
EECS 388 HW #3

Due: March 4

Problems from textbook

Q1: Page 70: Challenging – 7 (20 points)
Write a program segment starting at $C100 that checks bits 0 and 2 of address $D000 and
jumps to $C0CC if both bits are clear.

This task is easily accomplished using the BRCLR instruction. We are interested in bits 0
and 2, which gives us the 8-bit mask 00000101 ($05). Therefore:

ORG $C100
LDX #$D000
BRCLR 0,X,$05,$C0CC
SWI

Q2: Page 116: Advanced – 3 (25 points)
Write a program using a subroutine to copy a table from one location to another. A
partially completed program is given next. Write a program by filling in locations where
only comments appear.

Note 1: when we save the CPU registers, we have to make sure to restore them in reverse
order to align the values properly and to make sure they go back to their proper places.

Note 2: FDB and FCB are not identical to EQU; when you load the values into a register,
you do not use the immediate operator ‘#’.

* Copying a table using a subroutine
 Data Section

ORG $0000
TAB1 FDB $D100 ; address of the first table
TAB2 FDB $D300 ; address of the second table
TABL FCB $FF ; table length

* main program
ORG $C100
LDS #$8000 ; initialize the stack pointer
LDAA TABL ; load the table length to acc A
LDX TAB1 ; load table 1 address to X
LDY TAB2 ; load table 2 address to Y
JSR COPYT ; call the subroutine
SWI ; stop subroutine
ORG $4500

COPYT PSHD ; save the CPU registers onto the stack
PSHX
PSHY
PSHC

AGAIN TSTA ; check the counter value
BEQ DONE ; if zero jump to the end
LDAB 1,X+ ; note the use of accumulator B
STAB 1,Y+
SUBA #$01 ; adjust the counter and target addresses
BRA AGAIN ; continue the loop

DONE PULC ; restore the CPU registers
PULY
PULX
PULD
RTS ; IMPORTANT!!!!!!!!
END

Q3: Page 116: Advanced - 4 (20 points)
Suppose you started with the following register contents.

P-C007 Y-7892 X-FF00 A-44 B-70 SP-C04A

What address is in the stack pointer and exactly what is in the stack after the following
instruction sequence is executed?

PSHA
PSHB
PSHY

After the execution of the above instructions, the stack pointer points to address $C046
and the stack contains

Address Content
C045 …
C046 78
C047 92
C048 70
C049 44

As you can see, accumulator A is at the bottom of the stack, at address $C049, because it
was pushed first. It is followed by accumulator B, and then register Y.

Q4: Page 117, Challenging - 1 (25 points)

Stack Pointer

Write a subroutine to copy data one byte at a time from memory location $5000 to
memory location $6000 until a byte with $FF is detected.

Instead of just writing the subroutine, let us write the whole program to show what it
would look like. This allows us to practice with manipulating the stack by saving and
restoring registers.

TAB1 EQU $5000 ; address of the first table
TAB2 EQU $6000 ; address of the second table
EOS EQU $FF ; end of string

ORG $4000
LDS #$8000 ; initialize the stack pointer
LDX #TAB1; load table 1 address to X
LDY #TAB2; load table 2 address to Y
JSR COPYT ; call the subroutine
SWI ; stop subroutine

COPYT PSHD ; save the CPU registers onto the stack
PSHX
PSHY

AGAIN LDAA 1,X+ ; load byte into A and increment X
CMPA #EOS ; compare value in A to EOS
BEQ DONE ; if zero jump to the end
STAA 1,Y+ ; store byte to table 2 and increment Y
BRA AGAIN ; continue the loop

DONE PULY ; restore the CPU registers
PULX
PULD
RTS ; return from subroutine

Q5: Page 117: Challenging - 8 (10 points)
Write an instruction sequence to load the contents of the element in the top of the stack
onto accumulator A and the third element from the top of the stack onto accumulator B.

There is a similar example in the book on page 81. The following instructions do the job:

LDS #$8000 ; initialize the stack pointer
TSX ; store stack pointer contents to register X
LDAA 0,X ; load top element into A
LDAB 2,X ; load third element into B

