
programmer to develop a series of designs and go through numerous iterations of
synthesizing the design, examining the results, and modifying the design to trade off
performance and space. To automate this process, called design space exploration, we
must define a set of transformations to be applied and metrics to evaluate specific
optimized designs among candidates in the design space. Simply stated, the optimization
criteria for mapping a single loop nest to FPGA-based systems are as follows: (1) the
design must not exceed the capacity constraints of the system; (2) the execution time
should be minimized; and, (3) for a given performance, FPGA space usage should be
minimized. The motivation for the first two criteria is obvious, but the third criterion is
also needed for several reasons. First, if two designs have equivalent performance, the
smaller design is more desirable, in that it frees up space for other uses of the FPGA logic,
9

such as to map other loop nests. In addition, a smaller design usually has less routing
complexity, and may achieve a faster target clock rate. Moreover, the third criterion
suggests a strategy for selecting among a set of candidate designs that meet the first two
criteria.

The DEFACTO compiler uses two metrics to guide the selection of a design. First,
results of estimation provide space usage of the design, related to criterion 1 above.
Another important metric used to guide the selection of a design, related to criteria 2 and
3, is balance, defined by the following equation.

,
where F refers to the data fetch rate, the total data bits that memory can provide per cycle,
and C refers to the data consumption rate, total data bits that computation can consume
during the computational delay. If balance is close to one, both memories and FPGAs are
busy. If balance is less than one, the design is memory bound; if greater than one, it is
compute bound. When a design is not balanced, this metric suggests whether more
resources should be devoted to improving computation time or memory time.

The DEFACTO compiler adjusts balance by increasing/decreasing operator and
memory parallelism, and increasing/decreasing on-chip storage. For example, consider
loop unrolling[16]. Figure 3(c) shows the result of unrolling the inner loop j once on the
original code in Figure 3(a). The number of memory accesses in one iteration in the
unrolled code is doubled, and, since behavioral synthesis will only schedule independent
memory accesses in parallel if they appear in the same inner loop body, the unrolled code
fetches data at twice the rate of the original loop body. In addition, if the clock period is
sufficiently long, even the dependent computations, two accumulations, can be scheduled
in the same cycle. Therefore, unrolling can increase both the consumption rate and the
fetch rate.

We can model the relationship between the unrolling factor and the fetch and
consumption rates under the following assumptions: (1) computation and memory
accesses are completely overlapped, requiring that addresses for memory accesses can be
calculated at the rate at which the memory can provide data; (2) the target architecture,
target clock rate, and memory latency are fixed; (3) data is laid out in independent
memories to maximize memory parallelism, as described in the next section; and, (4)
estimates derived from a combination of behavioral synthesis and compiler analysis are

balance
F
C
----=

Figure 4. Data Fetch and Consumption Rates.
10

accurate. Then, the fetch rate increases linearly in the unroll amount until it saturates at
an upper limit based on memory parallelism in the application and the bandwidth of the
architecture, as shown in Figure 4(a). The consumption rate, which combines the estimate
of computation delay (ignoring memory latency) taken directly from behavioral synthesis
with the compiler’s model of the data fetch rate, increases with the unroll amount, but not
linearly, and does not saturate, as shown in Figure 4(b). The relationship is sublinear
because executing operations in parallel depends on the availability of operands (the data
fetch rate) and data dependences across operations in the unrolled loop body.

5.1 Optimal Unrolling Factor Search
Given the above model, the compiler uses balance to guide determining the optimal unroll
amount. Given the properties of the data consumption rate and the data fetch rate
described in the previous section, there could be five possible scenarios that can happen
between the data fetch rate and the consumption rate, as shown in Figure 4(c). In any
scenario, the slower rate dominates the overall execution time, and the faster rate cannot
get its full performance. In scenario one and four, the data fetch rate and the consumption
rate do not cross each other. In scenario three and five, there is one crossing point, where
the balance is one. In scenario two, there are two crossing points. The solution with higher
rates between the two crossing points, of course, results in better performance, provided
the solution meets the space constraint.

