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Abstract. Reconfigurable coprocessors can exploit large degrees of
instruction-level parallelism (ILP). In compiling sequential code for re-
configurable coprocessors, we have found it convenient to borrow tech-
niques previously developed for exploiting ILP for very long instruction
word (VLIW) processors. With some minor adaptations, these techniques
are a natural match for automatic compilation to a reconfigurable copro-
cessor. This paper will review these techniques in their original context,
describe how we have adapted them for reconfigurable computing, and
present some preliminary results on compiling application programs writ-
ten in the C programming language.

1 Introduction

In this work we consider compilation for a hybrid reconfigurable computing plat-
form consisting of a microprocessor coupled with field-programmable gate array
(FPGA) circuitry used as a reconfigurable accelerator. The FPGA is configured
to provide a customized accelerator for compute-intensive tasks. This accelera-
tion results in part from the parallel execution of operations, since the FPGA
has no von Neumann instruction fetch bottleneck. The microprocessor is used for
“random” control-intensive application code and for system management tasks.
It also provides binary compatibility with existing executables, which eases the
migration path to reconfigurable computing [4]. We assume support for rapid
run-time reconfiguration to allow several different tasks in the same application
to be accelerated [5].

For ease of programming these systems, it 1s best if a single, software-like lan-
guage is used for describing the entire application, encompassing computation
on both the microprocessor and the FPGA. But traditional imperative software
languages are basically sequential in nature; starting from there, it is a challeng-
ing task to exploit the reconfigurable hardware’s parallel nature. Previous efforts
have corrected this mismatch by using languages with constructs to explicitly
specify either data parallelism [8, 9] or more general parallelism [15, 2, 16]. How-
ever, the farther such a language’s semantics deviate from those of sequential
languages, the more difficult it is to train programmers to use it efficiently, and
the more work is involved in porting “dusty deck” sequential code to it.

This work instead investigates automatic extraction and hardware compila-
tion of code regions from dusty deck C code. While it is unlikely the resulting



performance will be as good as if a human rewrote the code in a parallel style,
this approach has its advantages: (i) it gives immediate performance benefit from
reconfigurable hardware with just a recompilation, and (ii) it is useful in cases in
which the execution time is spread across more kernels than are worth recoding
by hand.

Automatic compilation of sequential code to hardware poses several chal-
lenges. In such code, basic blocks are typically small so that little instruction-
level parallelism is found within each one. Also, operations difficult to implement
directly in hardware, such as subroutine calls, are often sprinkled throughout the
code. Finally, loops often contain conditionals with rarely executed branches that
interfere with optimization.

These features of sequential code similarly caused problems for VLIW ma-
chines. A key technique used by VLIW compilers to overcome these obstacles
was to optimize the common execution paths to the exclusion of all rarely exe-
cuted paths. Applying these same techniques allows us to accelerate loops that
could not otherwise be mapped to the coprocessor due to an operation that is
infeasible to implement in hardware. Without the exclusion ability, an infeasible
operation on even an uncommon path would prevent any of the loop from being
accelerated. Furthermore, by excluding uncommon paths, the remaining paths
typically execute more quickly, and in the case of reconfigurable computing, less
reconfigurable hardware resources are required.

Our approach is greatly influenced by our target platform, the theoretical
Garp chip [11]. The Garp chip tightly couples a MIPS microprocessor and a
datapath-optimized reconfigurable coprocessor. The coprocessor is rapidly re-
configurable, making it possible to speed up dozens or hundreds of loops. If a
desired configuration has been used recently it is likely still in the configuration
cache and can be loaded in just a few cycles. The flipflops in each row of the Garp
array are accessible as a single 32-bit coprocessor register; transfers between such
a coprocessor register and a microprocessor register can be performed at a rate
of one per clock cycle. The coprocessor can directly access the main memory
system (including data cache) as quickly as can the microprocessor. Because of
these features, the Garp coprocessor can accelerate many loops that would be
impractical to implement with a more traditional FPGA coprocessor. It is also
due to these features that we can easily off-load uncommon computations to the
main processor, allowing the common cases to execute faster on the coprocessor.

2 VLIW Background

VLIW processors possess a number of functional units that can be utilized in
parallel, connected to each other through a multiported register file. Builders
of such machines long ago encountered difficulty extracting enough ILP from
sequential programs to keep all of the functional units busy. Studies have shown
that amount of ILP within a basic block is typically only 2-3.5 [7]. Trace schedul-
ing [6] is a technique to enhance the amount of ILP by combining sequences of
basic blocks along the most commonly executed linear path. This forms a larger



unit for scheduling called a trace, within which more ILP is available. While this
approach works well when there is a single dominant sequence, it is less success-
ful when there are multiple paths that are executed with comparable frequency.
The hyperblock [14] was developed to address this situation, and is the central
structure we borrow from VLIW compilation.

