EECS 388: Computer Systems and Assembly Language

Homework 2

Due Feb. 21, 2007
Justify your answers!
Figure 1 shows a part of the memory (both contents and locations).
Contents Locations

$\$ 20$	$\$ 4000$
$\$ 50$	$\$ 4001$
$\$ 01$	$\$ 4002$
$:$	$:$
$:$	$\$ 5000$
$\$ B 5$	$\$ 5001$

Figure 1.

Problem 1 (10 Points):

Consider the memory shown in Figure 1. What is in accumulator A and the N, Z, C, V bits in CCR after an LDD \#\$4001 instruction is executed?

Accumulator A \qquad N \qquad Z \qquad C \qquad V \qquad

Problem 2 (15 Points):

Write a program segment to reverse the bit order of a 6-bit number. Assume this number is stored in $\$ 6000$. Store the reversed number to $\$ 6001$ (i.e., if the original number is $00 b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$, after this program, the number in \$6001 will be $00 b_{0} b_{1} b_{2} b_{3} b_{4} b_{5}$).

Problem 3 (20 points):

Write a program segment to multiply a 16-bit number in the D register by 10 using arithmetic left shift instead of multiplication instructions.

Problem 4 (20 points):

Write a program to subtract two 24-bit numbers and store the result to memory locations starting at $\$ 6000$. The two 24-bit numbers are stored in memory locations starting at $\$ 5000$ and $\$ 5010$, respectively.

Problem 5 (20 Points):

If A contains \$56, what is the result of each of the following instructions? Assume that A is restored to its original value before each instruction.
a) ANDA \#\$33
b) ORAA \#\$33
c) EORA \#\$33
d) BITA \#\$80

Problem 6 (15 Points):

Consider the following program:

$$
\begin{array}{ll}
\text { LDD } & \text { \#\$F00D } \\
\text { STD } & \$ 8100 \\
\text { BSET } & \$ 8100, \$ 44 \\
\text { BCLR } & \$ 8101, \$ 11
\end{array}
$$

What numbers are in $\$ 8100$ and $\$ 8101$ at the end?