In all cases, the optimal solution can be found beyond the saturation point, if the
solution meets the space constraint. In scenario two and three, for example, even though
there is a balanced solution before the saturation point, a greater unrolling factor performs
better than the balanced solution because its dominant rate is greater. If a balanced
solution exists beyond the knee (saturation point) of the fetch rate, increasing the unrolling
factor further will not improve the overall performance, since the slower memory
operations dominate the overall performance. Figure 4(d) illustrates the relationship
between the unrolling factor and overall performance. The knee of the graph is the optimal
solution. It is a balanced solution in scenarios two and five if it meets the space constraint.
In scenario one, it is the solution at the saturation point. In scenario three and four, the
optimal solution is the maximum unrolling factor. Figure 4(e) shows the relationship
between the unrolling factor and the space usage. The space usage of a design grows as the
unrolling factor increases, even beyond the optimal solution.

5.2 Beyond Unrolling: Tiling
A similar optimization strategy can be used for tiling, which is the multi-loop analog of
unrolling. Tiling divides computation and data that are allocated to an FPGA into blocks.
Traditionally, tiling is used to manage the space limitation of cache memories, as it
increases the frequency of data reuse, so that data is still available in cache by the time it is
reused. In DEFACTO, we use tiling to manage the space for on-chip data storage. The
compiler unrolls the entire tiled loops completely not including the tile-controlling loops.
Therefore, the unrolling factor is controlled by the tile size on each loop. By changing the
tile size, we control the parallelism, locality, and space usage for on-chip storage.

Figure 3(d) shows an example of tiling. Two inner loops of the original program in
Figure 3(a) are tiled with tile size two on loop i and tile size four on loop j, and the tiled
loops are completely unrolled.
11

6. Parallelization and Customization of Memory Accesses
In DEFACTO we explore several techniques to increase aggregate external memory
bandwidth and to decrease the amount of latency per memory access. These include 1)
introducing a new architecture to create an optimized external-memory-to-FPGA interface
and designing optimized circuitry to implement the architecture; 2) customizing data
partitioning across a set of memories to gain parallel accesses; and 3) performing data
reorganization and packing to create a tailored data layout.

6.1 Memory Interface Architecture
FPGAs offer a unique opportunity to exploit application specific characteristics in terms of
the design and implementation of the datapath-to-external-memory interface. In order to
build a modular, yet efficient interface to external memory, we defined two interfaces and
a set of parameterizable abstractions that can be integrated with existing synthesis tools.
These interfaces decouple target-architecture dependent characteristics between the
datapath and external memories. One interface generates all the external memory control
signals matching the vendor-specific interface signals - physical address, enable,
write_enable, data_in/out, etc. In addition, this interface allows the designer to exploit
application-specific data access patterns by providing support for pipelined memory
accesses. The second interface defines the scheduling of the various memory operations
allowing the designer to define application specific scheduling strategies. We have
implemented these two interfaces over a simple, yet modular, architecture a described in
detail in [17]. This architecture consists of conversion FIFO queues, and channels, an
address generation unit (AGU), and a memory controller for each of the external
memories in the design.

In this context, we introduce two abstractions, data ports and data channels. A data
port defines several hardware attributes for the physical connection of wires from the
memory controller (the entity responsible for moving data bits to and from the external
memory) to the datapath ports. A data channel characterizes (for a given loop execution)
the way the data is to be accessed from/to memory to/from a datapath port. Examples
include sequential or strided accesses. A channel also includes a conversion FIFO. The
FIFO queue allows for the prefetching of data from a memory, and also allows for
deferred writebacks to memory such that incoming data transfers, necessary to keep the
computation executing, take priority. The conversion FIFO queue also allows for the
implementation of data packing and unpacking operations implicitly, if any, so that no
modifications to the datapath either producing or consuming the data are necessary. Over
the lifetime of the execution of a given computation it is possible to map multiple data
channels to the same datapath port by redefining the parameters of the data stream
associated with it.

6.2 Memory Interface Controller and Scheduling Optimizations
Part of the target hardware design consists of auxiliary circuitry to deal with the external
memories. These less glamorous and often neglected entities provide the means to
generate addresses, carry out memory signaling and temporarily store data to and from
external memories dealing with the pins and timing vagaries of the vendor-specific
memory and FPGA interfaces. Because of its key role in exploiting application-specific
features to reduce memory latency, we focus our attention on the memory channel
12

controller.
The role of a memory channel controller is to serialize multiple memory requests for a

set of data channels associated with a single memory. A naive implementation of the
memory controller would call for the controller to determine for each data channel
whether or not a memory access is required. If required the controller must issue an
address and engage in the memory signaling protocol. All these phases are implemented
via finite state machines that the compiler synthesizes from parameterized VHDL code
generation templates and which correspond to a substantial amount of complexity of the
final design.