A hyperblock is formed from a contiguous group of basic blocks, usually
including basic blocks from different alternative control paths. For optimization
purposes, a hyperblock will typically include only the common control paths and
not rarely taken paths. By definition, a hyperblock has a single point of entry
— typically the entry of an inner loop — but may have multiple exits. An exit
may jump back to the beginning of the same hyperblock (forming a back edge
of the loop); an exit may jump to an excluded path of the loop; or an exit may
continue to other code, as in the case of a normal loop exit. Some basic blocks
may need to be duplicated outside of the hyperblock in order for the single-entry
constraint to be obeyed. Fig. 1 shows an example hyperblock.
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Fig. 1. Hyperblock formation for VLIW compilation.

The basic blocks selected to form a hyperblock are merged by converting any
control flow between them to a form of predicated exzecution. We consider specifi-
cally partially predicated execution [13]. With partially predicated execution, the
instructions along all of the included control paths are executed uncondition-
ally (with the exception of memory stores), and select instructions are inserted
at control flow merge points to select the correct results for use in subsequent
computation (Fig. 2). If a select instruction’s first operand (called a predicate)
is true, the result is the value of the second operand, otherwise the result 1s the
value of the third operand. The predicate is an expression of the boolean values
that originally controlled conditional branches. The result is essentially specu-
lative execution of all included paths; although this approach rapidly consumes
resources, 1t also gives the best performance since 1t exposes the most ILP and
reduces critical path lengths.



Fig. 2. C code, control flow graph, and partially predicated execution.

The challenge for the VLIW compiler is deciding which basic blocks should be
included in each hyperblock. In general, rarely taken paths should be excluded.
Excluding them allows the common cases to achieve higher performance, at the
expense of causing the rare paths to execute more slowly due to the branch
penalty of exiting a hyperblock. Factors considered when selecting the basic
blocks to compose a hyperblock include relative execution frequencies, resource
limitations, and the impact on the critical path.

3 Using the Hyperblock for Reconfigurable Computing

Our compiler uses the hyperblock structure for deciding which parts of a program
are executed on the reconfigurable coprocessor as well as for converting the
operations in the selected basic blocks to a parallel form suited to hardware.
Being able to exclude certain paths from implementation on the reconfigurable
coprocessor is very useful. Besides making the configuration smaller and often
faster, 1t allows us to ignore certain operations that are impossible to implement
using the coprocessor, e.g., subroutine calls; as long as they are on uncommon
paths. If a loop body had to be implemented on the coprocessor as an all-or-
nothing unit, the existence of a subroutine call even on an uncommon path would
exclude the entire loop from consideration for acceleration using the coprocessor.

For each accelerated loop we form one hyperblock, which will be the portion
of the loop body that i1s implemented on the reconfigurable coprocessor. Hyper-
block exits are points where execution is transferred from the reconfigurable co-
processor back to the main processor. Each hyperblock eventually becomes one
coprocessor configuration, and thus there is one configuration per accelerated
loop. The partially predicated execution representation maps directly to hard-
ware, with the select instructions implemented as multiplexors. The resulting
dataflow graph is very similar to the “operator network” used in the PRISM-II
compiler [1].

One adjustment in our use of the hyperblock is that a loop back edge from
an exit directly back to the top of the hyperblock i1s considered to be internal
to the hyperblock. This reflects the fact that normal loop iteration control is
performed on the reconfigurable coprocessor with no intervention from the main
processor. Thus such a back edge 1s not actually considered an exit. The remain-
ing exits can be classified as either finished or exceptional. Finished exits are



those that are taken because the loop has finished all its iterations (e.g., Exit 1
in Fig. 3). Ezceptional exits are those that are taken because an excluded basic
block must be executed (e.g., Exit 2 in Fig. 3). After an exceptional exit is taken,
the hyperblock may be reentered at the beginning of the next iteration.
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Fig. 3. Hyperblock formation for compilation to reconfigurable coprocessor. The hy-
perblock ABDEF is executed using the reconfigurable coprocessor, while all other basic
blocks are executed on the microprocessor.

4 Execution Model

The unit of code that gets accelerated on the coprocessor is a loop!. General loop
nesting is not currently supported. Thus accelerated loops cannot contain any
inner loops on included paths. A loop that contains inner loops only on ezcluded
paths can still be accelerated.

When an accelerated loop is reached in the program, the processor activates
the correct configuration for the coprocessor, moves initial data into FPGA reg-
isters, and starts the coprocessor. The processor then suspends itself and does
not wake up until the coprocessor is finished.

