EECS 388: Computer Systems and Assembly Language

Homework 2

Due Feb. 21, 2007

Justify your answers!

Figure 1 shows a part of the memory (both contents and locations).

Contents	Locations
\$20	\$4000
\$50	\$4001
\$01	\$4002
•	:
•	:
\$B5	\$5000
\$CD	\$5001
Figure	e 1.

Problem 1 (10 Points):

Consider the memory shown in Figure 1. What is in accumulator A and the N, Z, C, V bits in CCR after an LDD #\$4001 instruction is executed?

Accumulator A _____ N ___ Z ____ C ____ V ____

Problem 2 (15 Points):

Write a program segment to reverse the bit order of a 6-bit number. Assume this number is stored in \$6000. Store the reversed number to \$6001 (i.e., if the original number is 0 0 $b_5 b_4 b_3 b_2 b_1 b_0$, after this program, the number in \$6001 will be 0 0 $b_0 b_1 b_2 b_3 b_4 b_5$).

Problem 3 (20 points):

Write a program segment to multiply a 16-bit number in the D register by 10 using arithmetic left shift instead of multiplication instructions.

Problem 4 (20 points):

Write a program to subtract two 24-bit numbers and store the result to memory locations starting at \$6000. The two 24-bit numbers are stored in memory locations starting at \$5000 and \$5010, respectively.

Problem 5 (20 Points):

If A contains \$56, what is the result of each of the following instructions? Assume that A is restored to its original value before each instruction.

- a) ANDA #\$33
- b) ORAA #\$33
- c) EORA #\$33
- d) BITA #\$80

Problem 6 (15 Points):

Consider the following program:

LDD	#\$F00D
STD	\$8100
BSET	\$8100, \$44
BCLR	\$8101, \$11

What numbers are in \$8100 and \$8101 at the end?