
EECS 388 HW #4

Due: April 1

1. (30) Write a program to do matrix addition and subtraction of two 5x5 matrices M1
and M2 based on the position of an eight-position DIP switch. Use port J to read the
switch positions. If the number of ones is even, do the addition operation M1+M2.
Otherwise, do the subtraction operation M1-M2. The results of either operation will be
stored in M3. Your program will assume that each matrix is stored as five consecutive
column vectors (i.e., each vector is 5 by 1). Each matrix will be stored at the following
locations:
M1: $4500_$4519
M2: $4520_$4539
M3: $4540_$4559
Your program must use a subroutine to do the arithmetic of two column vectors, and
either return or store the result. Essentially, this function will add or subtract each 5 item
“row” of the matrix. Arguments should be passed to the subroutine using the stack. The
arguments should include a value to represent the arithmetic operator, and either the
values for a length 5 vector, or a starting address for the vector. The function may then
either return or store the result. The program must be well-commented. The DIP switch is
pictured below:

To address this problem, first we need to look up the relevant addresses for Port J. Port J
data is at address $28, and the data direction is at address $29. We want to configure all
bits to input, so we’ll want to initialize the direction with mask ‘$00’. Here is the code:

PORTJ EQU $0028 ; location of Port J

DDRJ EQU $0029 ; location of DDRJ register
DDRJ_INI EQU $00 ; all of Port J as input
M1 EQU $4500 ; Matrix 1
M2 EQU $4520 ; Matrix 2
M3 EQU $4540 ; Matrix 3
ADD EQU $00 ; flag for addition
SUB EQU $01 ; flag for subtraction

ORG $5000
LDS #$8000 ; declare stack
LDAA #DDRJ_INI ; load initialization value to A
STAA #DDRJ ; initialize DDRJ

WORK LDAA PORTJ ; read switch positions
LDX #$0008 ; initialize X to 8 before counting
LDAB #$00 ; initialize B to 0 to count the number of 1’s

COUNT CPX #$00 ; check if we’ve looped 8 times
BEQ MAT_OP
DEX ; decrement X
BITA #$01 ; check LSB of A to see if it is a 1
BEQ COUNT ; if not, loop again
INCB ; LSB was a 1 so increment B by 1
BRA COUNT

MAT_OP BITB #$01 ; check LSB of B to see if it is a 1 (odd)
BEQ ADDITION ; if even, do addition
LDAA #SUB ; load A with the flag for subtraction
BRA DISPATCH

ADDITION LDAA #ADD ; load A with the flag for addition

DISPATCH LDAB #$05 ; we need to loop 5 times (5 rows)
STAB $6000 ; save loop counter
LDX #M3 ; load X with address of M3
PSHX ; push M3 onto the stack
LDX #M1 ; load X with address of M1
LDY #M2 ; load Y with address of M2

MAT_LOOP LDAB $6000 ; load loop counter
CMPB #$00 ; check if we’ve looped 5 times
BEQ WORK ; if yes, go back to beginning
DECB ; decrement loop counter
STAB $6000 ; store loop counter
PSHX ; push X (current M1 index) onto the stack
PSHY ; push Y (current M2 index) onto the stack
PSHA ; push A (flag) onto the stack

JSR MAT_FUN ; jump to the matrix subroutine
BRA MAT_LOOP ; loop again

MAT_FUN PULA ; pull flag from the stack
PULY ; pull M2 from the stack
PULX ; pull M1 from the stack
LDAB #$05 ; we need to loop 5 times
STAB $6500 ; store loop counter value

OP_LOOP LDAB $6500 ; load loop counter value
CMPB #$00 ; have we looped 5 times?
BEQ DONE
DECB ; decrement loop counter
STAB $6500 ; store loop counter
LDAB 1,X+ ; load next M1 value into B
CMPA #ADD ; compare A with flag for addition
BEQ MAT_ADD ; if it is, perform the addition
SUBB 1,Y+ ; subtract M2 value from M1 value
BRA RESULT ; skip addition

MAT_ADD ADDB 1,Y+ ; add M1 value to M2 value
RESULT STX $7000 ; store X temporarily

PULX ; pull current M3 index from stack
STAB 1,X+ ; store result of matrix operation
PSHX ; push next M3 index onto stack
LDX $7000 ; restore X to M1 index
BRA OP_LOOP ; loop again

DONE RTS

2. (20) An eight-position DIP switch is connected to PORT A of the 68HC12. Provide the
codes to read the position of the DIP switches when an IRQ interrupt occurs.