The current implementation allows for application-specific scheduling by defining a
distinct ordering of the memory accesses for the different channels. While predicting exact
memory access order is impossible, our compiler can reduce the number of clock cycles
required to access the data corresponding to many memory channels by bypassing
memory controller states. These “test” states can be eliminated when the controller is
assured that if a datum is required by a given channels, it is also true that it is required by a
set of other channels. In this situation the controller need not explicitly check whether or
not a memory access is required. The benefits of this optimization when compounded with
pipelined memory access mode can lead to a substantial performance improvement of up
to 50% for a small set of image processing kernels[17].

6.3 Data Partitioning
To take advantage of the multiple external memories associated with an FPGA, in such a
way as to obtain the maximum number of parallel reads and writes, we want to divide
program data among them in a useful way. For very simple programs, it may be easy for
the programmer to simply divide each array into equal parts, assigning each to an
associated memory to gain some parallel memory accesses. Determining exactly how to
divide the data and place it in a memory to gain the maximum amount of parallelism
requires further analysis. Therefore, in contrast to having the programmer specify a data
partition by hand, we automatically partition an array across available external memories
by building a set of constraints in a linear algebra framework and then solving for a
partitioning solution.

We borrow from multiprocessor data partitioning and layout[1]. The multiprocessor
analyses considered cache effects, sequential code execution on a per processor basis, and
were limited by the processors' fixed architecture and instruction set. We add constraints to
the system based on how the computation is converted into a datapath, how commercial
synthesis tools perform scheduling, and using information about our own communication
architecture between off-chip memories and the FPGA (i.e. the memory access protocols
described earlier in this paper). While the data access patterns may suggest different
partitions for the array at different execution points, the communication costs associated
with repartitioning the data are high. Therefore, we choose one global partition for the
entire execution based on loop parameters. SUIF annotations[18] capture the partitioning
scheme for each array. This information includes to which memory or memories data is
partitioned and whether the array is partitioned on a per element, row, column or block
basis in contrast to the modulo unrolling used for bank disambiguation in the MIT Raw
project[5]. Host code, initially transferring data to the FPGA memories before program
execution and also returning data to the host memory upon program completion,
13

implements the partitioning scheme.

6.4 Data Reorganization and Packing
Similar in concept to increasing spatial locality in a cache line described by Anderson et.
al.[2], we use data reorganization and packing techniques to increase spatial locality and
decrease access latency inherent in the system. By reorganizing data assigned to a
particular memory, we can create a tailored layout that will allow the channel access
pattern to be sequential or strided, thus taking advantage of the optimized circuitry. By
identifying and packing array elements whose sizes are less than the width of one data
transfer, we are able to match the computation rate. We may even be able to uncover
further information that could be used to direct additional loop transformations to
optimize the system. An example would be that by packing data, we gain increased
bandwidth and realize that we could further unroll the loop.

6.5 Example
We now illustrate the application of the two compiler techniques described in the previous
sections to the running example described earlier in this paper. First we partition the arrays
mask and image across the two external memories. From the program, we build a set of
constraints and solve for the partitions. Both the mask and image arrays have similar
access patterns; therefore, the resulting partitions are similar. Within the loop body, the 16
elements of the mask array are accessed in a row wise manner. The even rows of the mask
array are partitioned to one memory and the odd to the other. The array image is also
accessed in a row wise manner, in blocks of four by four elements, within the loop body.
Since square blocks are accessed on each loop iteration, we can partition either row or
column wise. Since no code transformations are necessary for a row wise partition, we
choose that scheme. The even rows of array image are assigned to one memory and the
odds to the other. Similarly shaded data in each memory are accessed by the FPGA in
parallel. .

We reorganize the partitioned data so that the even rows of the array mask are
contiguous in the assigned external memory. We reorganize the odd rows in a similar
manner for both arrays. Image processing applications, such as the example, that operate
on pixel-based images using eight bit values can have a substantial reduction in the
number of memory accesses as a single 32-bit memory transfer can retrieve/store four
consecutive pixel values. We pack data elements in memory to take advantage of the full
channel width.