As the coprocessor executes, a simple sequencer keeps track of the current
cycle in the iteration. The sequencer activates functional units that are scheduled
for a specific cycle. In particular, a memory operation must execute during the
correct cycle; during other cycles its address input may be invalid.

The sequencer is also used to determine when the end of the iteration has
been reached. The number of cycles in the iteration is determined by the critical
path through the hyperblock and is the same every iteration. At the end of an
iteration, loop-carried values are latched for use in the next iteration.

! The execution model presented here is specific to our automatic compilation. It
should not be inferred that this is the only model allowed by the Garp architecture.



Coprocessor execution will continue indefinitely until an exit is taken. An exit
can occur at any cycle of an iteration, and a hyperblock may have several different
exits. When any exit 1s activated, a builtin feature of the Garp reconfigurable
array 1s used to halt the array instantaneously, freezing all values in registers.
This action also awakens the processor.

Once the processor awakes, it must determine which exit was taken from the
hyperblock. Once done, it moves any live values from the coprocessor back to the
main registers. This transfer depends on which exit was taken, as there are likely
different sets of live variables at different exits, and also different values for a
given variable at different exits. If an exceptional exit was taken, the remainder of
the iteration is completed on the processor, and at the start of the next iteration
control is again transferred to the coprocessor.

5 Compiler Flow

Front End. We have used the SUIF compiler system [10] to implement our
prototype C compiler targeting the Garp chip. SUIF’s standard C parser and
front end optimizations are utilized. A basic block representation of the code is
then constructed using a control flow graph library [12]. This library includes
natural loop analysis routines that allow us to recognize and process any kind
of loop, even one formed by a backwards goto statement in the original source
code.

Hyperblock Selection. At each loop an attempt 1s made to form a hyperblock.
Initially all of the basic blocks in the loop are marked as included, and then
blocks are systematically excluded. A basic block can be excluded from the hy-
perblock (i) because it contains an infeasible operation (floating-point, division,
remainder, or subroutine call), (ii) because it is the entry of an inner loop (which
will have its own hyperblock), (iii) because it needs to be excluded in order for
the configuration to fit on the available resources, or (iv) simply to improve the
performance of the remaining hyperblock. Currently (i) and (ii) are operational,
and heuristics for (iii) and (iv) are under development.

The exclusion of one block often implies the exclusion of other blocks due to
the trimming process. “Dead end” basic blocks — those blocks that ultimately
lead only to excluded blocks — are trimmed. We also trim “unreachable” blocks
— those that would only be reached by going through an excluded block. After
this trimming we know that every remaining basic block is on a cycle contained
completely in the hyperblock.

Hyperblock Duplication. We find it useful to duplicate all basic blocks selected
for the hyperblock, retaining the complete original non-hyperblock version of the
loop as well. This is in contrast to the VLIW approach, which only duplicates
basic blocks as necessary to avoid re-entering the hyperblock. For our purposes,
the non-hyperblock version is the “software” version of the loop, while the hy-
perblock copy is the “hardware” version. At an exceptional exit, control flows



out of the hardware version and continues at the corresponding point in the
software version.

The hardware version of the loop is a temporary construction; its presence
aids in the construction of the interface instructions and the dataflow graph.
Ultimately, however, the basic blocks in the hardware version will be deleted,
since that computation will actually be performed in the FPGA.

Interface Synthesis. At the points where the hardware version of the loop in-
terfaces with the rest of the program, interface code must be synthesized. This
includes the instructions to load the correct configuration, to move values back
and forth between the coprocessor and main processor registers, and to deter-
mine which exit was taken when the coprocessor finishes. When the data transfer
code 1s synthesized, live variable analysis is used to avoid unnecessary transfers.

Dataflow Graph Formation. The computation in the basic blocks of the du-
plicated hyperblock is converted to partially predicated execution form as was
shown in Fig. 2. This creates a dataflow graph where all of the control flow has
been converted to explicit data transfer. This form maps very directly to the
reconfigurable hardware. The “select” instructions are implemented in hardware
as multiplexors and are analogous to the “merge-muxes” used in PRISM-II.

A number of optimizations are performed on the dataflow graph before it
is written out for synthesis. The number of multiplexors can often be reduced
at the expense of a small amount of extra boolean logic. Also, boolean signals
(e.g., the results of comparisons) are identified and used to simplify multiplexors
to gates, and to simplify comparisons to no-ops or inversions. We found that
these cases arise frequently due to complex logical expressions typically found
in C code.

The dataflow graph may contain multiple memory access operations. If it
cannot be determined at compile time whether or not two memory operations
access the same location, then they must be executed in the same order as
they appear in the sequential program input, unless they are both loads. Such
orderings are preserved using precedence edges in the dataflow graph; these
edges indicate that the source node must execute before the destination node.
Precedence edges are also needed between exits and memory writes to assure
that writes don’t occur when they shouldn’t, or not occur when they should.

