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Abstract

In this paper, we present hthreads, a unifying pro-
gramming model for specifying application threads running
within a hybrid CPU/FPGA system. Threads are speci-
fied from a single pthreads multithreaded application pro-
gram and compiled to run on the CPU or synthesized to run
on the FPGA. The hthreads system, in general, is unique
within the reconfigurable computing community as it ab-
stracts the CPU/FPGA components into a unified custom
threaded multiprocessor architecture platform. To support
the abstraction of the CPU/FPGA component boundary, we
have created the hardware thread interface (HWTI) compo-
nent that frees the designer from having to specify and em-
bed platform specific instructions to form customized hard-
ware/software interactions. Instead, the hardware thread
interface supports the generalized pthreads API semantics,
and allows passing of abstract data types between hard-
ware and software threads. Thus the hardware thread in-
terface provides an abstract, platform independent compi-
lation target that enables thread and instruction-level par-
allelism across the software/hardware boundary.

1 Introduction

In this paper, we present hthreads, a unifying pro-
gramming model for specifying application threads run-
ning within an hybrid CPU/FPGA system. Hthreads pro-
vides unique capabilities within the reconfigurable comput-
ing community by enabling concurrent execution of threads
specified through a set of pthreads compatible API library
routines to be automatically compiled, synthesized, and
seamlessly executed on a CPU/FPGA hybrid chip. The
hthreads programming model extends the pthreads high-
level programming policies to span the hardware/software
boundary. This is accomplished by extending standard
shared-memory synchronization primitives and system ser-

vices to hardware threads, and by providing the same
abstract-interface support to all threads regardless of their
location in the system. A description of the hthreads hard-
ware/software co-designed system services can be found in
[2, 3].

In the hthreads working model, programmers specify
their application as a set of concurrent threads using the
pthreads model semantics. In much the same way as a
programmer does not care which processor an individual
pthread may be scheduled, the distinction as to where an
hthread is running (either hardware or software) is also ir-
relevant. One subtle but important capability the hthreads
system offers is the ability to execute each thread in paral-
lel within the FPGA. As pointed out in [8], this true paral-
lelism can provide significant performance increases com-
pared to the pseudo-concurrency that is achieved by time-
multiplexing multiple threads on a shared CPU.

The hthreads system provides portability through library
system services that encapsulate and link unique mecha-
nisms to our pthreads compatible API’s. The hthreads li-
braries hide all low-level platform-specific implementation
details from the user, similar to the encapsulation of pro-
cessor specific code within standard pthreads libraries. The
hthreads system also opens the possibility of creating cus-
tom thread SMP architectures within the FPGA to software
programmers without requiring any hardware design skills
or knowledge of platform-specific implementation details.
Furthermore, hthreads does so without any additional over-
head or interrupts to start, maintain, or end threads running
on the FPGA. In past hybrid architectures [7, 25, 11] the
notion of a model with a single-thread of execution forces
hardware computations to be slaves under control of the
CPU: therefore not providing a truly uniform view of hybrid
computations. In hthreads, all threads (hardware and soft-
ware based) are autonomous computations: they are free to
synchronize and communicate with any other thread in the
system through the use of standard high-level APIs that are
called using uniform interfaces.

The remainder of this paper is outlined as follows. In



the next section we discuss the need for a complete abstract
programming model for reconfigurable computing. The fol-
lowing section then discusses the implementation and op-
eration of the hardware thread interface (HWTI) and how
it provides seamless interaction and portability between
hardware and software threads within our hthreads multi-
threaded programming systems. Our prototype hthreads de-
sign flow is then presented, followed by an example illus-
trating the use of our hthreads APIs. We conclude with a
discussion of our future work.

2 Abstract Programming Models

Reconfigurable computing as a discipline has now been
in existence for over a decade. Since its inception, re-
searchers have been investigating augmentations to exist-
ing languages and hardware compilation techniques to al-
low programmers and system designers to access the po-
tential of the reconfigurable fabric [10, 26, 17, 20, 16, 6,
24, 5, 9, 11]. In most instances, these approaches assume
a computational model consisting of a single control thread
hosted on the CPU that controls the computations that occur
within the FPGA. Conceptually, these approaches are fol-
lowing a development path similar to that which occurred
in the 1980’s and 1990’s for SIMD and systolic arrays from
the parallel and signal processing domains. In these ap-
proaches higher-level languages are augmented with spe-
cific pragmas for exploiting fine-grained, arithmetic and
instruction-level parallelism in a form that matches the un-
derlying machine’s computational model. Parallelism is
also exploited through loop analysis. Although these ap-
proaches bring advancements inaccessibility, they do so
at the cost ofportablilty promoting detailed knowledge
of the underlying architecture directly into the source lan-
guage. This is concerning for reconfigurable computing as
lessons learned from the parallel processing domain clearly
show the importance of decoupling machine-specific at-
tributes from the high-level language to achieve portabil-
ity and exploiting coarser grained, thread-level parallelism.
Current practices as evidenced from software developed for
high-performance cluster computing, encapsulate machine-
specific code into middle-ware libraries that can be linked
in with unaltered source code to form an abstract program-
ming model.