Figure 5. Example Data Layout

External Memory 1 External Memory 2

mask(0,0) mask(0,3)mask(0,2)mask(0,1) mask(1,0) mask(1,3)mask(1,2)mask(1,1)
mask(3,0) mask(3,3)mask(3,2)mask(3,1)mask(2,0) mask(2,3)mask(2,2)mask(2,1)

image(0,0)
image(0,1)

image(0,62)
image(2,0)

image(2,62)

image(62,62)

image(1,0)
image(1,1)

image(1,62)
image(3,0)

image(3,62)

image(61,62)
14

7. Related Work
7.1 Configurable Architectures
Several research efforts have concentrated on the development of new reconfigurable
architectures (e.g., [8] [13] [14]). These efforts differ from our research in two main
aspects. First, as new architectures, they chose which components of the systems are
reconfigurable and what are the macro instructions the non-reconfigurable portion can
execute. As such they have develop target architecture-specific compiler and synthesis
tools and have not taken advantage of the wealth of techniques available in behavioral
synthesis tools.

In DEFACTO we use commercially available FPGAs and corresponding tools and
synthesize from the ground up all of the control structures in the FPGA to allow them to
operate autonomously. Because other approaches do not use commercial synthesis tools
they avoid the performance and interface issues with place-and-route.

7.2 Compilation Systems for Configurable Architectures
Like our effort other researchers have focused on using automatic data dependence and
compiler analysis to aid the mapping of computations to FPGA-based machines.
Weinhardt[19] describes a set of program transformations for the pipelined execution of
loops with loop-carried dependences onto custom machines using a pipeline control unit
and an approach similar to ours. He also recognizes the benefit of data reuse but does not
present a compiler algorithm. No references in the literature mention multi-dimensional
arrays as well as the implementation of a decision procedure to analyze the various trade-
off choices for the implementation of data queues. We further use loop unrolling to expose
more array references in the program and therefore infer data reuse for the unrolled loops.

The Napa-C compiler effort[11][12] explores the problem of automatic mapping
array variables to memory banks. This work is orthogonal to ours. We are interested in
implementing an efficient and autonomous computing engine on each FPGA of a multi-
FPGA board. Their RISC-based interface as expected is very similar to our target design
architecture as a way to control the complexity of the interface between the FPGAs and
the host processor. A major difference is the fact that we target commercially available
components and not an embedded custom architecture.

Multiprocessor systems are highly effected by the computation and data partitioning
across processors and memory. Anderson’s work[1] presents an algorithm that automates
this mapping to free the programmer from performing the process by hand. The process
uses a linear algebra framework to set up constraints contained in the user program and
then solves for a data and computation distribution. Data reorganization[2] may need to be
calculated as the algorithm looks within procedures as well as across procedure
boundaries. This work takes into account effects from the cache(s) and sequential code
execution on a processor. We replace these processor specifics with hardware-synthesis-
specific information.

In the context of the MIT Raw project - a tiled and configurable architecture[4] the
compiler partitions the computation and data among the cores and programs the
communication channels to best suite the communication pattern for each application.
Barua et. al.[5] present a code transformation technique using compile-time information
to manage a distributed address space memory, with exposed memory banks. A memory
reference instruction is said to be bank-disambiguated when the compiler guarantees that
15

every dynamic instance of that instruction references the same compile-time-known bank.
Using the bank information, array accesses are uniformly laid out across tiles, via a low
order interleaving scheme. The low order bits of the address specify the tile. To achieve
program correctness, the loop body must be unrolled. While arrays are partitioned across
memories similar to our work, the only scheme is low order interleaving and we propose
several others.

7.3 Data Reuse Analysis
The data reuse analysis developed for the DEFACTO system differs from the data reuse
analysis described by Carr and Kennedy[6] in several points. First, our analysis includes
output dependence in addition to the true and input dependences in [6] to decrease
unnecessary store operations. Secondly, we exploit reuse along all loops of a loop nest and
unlike[6] we are not restricted to the innermost loop only. Since loop permutation moves
the loop that exploits the most reuse innermost and it takes more register to exploit reuse
in outer loops, this approach is sufficient to get the most benefit if the number of registers
are limited or if cache is the target memory hierarchy, where it is hard to exploit outer
loop's locality due to cache size limitation. In addition, considering localized iteration
space where register contents are reused throughout all the iterations without shifting
between registers, the number of registers can be significantly reduced. Thirdly, Carr/
Kennedy’s analysis use Callahan's balance model to evaluate how the loop matches the
capabilities of a specific architecture. Our notion of balance can explain whether either
memory side or computation side is the bottleneck. It also can guide whether the limited
space on an FPGA must be devoted more to memory operations or computations. Fourth,
their complexity of optimization problem is greater than ours. Our analysis employs a
commercial synthesis tool to get a feedback on the space use and execution rate. By doing
so, our reuse analysis reduces the size of the candidate tile size search space and tunes the
unrolling factors.