Synthesits. FEach dataflow graph is written out and fed to the GaMa datapath
synthesizer [3] to create the configuration for the coprocessor. Gama looks for
opportunities to merge neighboring operations (for example, an addition and an
exclusive-or) to form a compound functional unit when this is smaller and/or
faster than implementing each individually. GAMA also synthesizes a sequencer
that counts the cycles in each iteration and activates modules appropriately.

Final Compilation and Linking. Assuming the synthesis is successful, the code
is patched to direct control to the hardware version of the loop. The modified
code is converted from SUIF back to C and cross-compiled with a modified



version of gcc that understands Garp’s extensions to the MIPS instruction set.
The final executable links in the software object files along with the coprocessor
configurations, which are in the form of integer array initialization data.

Erecution. As the hardware is not currently available, the executable is run on
the Garp simulator, which accurately models cache misses, configuration load-
ing delays, and other important features to provide an accurate prediction of
execution behavior.

6 Preliminary Results

The two primary benefits of the approach presented here are (i) increasing the
performance of computation on the coprocessor, and (ii) increasing the fraction
of a program that can be accelerated using the coprocessor. We will not be able
to evaluate the magnitude of the first benefit until we complete development
of heuristics for excluding basic blocks to get better performance. However, we
have collected preliminary data regarding the second benefit — excluding parts
of a loop that can’t be implemented in hardware in order to allow the remainder
of the loop to be accelerated.

The results are presented in Table 1. Execution cycles are classified into one
of b categories, and the cumulative time in cycles in each category is reported
for four application/dataset combinations. The categories are as follows:

— Single Exit Loops have a single exit and contain no infeasible operation.
— Multi Exit Loops have multiple exits and contain no infeasible operations.
— Hyperblock Loops have excluded blocks due to infeasible operations.

— Unfruitful Loops execute for too few cycles per exit to overcome over-
head for using the coprocessor. We estimate a factor of two speedup using
the coprocessor, and 25 cycles of overhead per exit. Thus loops that exe-
cuted 50 cycles or fewer per exit on average would be slowed down using the
coprocessor and fall into this category. This is admittedly a rough guess.

— Other Cycles not included above — straight-line code, code in library rou-
tines, and code in infeasible loops (loops that have an infeasible operation
or inner loop on every path through their body).

With the gzip examples, we see that a large fraction of computation cycles
are captured in the first two relatively simple classes of loops. This indicates that
most loops in gzip don’t contain infeasible operations. The hyperblock’s ability
to exclude some paths helps only a small degree.

With the cpp examples, however, the hyperblock approach allows a signifi-
cant increase in the amount of computation that could be accelerated using the
coprocessor. This is because many loops in cpp contain subroutine calls, e.g.; to
report errors. The three top time-consuming loops in cpp all contained infeasible
operations, but in two of them, the infeasible operations were never executed,
and in the third they were only rarely executed. This gives anecdotal support
to the intuitive feeling that infeasible operations often occur on rarely executed
paths.



Table 1. Execution time breakdown in cycles. Categories explained in text.

Single Exit|Multi-exit|Hyperblock|Unfruitful| Other Total

Test case Loops Loops Loops Loops
gzip 530149 586173 143449 134213| 209459| 1603443
C source 33.1% 36.6% 9.0% 8.4%| 13.1%| 100.0%
gzip 601187 662164 218534 179781 439624( 2101290
English text 28.6% 31.5% 10.4% 8.6%| 20.9%| 100.0%
cpp 2949104| 2158983 8423327 213459| 878407(14623280
input 1 20.2% 14.8% 57.6% 1.5% 6.0%| 100.0%
cpp 1092072 894918 2179589 265824(1463763| 5896166
input 2 18.5% 15.2% 37.0% 4.5%| 24.8%| 100.0%

7 Summary

We have adapted the hyperblock from VLIW compilation for our use in compiling
to a reconfigurable coprocessor. Commonly-executed basic blocks are combined
to form a large hyperblock, exposing instruction-level parallelism and allow-
ing speculative execution to achieve high performance using the reconfigurable
hardware. By excluding rarely-executed basic blocks, the compiler can produce
configurations are smaller and faster, and can accelerate a greater number of
loops than would be possible otherwise. Preliminary results show that in some
cases our approach significantly increases the fraction of execution cycles that
can be accelerated using the coprocessor when compiling dusty-deck C code.

8 Future Work

In future work we will develop hyperblock formation heuristics that integrate
path profiling information and hardware estimation. We can then evaluate the
performance benefit from intelligently excluding computation from the acceler-
ated loop on the coprocessor.
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