Informally, abstract programming models provide a
framework of system software components and their inter-
actions that are platform independent and portable. Porta-
bility is achieved by separating policy from mechanisms
within the framework. The policy is specified through
a common high-level language and set of system service
APIs. Modern programming models achieve portability by
adopting unmodified high-level languages and middle-ware
service routines. Recently, the multithreaded programming

model has gained in popularity within the embedded sys-
tems domain with its ability to represent time and event-
triggered reactive processes. The multithreaded program-
ming model is also familiar within general purpose comput-
ing, providing a convenient framework for processing con-
current client requests on a common server. Support for the
multithreaded programming model is now provided through
the pthreads library released with Linux and Unix. Addi-
tional low-level hardware support for multithreading is also
standard within CPU’s as evidenced by Intel’s hyperthread-
ing technology [28].

3 Targetting an Abstract Hardware Thread
Interface

Although conceptually simple, extending high-level pro-
gramming models acrossreconfigurable systemsfaces two
key challenges. First, design flows must be modified to sup-
port the generation of the API interfaces specified within
the programming model to provide consistent policies be-
tween components running on both the CPU and within
the FPGA. This includes sharing abstract data types, and
pointers in accordance with the semantics of each API. Al-
though impressive, existing high-level synthesis tools such
as Handel-C [26], ImpulseC [27], and SystemC [29] still
require user inserted low-level interface ports that represent
the system bus for passing data and control into and out of
hardware components. These low-level interface ports ad-
ditionally require the user to recast any abstract data types
created within the original C program into a series of bit-
width specified integers.

Second, as no standard system service routines or regis-
ter sets exist within the reconfigurable fabric, new hardware
component system service libraries must be created to sup-
port abstract API operations from and to hardware threads.
In the case of the shared-memory thread model, this in-
cludes the ability to create, control, and schedule threads ex-
ecuting in either hardware or software as independent exe-
cuting components. The independent components should be
able to synchronize using standard semaphore operations,
and independently access global data. Although at first
glance mirroring traditional run-time software thread sys-
tem services within hardware components appears daunt-
ing, it instead provides new opportunities to create more
efficient globally accessible hardware/software co-designed
shared services for both hardware and software resident
threads. Migrating classic software run-time services into
hardware can significantly reduce operating system over-
head by eliminating the need to traverse vertically through
software protocol stacks. Instead of vertical protocol stacks,
the system services can be efficiently implemented within
concurrent finite state machines accessible with single load
and store operations.
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In hthreads, we have migrated key system services in-
cluding a Thread Manager, Scheduler, Mutex Manager, and
a new CPU Bypass Interrupt Scheduler (CBIS) into hard-
ware. Migrating these services into hardware brings signifi-
cant performance benefits to software threads through more
efficient invocation and processing mechanisms [18, 1].
First, invocation mechanisms for accessing the system ser-
vices are no longer based on inefficient traversal of a hierar-
chical protocol stack on the CPU, but instead are achieved
through lightweight atomic load and store operations. Sec-
ond, speculative and variable execution performed within
such system services such as the scheduler are eliminated.
As an example, Figure 1 shows comparative timings for ex-
ecuting typical scheduler services for between 2 and 250 ac-
tive software threads running on hthreads. The overhead for
making a scheduling decision is now constant, with negligi-
ble jitter. The actual overhead for selecting the next thread
to be run within the hardware is 13 clock cycles indepen-
dent of the number of threads in the ready-to-run queue
[4]. The small amount of jitter seen in Figure 1 is due to
cache misses when swapping thread contexts on the CPU.
The Scheduler makes all scheduling decisions a priori, in
parallel to application programs running on the CPU. The
CPU is only interrupted when a thread in the ready-to-run
queue is higher priority than the thread running on the CPU.
This is in contrast to existing software schedulers that must
be invoked and ran to consider if an event may or may not
trigger a true scheduling decision such as the release of a
mutex.