8. Project Status and Conclusion
We have implemented the bulk of what has been presented in this paper in the DEFACTO
system. We have demonstrated a fully automatic design flow for DEFACTO that consists
of a subset of the passes described in Section 3 on three image processing kernels,
mapping from a C specification to working designs on the Annapolis WildStar Board
described in Section 3.2.

A major focus of our current work is integrating the compiler and synthesis tool via
estimation for design space exploration. We have developed an interface to estimation
from the Synopsys Behavioral Compiler as well as Monet[9], and are using it to
automatically calculate balance for a particular optimized loop nest design.

With the growing size of FPGA devices and the increased complexity of the place-
and-route and mapping related passes in commercially available synthesis tools, we
envision estimation as a fundamental technique for quickly exploring a wide range of
implementation options while keeping the compilation/synthesis time at a reasonable cost.
The DEFACTO system shows that it is possible to successfully map applications written
in imperative programming languages directly to FPGA-based computing boards
combining the application of traditional data dependence analysis techniques with
commercially available behavioral synthesis tool.
16

References
[1] J. M. Anderson, Ph.D Thesis, Stanford University, March 1997. Published as Stanford CSL-

TR-97-719.
[2] J. Anderson, S. Amarasinghe, and M. Lam., “Data and Computation Transformations for

Multiprocessors,” in Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming (PPoPP’95), Santa Barbara, CA, July 19-21, 1995.

[3] Annapolis Micro Systems Inc., “WildStarTM Reconfigurable Computing Engines. User’s
Manual R3.3”, 1999.

[4] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua and S.
Amarasinghe.”Parallelizing Applications into Silicon”. In Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM‘99), IEEE Computer
Society Press, Los Alamitos, 1999, pp. 70-81.

[5] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Memory Bank Disambiguation using
Modulo Unrolling for Raw Machines“. In Proceedings of the Fifth International Conference
on High Performance Computing, Chennai, India, 1998, December 17-20.

[6] S. Carr and K. Kennedy, "Improving the ratio of memory operations to floating-point
operations in loops". In ACM Transactions on Programming Languages and Systems,
15(3):400-462, July 1994.

[7] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, H. Ziegler, “DEFACTO:
Design Environment for Adaptive Computing TechnOlogy”. In Proceedings of the
Reconfigurable Architecture Workshop, held in conjunction with the International Parallel
Processing Symposium, San Juan, Puerto Rico, April, 1999.

[8] D. Cronquist, P. Franklin, S. Berg and C. Ebeling, “Specifying and Compiling Applications
for RaPiD”. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM‘98), IEEE Computer Society Press, Los Alamitos, 1998, pp. 116-125.

[9] P. Diniz and A. Venkatachar, “A Behavioral Synthesis Estimation Interface for Configurable
Computing”, In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM‘01), IEEE Computer Society Press, Los Alamitos, Calif., Oct. 2001.

[10] P. Diniz and J. Park, “Automatic Synthesis of Data Storage and Contol Structures for FPGA-
based Computing Machines“. In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM‘00), IEEE Computer Society Press, Los Alamitos, Calif., Oct.
2000, pp. 70-79.

[11] M. Gokhale and J. Stone, “Automatic Allocation of Arrays to Memories in FPGA Processors
with Multiple Memory Banks”. In Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM‘99), IEEE Computer Society Press, Los Alamitos,
1999, pp. 63-69.

[12] M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA Architecture”. In
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM‘98), IEEE Computer Society Press, Los Alamitos, Calif., 1998, pp. 126-135.

[13] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor and R. Laufer,
“PipeRench: A Coprocessor for Streaming Multimedia Acceleration”. In Proceedings of
26th Intl. Symp. on Computer Architecture (ISCA’99), ACM Press, New York, 1999.

[14] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coprocessor”.
In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM‘97), IEEE Computer Society Press, Los Alamitos, 1997, pp.12-21

[15] MonetTM User’s Manual, Mentor Graphics Inc., 2000.
[16] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann, San

Fransisco, Calif.. 1997.
[17] J. Park and P. Diniz, "Synthesis of Memory Access Controller for Streamed Data

Applications for FPGA-based Computing Engines". To appear in Proceedings of the 14th
17

International Symposium on System Synthesis (ISSS’2001), IEEE Computer Society Press,
Los Alamitos, Calif., Oct. 2001.

