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Abstract� Recon�gurable coprocessors can exploit large degrees of
instruction�level parallelism �ILP	
 In compiling sequential code for re�
con�gurable coprocessors� we have found it convenient to borrow tech�
niques previously developed for exploiting ILP for very long instruction
word �VLIW	 processors
 With some minor adaptations� these techniques
are a natural match for automatic compilation to a recon�gurable copro�
cessor
 This paper will review these techniques in their original context�
describe how we have adapted them for recon�gurable computing� and
present some preliminary results on compiling application programs writ�
ten in the C programming language


� Introduction

In this work we consider compilation for a hybrid recon�gurable computing plat�
form consisting of a microprocessor coupled with �eld�programmable gate array
�FPGA� circuitry used as a recon�gurable accelerator� The FPGA is con�gured
to provide a customized accelerator for compute�intensive tasks� This accelera�
tion results in part from the parallel execution of operations� since the FPGA
has no von Neumann instruction fetch bottleneck� The microprocessor is used for
�random� control�intensive application code and for system management tasks�
It also provides binary compatibility with existing executables� which eases the
migration path to recon�gurable computing �	
� We assume support for rapid
run�time recon�guration to allow several di�erent tasks in the same application
to be accelerated ��
�

For ease of programming these systems� it is best if a single� software�like lan�
guage is used for describing the entire application� encompassing computation
on both the microprocessor and the FPGA� But traditional imperative software
languages are basically sequential in nature
 starting from there� it is a challeng�
ing task to exploit the recon�gurable hardware�s parallel nature� Previous e�orts
have corrected this mismatch by using languages with constructs to explicitly
specify either data parallelism ��� �
 or more general parallelism ���� �� ��
� How�
ever� the farther such a language�s semantics deviate from those of sequential
languages� the more di�cult it is to train programmers to use it e�ciently� and
the more work is involved in porting �dusty deck� sequential code to it�

This work instead investigates automatic extraction and hardware compila�
tion of code regions from dusty deck C code� While it is unlikely the resulting



performance will be as good as if a human rewrote the code in a parallel style�
this approach has its advantages� �i� it gives immediate performance bene�t from
recon�gurable hardware with just a recompilation� and �ii� it is useful in cases in
which the execution time is spread across more kernels than are worth recoding
by hand�

Automatic compilation of sequential code to hardware poses several chal�
lenges� In such code� basic blocks are typically small so that little instruction�
level parallelism is found within each one� Also� operations di�cult to implement
directly in hardware� such as subroutine calls� are often sprinkled throughout the
code� Finally� loops often contain conditionals with rarely executed branches that
interfere with optimization�

These features of sequential code similarly caused problems for VLIW ma�
chines� A key technique used by VLIW compilers to overcome these obstacles
was to optimize the common execution paths to the exclusion of all rarely exe�
cuted paths� Applying these same techniques allows us to accelerate loops that
could not otherwise be mapped to the coprocessor due to an operation that is
infeasible to implement in hardware� Without the exclusion ability� an infeasible
operation on even an uncommon path would prevent any of the loop from being
accelerated� Furthermore� by excluding uncommon paths� the remaining paths
typically execute more quickly� and in the case of recon�gurable computing� less
recon�gurable hardware resources are required�

Our approach is greatly in�uenced by our target platform� the theoretical
Garp chip ���
� The Garp chip tightly couples a MIPS microprocessor and a
datapath�optimized recon�gurable coprocessor� The coprocessor is rapidly re�
con�gurable� making it possible to speed up dozens or hundreds of loops� If a
desired con�guration has been used recently it is likely still in the con�guration

cache and can be loaded in just a few cycles� The �ip�ops in each row of the Garp
array are accessible as a single ���bit coprocessor register
 transfers between such
a coprocessor register and a microprocessor register can be performed at a rate
of one per clock cycle� The coprocessor can directly access the main memory
system �including data cache� as quickly as can the microprocessor� Because of
these features� the Garp coprocessor can accelerate many loops that would be
impractical to implement with a more traditional FPGA coprocessor� It is also
due to these features that we can easily o��load uncommon computations to the
main processor� allowing the common cases to execute faster on the coprocessor�

� VLIW Background

VLIW processors possess a number of functional units that can be utilized in
parallel� connected to each other through a multiported register �le� Builders
of such machines long ago encountered di�culty extracting enough ILP from
sequential programs to keep all of the functional units busy� Studies have shown
that amount of ILP within a basic block is typically only ����� ��
� Trace schedul�
ing ��
 is a technique to enhance the amount of ILP by combining sequences of
basic blocks along the most commonly executed linear path� This forms a larger



unit for scheduling called a trace� within which more ILP is available� While this
approach works well when there is a single dominant sequence� it is less success�
ful when there are multiple paths that are executed with comparable frequency�
The hyperblock ��	
 was developed to address this situation� and is the central
structure we borrow from VLIW compilation�

A hyperblock is formed from a contiguous group of basic blocks� usually
including basic blocks from di�erent alternative control paths� For optimization
purposes� a hyperblock will typically include only the common control paths and
not rarely taken paths� By de�nition� a hyperblock has a single point of entry
� typically the entry of an inner loop � but may have multiple exits� An exit
may jump back to the beginning of the same hyperblock �forming a back edge
of the loop�
 an exit may jump to an excluded path of the loop
 or an exit may
continue to other code� as in the case of a normal loop exit� Some basic blocks
may need to be duplicated outside of the hyperblock in order for the single�entry
constraint to be obeyed� Fig� � shows an example hyperblock�

Fig� �� Hyperblock formation for VLIW compilation


The basic blocks selected to form a hyperblock are merged by converting any
control �ow between them to a form of predicated execution� We consider speci��
cally partially predicated execution ���
� With partially predicated execution� the
instructions along all of the included control paths are executed uncondition�
ally �with the exception of memory stores�� and select instructions are inserted
at control �ow merge points to select the correct results for use in subsequent
computation �Fig� ��� If a select instruction�s �rst operand �called a predicate�
is true� the result is the value of the second operand� otherwise the result is the
value of the third operand� The predicate is an expression of the boolean values
that originally controlled conditional branches� The result is essentially specu�
lative execution of all included paths
 although this approach rapidly consumes
resources� it also gives the best performance since it exposes the most ILP and
reduces critical path lengths�



Fig� �� C code� control �ow graph� and partially predicated execution


The challenge for the VLIW compiler is deciding which basic blocks should be
included in each hyperblock� In general� rarely taken paths should be excluded�
Excluding them allows the common cases to achieve higher performance� at the
expense of causing the rare paths to execute more slowly due to the branch
penalty of exiting a hyperblock� Factors considered when selecting the basic
blocks to compose a hyperblock include relative execution frequencies� resource
limitations� and the impact on the critical path�

� Using the Hyperblock for Recon�gurable Computing

Our compiler uses the hyperblock structure for deciding which parts of a program
are executed on the recon�gurable coprocessor as well as for converting the
operations in the selected basic blocks to a parallel form suited to hardware�
Being able to exclude certain paths from implementation on the recon�gurable
coprocessor is very useful� Besides making the con�guration smaller and often
faster� it allows us to ignore certain operations that are impossible to implement
using the coprocessor� e�g�� subroutine calls� as long as they are on uncommon
paths� If a loop body had to be implemented on the coprocessor as an all�or�
nothing unit� the existence of a subroutine call even on an uncommonpath would
exclude the entire loop from consideration for acceleration using the coprocessor�

For each accelerated loop we form one hyperblock� which will be the portion
of the loop body that is implemented on the recon�gurable coprocessor� Hyper�
block exits are points where execution is transferred from the recon�gurable co�
processor back to the main processor� Each hyperblock eventually becomes one
coprocessor con�guration� and thus there is one con�guration per accelerated
loop� The partially predicated execution representation maps directly to hard�
ware� with the select instructions implemented as multiplexors� The resulting
data�ow graph is very similar to the �operator network� used in the PRISM�II
compiler ��
�

One adjustment in our use of the hyperblock is that a loop back edge from
an exit directly back to the top of the hyperblock is considered to be internal

to the hyperblock� This re�ects the fact that normal loop iteration control is
performed on the recon�gurable coprocessor with no intervention from the main
processor� Thus such a back edge is not actually considered an exit� The remain�
ing exits can be classi�ed as either �nished or exceptional� Finished exits are



those that are taken because the loop has �nished all its iterations �e�g�� Exit �
in Fig� ��� Exceptional exits are those that are taken because an excluded basic
block must be executed �e�g�� Exit � in Fig� ��� After an exceptional exit is taken�
the hyperblock may be reentered at the beginning of the next iteration�

Fig� �� Hyperblock formation for compilation to recon�gurable coprocessor
 The hy�
perblock ABDEF is executed using the recon�gurable coprocessor� while all other basic
blocks are executed on the microprocessor


� Execution Model

The unit of code that gets accelerated on the coprocessor is a loop�� General loop
nesting is not currently supported� Thus accelerated loops cannot contain any
inner loops on included paths� A loop that contains inner loops only on excluded

paths can still be accelerated�
When an accelerated loop is reached in the program� the processor activates

the correct con�guration for the coprocessor� moves initial data into FPGA reg�
isters� and starts the coprocessor� The processor then suspends itself and does
not wake up until the coprocessor is �nished�

As the coprocessor executes� a simple sequencer keeps track of the current
cycle in the iteration� The sequencer activates functional units that are scheduled
for a speci�c cycle� In particular� a memory operation must execute during the
correct cycle
 during other cycles its address input may be invalid�

The sequencer is also used to determine when the end of the iteration has
been reached� The number of cycles in the iteration is determined by the critical
path through the hyperblock and is the same every iteration� At the end of an
iteration� loop�carried values are latched for use in the next iteration�

� The execution model presented here is speci�c to our automatic compilation
 It
should not be inferred that this is the only model allowed by the Garp architecture




Coprocessor execution will continue inde�nitely until an exit is taken� An exit
can occur at any cycle of an iteration� and a hyperblock may have several di�erent
exits� When any exit is activated� a builtin feature of the Garp recon�gurable
array is used to halt the array instantaneously� freezing all values in registers�
This action also awakens the processor�

Once the processor awakes� it must determine which exit was taken from the
hyperblock� Once done� it moves any live values from the coprocessor back to the
main registers� This transfer depends on which exit was taken� as there are likely
di�erent sets of live variables at di�erent exits� and also di�erent values for a
given variable at di�erent exits� If an exceptional exit was taken� the remainder of
the iteration is completed on the processor� and at the start of the next iteration
control is again transferred to the coprocessor�

� Compiler Flow

Front End� We have used the SUIF compiler system ���
 to implement our
prototype C compiler targeting the Garp chip� SUIF�s standard C parser and
front end optimizations are utilized� A basic block representation of the code is
then constructed using a control �ow graph library ���
� This library includes
natural loop analysis routines that allow us to recognize and process any kind
of loop� even one formed by a backwards goto statement in the original source
code�

Hyperblock Selection� At each loop an attempt is made to form a hyperblock�
Initially all of the basic blocks in the loop are marked as included� and then
blocks are systematically excluded� A basic block can be excluded from the hy�
perblock �i� because it contains an infeasible operation ��oating�point� division�
remainder� or subroutine call�� �ii� because it is the entry of an inner loop �which
will have its own hyperblock�� �iii� because it needs to be excluded in order for
the con�guration to �t on the available resources� or �iv� simply to improve the
performance of the remaining hyperblock� Currently �i� and �ii� are operational�
and heuristics for �iii� and �iv� are under development�

The exclusion of one block often implies the exclusion of other blocks due to
the trimming process� �Dead end� basic blocks � those blocks that ultimately
lead only to excluded blocks � are trimmed� We also trim �unreachable� blocks
� those that would only be reached by going through an excluded block� After
this trimming we know that every remaining basic block is on a cycle contained
completely in the hyperblock�

Hyperblock Duplication� We �nd it useful to duplicate all basic blocks selected
for the hyperblock� retaining the complete original non�hyperblock version of the
loop as well� This is in contrast to the VLIW approach� which only duplicates
basic blocks as necessary to avoid re�entering the hyperblock� For our purposes�
the non�hyperblock version is the �software� version of the loop� while the hy�
perblock copy is the �hardware� version� At an exceptional exit� control �ows



out of the hardware version and continues at the corresponding point in the
software version�

The hardware version of the loop is a temporary construction
 its presence
aids in the construction of the interface instructions and the data�ow graph�
Ultimately� however� the basic blocks in the hardware version will be deleted�
since that computation will actually be performed in the FPGA�

Interface Synthesis� At the points where the hardware version of the loop in�
terfaces with the rest of the program� interface code must be synthesized� This
includes the instructions to load the correct con�guration� to move values back
and forth between the coprocessor and main processor registers� and to deter�
mine which exit was taken when the coprocessor �nishes� When the data transfer
code is synthesized� live variable analysis is used to avoid unnecessary transfers�

Data�ow Graph Formation� The computation in the basic blocks of the du�
plicated hyperblock is converted to partially predicated execution form as was
shown in Fig� �� This creates a data�ow graph where all of the control �ow has
been converted to explicit data transfer� This form maps very directly to the
recon�gurable hardware� The �select� instructions are implemented in hardware
as multiplexors and are analogous to the �merge�muxes� used in PRISM�II�

A number of optimizations are performed on the data�ow graph before it
is written out for synthesis� The number of multiplexors can often be reduced
at the expense of a small amount of extra boolean logic� Also� boolean signals
�e�g�� the results of comparisons� are identi�ed and used to simplify multiplexors
to gates� and to simplify comparisons to no�ops or inversions� We found that
these cases arise frequently due to complex logical expressions typically found
in C code�

The data�ow graph may contain multiple memory access operations� If it
cannot be determined at compile time whether or not two memory operations
access the same location� then they must be executed in the same order as
they appear in the sequential program input� unless they are both loads� Such
orderings are preserved using precedence edges in the data�ow graph
 these
edges indicate that the source node must execute before the destination node�
Precedence edges are also needed between exits and memory writes to assure
that writes don�t occur when they shouldn�t� or not occur when they should�

Synthesis� Each data�ow graph is written out and fed to the Gama datapath
synthesizer ��
 to create the con�guration for the coprocessor� Gama looks for
opportunities to merge neighboring operations �for example� an addition and an
exclusive�or� to form a compound functional unit when this is smaller and�or
faster than implementing each individually�Gama also synthesizes a sequencer
that counts the cycles in each iteration and activates modules appropriately�

Final Compilation and Linking� Assuming the synthesis is successful� the code
is patched to direct control to the hardware version of the loop� The modi�ed
code is converted from SUIF back to C and cross�compiled with a modi�ed



version of gcc that understands Garp�s extensions to the MIPS instruction set�
The �nal executable links in the software object �les along with the coprocessor
con�gurations� which are in the form of integer array initialization data�

Execution� As the hardware is not currently available� the executable is run on
the Garp simulator� which accurately models cache misses� con�guration load�
ing delays� and other important features to provide an accurate prediction of
execution behavior�

� Preliminary Results

The two primary bene�ts of the approach presented here are �i� increasing the
performance of computation on the coprocessor� and �ii� increasing the fraction
of a program that can be accelerated using the coprocessor� We will not be able
to evaluate the magnitude of the �rst bene�t until we complete development
of heuristics for excluding basic blocks to get better performance� However� we
have collected preliminary data regarding the second bene�t � excluding parts
of a loop that can�t be implemented in hardware in order to allow the remainder
of the loop to be accelerated�

The results are presented in Table �� Execution cycles are classi�ed into one
of � categories� and the cumulative time in cycles in each category is reported
for four application�dataset combinations� The categories are as follows�

� Single Exit Loops have a single exit and contain no infeasible operation�
� Multi Exit Loops have multiple exits and contain no infeasible operations�
� Hyperblock Loops have excluded blocks due to infeasible operations�
� Unfruitful Loops execute for too few cycles per exit to overcome over�

head for using the coprocessor� We estimate a factor of two speedup using
the coprocessor� and �� cycles of overhead per exit� Thus loops that exe�
cuted �� cycles or fewer per exit on average would be slowed down using the
coprocessor and fall into this category� This is admittedly a rough guess�

� Other Cycles not included above � straight�line code� code in library rou�
tines� and code in infeasible loops �loops that have an infeasible operation
or inner loop on every path through their body��

With the gzip examples� we see that a large fraction of computation cycles
are captured in the �rst two relatively simple classes of loops� This indicates that
most loops in gzip don�t contain infeasible operations� The hyperblock�s ability
to exclude some paths helps only a small degree�

With the cpp examples� however� the hyperblock approach allows a signi��
cant increase in the amount of computation that could be accelerated using the
coprocessor� This is because many loops in cpp contain subroutine calls� e�g�� to
report errors� The three top time�consuming loops in cpp all contained infeasible
operations� but in two of them� the infeasible operations were never executed�
and in the third they were only rarely executed� This gives anecdotal support
to the intuitive feeling that infeasible operations often occur on rarely executed
paths�



Table �� Execution time breakdown in cycles
 Categories explained in text


Single Exit Multi�exit Hyperblock Unfruitful Other Total
Test case Loops Loops Loops Loops

gzip �
���� �����
 ��
��� �
���
 ������ ���
��

C source 


�� 
�
�� �
�� �
�� �

�� ���
��

gzip ������ ������ ����
� ������ �
���� �������
English text ��
�� 
�
�� ��
�� �
�� ��
�� ���
��

cpp ������� ������
 ���

�� ��
��� ������ ����
���
input � ��
�� ��
�� ��
�� �
�� �
�� ���
��

cpp ������� ������ ������� ������ ���
��
 �������
input � ��
�� ��
�� 
�
�� �
�� ��
�� ���
��

� Summary

Wehave adapted the hyperblock fromVLIW compilation for our use in compiling
to a recon�gurable coprocessor� Commonly�executed basic blocks are combined
to form a large hyperblock� exposing instruction�level parallelism and allow�
ing speculative execution to achieve high performance using the recon�gurable
hardware� By excluding rarely�executed basic blocks� the compiler can produce
con�gurations are smaller and faster� and can accelerate a greater number of
loops than would be possible otherwise� Preliminary results show that in some
cases our approach signi�cantly increases the fraction of execution cycles that
can be accelerated using the coprocessor when compiling dusty�deck C code�

� Future Work

In future work we will develop hyperblock formation heuristics that integrate
path pro�ling information and hardware estimation� We can then evaluate the
performance bene�t from intelligently excluding computation from the acceler�
ated loop on the coprocessor�
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