EECS 388: Computer Systems and Assembly Language Homework 1
 Due Feb. 12, 2007
 Justify your answers!

Figure 1 shows a part of the memory (both contents and locations).
Contents Locations

Figure 1.

Problem 1 (10 Points):

Consider the memory shown in Figure 1. Write a program to add the two numbers in $\$ 4000$ and $\$ 4001$ and store the results in $\$ 5002$.

Here, we simply need to add two 8 -bit numbers and store the 8 -bit result, so we can use accumulator A for this task:

ORG	$\$ 4100$
LDAA	$\$ 4000$
ADDA	$\$ 4001$
STAA	$\$ 5002$
SWI	

Problem 2 (10 Points):

Consider the memory shown in Figure 1. What is the content in accumulator D after the following lines are executed?

LDD	$\$ 4001$
ADDA	$\$ 5000$

First we load D with the 16 -bit value starting at location $\$ 4001$. At this point, we have
D: \$5001

Next we add the 8-bit value at location $\$ 5000$ to the value contained in A (which is the most significant byte of $\mathrm{D}, \$ 50$):

A: $\$ 50+\$ B 5=\$ 05$ (The real result is $\$ 105$)

The above result is too large to fit in A, so A will contain $\$ 05$ and the overflow bit in the CCR will be set.
Consequently, the upper byte of D (which is A) is now $\$ 05$ but the lower byte has not changed at all, giving us:

D: \$0501

Problem 3 (30 points):

Consider the memory shown in Figure 1. What are the contents in memory location $\$ 5002$ and accumulator A after the following lines are executed?

LDAA	$\$ 4000$
LDD	$\# \$ 5000$
LDAB	$\$ 4002$
STD	$\$ 5002$

First, we load accumulator A with the 8 -bit value at location $\$ 4000$, which gives us:
A: \$20
Next, we load D with the immediate 16 -bit value $\$ 5000$, which now gives us:
D: \$5000

But since D is really A and B , this means:
A: \$50
B: $\$ 00$
Next we load accumulator B with the 8 -bit value at location $\$ 4002$, which gives us:
B: \$01
So now we have:
A: \$50
B: \$01
D: \$5001
Finally we store the 16 -bit value in D to memory location, starting at location $\$ 5002$, so now memory will look like:

Contents Locations

$\$ 20$	$\$ 4000$
$\$ 50$	$\$ 4001$

$\$ 01$		$\$ 4002$
	$::$	
	$:$	
\$B5		$\$ 5000$
\$CD		$\$ 5001$
\$50		$\$ 5002$
$\$ 01$		$\$ 5003$

Therefore, our final answer is the following:
Memory location \$5002: \$50
A: \$50

Problem 4 (25 points):

If A contains \$BB, B contains \$CD and the carry bit in CCR is 1 , what are the results of the following instructions? Assume that A, B, and CCR are restored to their original values before each instruction.
a) ASLA

We are told that A contains $\$ \mathrm{BB}$ at the start, which is:
\$BB: 10111011

Next, we perform an arithmetic shift to the left,
Original(hex): \$ B B
Original(bin): 10111011
Shifted(bin): 01110110
Shifted(hex): \$76
So the answer is:
A: \$76
b) ASRB

Original(hex): \$ C D
Original(bin): 11001101
Shifted(bin): 11100110
Shifted(hex): \$ E 6
Final answer:
B: \$E6
c) LSLD

Original(hex): \$ B B C D
Original(bin): 1011101111001101
Shifted(bin): 0111011110011010
Shifted(hex): \$7 $7 \quad 9$ A
Final answer:
A: \$77
B: \$9A
d) ROLB

Remember that B is the lower byte of D , and that the carry bit is 1 before the rotate:
Original(hex): \$ B B C D
Original(bin): 1011101111001101
Shifted(bin): 1011101110011011
Shifted(hex): \$ B B 9 B
The upper byte of D (which is A) is not affected by the rotate.
Final answer:
D: \$BB9B

Problem 4 (10 Points):

Write a program to add two values $\$ 20$ and $\$ 40$ and store the result in memory location \$8000.

We are asked to add to immediate 8 -bit values and store the 8 -bit result in memory.

ORG	$\$ 4000$
LDAA	$\# \$ 20$
ADDA	$\# \$ 40$
STAA	$\$ 8000$
SWI	

Problem 5 (15 Points):

Write a program to implement the following 16 bit rotation, i.e., originally, A and B contain $\mathbf{a}_{7} \mathbf{a}_{6} \ldots \boldsymbol{a}_{0}$ and $\boldsymbol{b}_{7} \boldsymbol{b}_{6} \ldots \boldsymbol{b}_{0}$, respectively. After the 16 bit rotation, the contents in A and B are $\boldsymbol{a}_{6} \mathbf{a}_{5} \ldots \boldsymbol{a}_{0} \boldsymbol{b}_{7}$ and $\boldsymbol{b}_{6} \boldsymbol{b}_{5} \ldots \boldsymbol{b}_{0} \mathbf{a}_{7}$, respectively. (Note: You can only use the data transfer and manipulation instructions in Section 2.4.1).

There are a lot of ways to do this problem; here are a few solutions (we only show the instructions for brevity):

Solution 1:

ASRA
ROLA
ROLB
ROLA
Solution 2:

```
ASRB
ROLB
ROLA
ROLB
```

Solution 3:

STAB	$\$ 4000$
LSLD	
LDAB	$\$ 4000$
ROLB	

Solution 4:

STAA	$\$ 4000$
ROLA	
ROLB	
LDAA	$\$ 4000$
ROLA	

Solution 5:

LSLB

ROLA
RORB
ASRB
ROLB
ROLB