[18] “The Stanford SUIF Compilation System”. Public Domain Software and Documentation
available at http://suif.stanford.edu

[19] M. Weinhardt and W. Luk., “Pipelined Vectorization for Reconfigurable Systems”. In
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM‘99), IEEE Computer Society Press, Los Alamitos, Calif.,1999, pp. 52-62.

[20] M. Weinhardt and W. Luk, "Memory Access Optimization and RAM Inference for Pipeline
Vectorization”. In Proceedings of the 9th International Workshop on Field Programmable
Logic and Applications (FPL'99), Springer Verlag LNCS Vol. 1673, 1999, pp. 61-70.

[21] M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm for Maximizing
Parallelism”. In IEEE Transactions on Parallel and Distributed Systems, Oct. 1991.

[22] M. Wolfe, High-Performance Compilers for Parallel Computing, Addison-Wesley, 1996.
18

	1. Introduction
	2. Comparing Parallelizing Compiler Technology and Behavioral Synthesis
	Table 1: Comparison of Capabilities.

	3. Overview of DEFACTO Compilation and Synthesis System
	3.1 Design Flow
	Figure 1. DEFACTO Design Flow
	3.2 Target Architectures
	Figure 2. Target Architecture Example - WildStar/PCI Board
	3.3 Target Applications and Examples

	4. Analyses and Transformations to Exploit Data Reuse
	4.1 Data Reuse Analysis
	Figure 3. ATR Kernel
	4.2 Scalar Replacement
	4.3 Tapped Delay Lines

	5. Transformation Strategy for Automating Design Space Exploration
	Figure 4. Data Fetch and Consumption Rates.
	5.1 Optimal Unrolling Factor Search
	5.2 Beyond Unrolling: Tiling

	6. Parallelization and Customization of Memory Accesses
	6.1 Memory Interface Architecture
	6.2 Memory Interface Controller and Scheduling Optimizations
	6.3 Data Partitioning
	6.4 Data Reorganization and Packing
	6.5 Example
	Figure 5. Example Data Layout

	7. Related Work
	7.1 Configurable Architectures
	7.2 Compilation Systems for Configurable Architectures
	7.3 Data Reuse Analysis

	8. Project Status and Conclusion
	References
	[1] J. M. Anderson, Ph.D Thesis, Stanford University, March 1997. Published as Stanford CSL- TR-9...
	[2] J. Anderson, S. Amarasinghe, and M. Lam., “Data and Computation Transformations for Multiproc...
	[3] Annapolis Micro Systems Inc., “WildStarTM Reconfigurable Computing Engines. User’s Manual R3....
	[4] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua and S. Amarasinghe.”Parallelizing A...
	[5] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal, “Memory Bank Disambiguation using Modulo Un...
	[6] S. Carr and K. Kennedy, "Improving the ratio of memory operations to floating-point operation...
	[7] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, H. Ziegler, “DEFACTO: Des...
	[8] D. Cronquist, P. Franklin, S. Berg and C. Ebeling, “Specifying and Compiling Applications for...
	[9] P. Diniz and A. Venkatachar, “A Behavioral Synthesis Estimation Interface for Configurable Co...
	[10] P. Diniz and J. Park, “Automatic Synthesis of Data Storage and Contol Structures for FPGA- b...
	[11] M. Gokhale and J. Stone, “Automatic Allocation of Arrays to Memories in FPGA Processors with...
	[12] M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA Architecture”. In Proceed...
	[13] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor and R. Laufer, “PipeRench: ...
	[14] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable Coprocessor”. In P...
	[15] MonetTM User’s Manual, Mentor Graphics Inc., 2000.
	[16] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann, San Fransisco, Ca...
	[17] J. Park and P. Diniz, "Synthesis of Memory Access Controller for Streamed Data Applications ...
	[18] “The Stanford SUIF Compilation System”. Public Domain Software and Documentation available a...
	[19] M. Weinhardt and W. Luk., “Pipelined Vectorization for Reconfigurable Systems”. In Proceedin...
	[20] M. Weinhardt and W. Luk, "Memory Access Optimization and RAM Inference for Pipeline Vectoriz...
	[21] M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm for Maximizing Parallelis...
	[22] M. Wolfe, High-Performance Compilers for Parallel Computing, Addison-Wesley, 1996.