Let us write the program and interrupt service routine that would allow us to read the
position of the DIP switches when an IRQ interrupt occurs:

INTCR EQU $001E ; address of INTCR register
INTCR_INI EQU $60 ; initial value of INTCR
DDRA EQU $0002 ; location of DDRA register
DDRA_INI EQU $00 ; all 8 bits are input
PORTA EQU $0000 ; location of Port A

ORG $FFF1 ; address of IRQ vector
FDB $IRQ_DIP ; name of our ISR
ORG $4000
LDS #$8000

LDAA #INTCR_INI ; load init values to A
STAA INTCR ; initialize INTCR
LDAA #DDRA_INI ; load input direction to A
STAA DDRA ; initialize DDRA
CLI

ORG $9000
IRQ_DIP LDAA PORTA ; reads the dip switch positions

… ; do work with it
RTI

3. (30) Extend the battery backup supply example for one primary battery and two
backup batteries. Show all initialization steps in the main code and the interrupt service
routine. Use PORTG[4:5] for input signals (00: primary battery in use, 01: the first
backup, 11: the second backup) and PORTG[0:1] for out signals (again 00-01-11 for
primary-1st backup-2nd backup).

We can reuse much of the code from the book and add a few things to support the 2nd

backup battery:

STACKTOP EQU $3FFF ; equate STACKTOP with $3FFF
INTCR EQU $001E ; address of INTCR register
INTCR_INI EQU $60 ; initial value of INTCR
DDRG EQU $0033 ; location of DDRG register
DDRG_INI EQU $03 ; [4:5] input and [0:1] output
PORTG EQU $0031 ; location of Port G
PRIMARY EQU $00 ; test mask for primary
BACK_UP1 EQU $10 ; test mask for 1st back up
BACK_UP2 EQU $30 ; test mask for 2nd back up

ORG $FFF2 ; address of IRQ vector
FDB $IRQ_DIP ; name of our ISR
ORG $2000
LDS #STACKTOP
LDAA #INTCR_INI ; load init values to A
STAA INTCR ; initialize INTCR
LDAA #DDRG_INI ; load input direction to A
STAA DDRG ; initialize DDRG
CLI

ORG $9000 ; interrupt service routine
IRQ_DIP LDAA PORTG ; determine battery in use

ANDA #BACK_UP2 ; mask out unneeded bits
CMPA #BACK_UP2 ; check if backup 2 is in use

BNE SWAP_BU2 ; back up 2 not in use
LDAA #PRIMARY ; swap to primary
STAA PORTG
BRA DONE

SWAP_BU2 CMPA #BACK_UP1 ; check if backup 1 is in use
BNE SWAP_BU1 ; back up 1 not in use (primary is)
LDAA #BACK_UP2 ; swap to backup 2
STAA PORTG
BRA DONE

SWAP_BU1 LDAA #BACK_UP1 ; swap to backup 1
STAA PORTG
RTI

4. (10) Page 290, Fundamental #2
In the preceding question, if the MCLK was 2 MHz and the prescaler bits PR[2:1:0] were
set to 000, how much time in seconds transpired between the two input capture events?

First, we need to solve the preceding question, where we get (assuming no rollover
occurred):

$FF20 - $1037 = $EEE9

which is 61,161 in decimal. We are told that the clock runs at 2 MHz, so each tick of the
clock takes 500 ns. With the prescaler bits set to 000, we know the divisor is 1, so each
tick of the clock increments the counter. Therefore, the calculation is simple:

number of seconds: 0.0000005 _ 61161 = 0.0305805 sec

or about 31 ms.

5. (10) Page 290, Fundamental #3
Repeat the preceding question if PR[2:1:0] were set to 101.

In this case, the prescaler bits are set to 101, which corresponds to a divisor of 32.
Therefore we need only multiply the result from the previous question by 32 to get our
answer here:

number of seconds: 0.0305805 _ 32 = 0.978576 sec

or about 1 sec.