As a more complete example, the mutexunlock() op-
eration illustrated in Figure 2 shows the processing steps
the hthread system performs to release a mutex, make a
scheduling decision, and resume the execution of a thread.
In a traditional operating system steps A through E are per-
formed completely in software on the CPU. These steps
would require a context switch from the application thread
to the system services, and must be performed before the
scheduler considers if a new scheduling decision is required
based on the queueing of a blocked thread. In hthreads,
steps B through G are performed in hardware, allowing the
CPU to continue executing the application thread. For sys-
tems with both hardware and software threads, migrating
this processing off the CPU is critical as significant over-
head and jitter can be introduced if the CPU must per-
form this pre-scheduler speculative processing for hardware
threads being unblocked. In [22, 23] a multithreaded capa-
bility is reported that supports the creation and control of
both hardware and software threads through Linux. This ap-
proach was taken to allow hardware threads to access data
through Linux’s existing virtual memory address space. Al-
though convenient, this approach requires additional com-
plexity within the hardware thread to maintain virtual ad-
dress translation tables, and invokes the memory manager

2 Running Software Threads 250 Running Software Threads  
Min ( s) Mean ( s) Max ( s)  Min ( s) Mean ( s) Max ( s) 

Scheduling 
Decision 

1.750 1.751 2.140 1.910 1.975 3.380 

Mutex Lock .750 .750 .750 .750 .750 .750 
Interrupt Handler 
Determination 

.760 .760 .760 .760 .796 1.530 

       
 

Figure 1. hthread Performance Summary
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Figure 2. hthread Mutex Unlock Sequence

running on the CPU for page swapping through external in-
terrupts, thus introducing jitter and overhead.

Although unique in their standalone abilities to provide
significant performance advantages to traditional software
based threads, our hardware/software co-designed system
services were developed to support the seamless interac-
tion of application threads running within and across the
CPU/FPGA boundary. To enable this abstraction, we cre-
ated the hardware thread abstraction layer, and specifically
the hardware thread interface (HWTI). The HWTI is a hard-
ware thread’s version of a software syscall interface layer
but using the more efficient load/store mechanisms in place
of hierarchical protocol stacks. As such, the HWTI inter-
faces into the co-designed system services using the same
invocation protocol running on the CPU. Further, the HWTI
provides the same hthread library calls available to software
threads. This enables seamless interactions for all threads
running in either hardware or software. The HWTI is thus a
target that can be accessed through an analogous syscall in-
terface for hardware threads, whether automatically synthe-
sized through HLL to HDL compilation, or by developers
wishing to hand write threads in VHDL.
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Figure 3. HWTI Block Diagram

3.1 Hardware Thread Interface (HWTI)

A block diagram of the hardware thread interface com-
ponent is shown in Figure 3. The HWTI component is writ-
ten in VHDL as an entity and is linked in with the user
code in a similar fashion to system call software routines.
The HWTI component contains two interfaces; the HWTI
system interface for interacting with other hthreads service
components, and the HWTI user interface for supporting
system service calls from the user thread. The HWTI also
contains three state machines not shown in Figure 3. The
first two state machines control and monitor the system and
user interfaces. The third state machine controls the inter-
actions between the first two state machines and provides
the system call mechanism.

3.1.1 System Interface

The system interface shown in the top of Figure 3 is com-
posed of address-mapped registers accessible across the
bus. This interface is hidden from the user threads and is
only accessed by other hthread system service components.
This interface is composed of five memory mapped regis-
ters: thread id , command, status , argument , and
result . These registers form the equivalent of thread con-
text for a hardware thread similar to the data registers, pro-
gram pointer, and stack pointer for software threads. The
thread id register is written with the thread ID assigned
by the system when the createthread() API is executed in
software. This allows a statically synthesized and mapped
thread to be created and terminated, and then re-created dy-
namically from within a parent thread in accordance with
the semantics of software threads. The user thread may ob-
tain its own thread ID by calling the hthreadself() API, sim-
ilar to the pthread’s pthreadself().

Thecommand register is used by the scheduler to con-
trol the execution of the thread. The allowable commands
are RUN and RESET. Writing a RUN into thecommand
register is similar to loading the program counter with an
address. Whereas in a microprocessor loading the program

counter initiates the fetching, decoding, and execution of
the instruction specified at the address, issuing a RUN com-
mand causes the controlling state machine to transition the
execution of the user thread from an idle state into an ac-
tive state. The scheduler will issue a RUN command for
either the initial starting of the thread, or in response to the
unblocking of a semaphore. In most cases, the HWTI will
immediately transition the user logic into the RUN state, by
issuing a similar RUN command into the user thread’s vis-
ible user status register. A RESET command returns
the HWTI and the user logic to their initial unused states.

Thestatus register is readable by the system and used
primarily for debugging purposes to monitor a thread’s cur-
rent execution state. It reports to the system one of five
states, NOTUSED, USED, RUNNING, BLOCKED, or
EXITED. NOT USED is the state after system start up, or a
RESET command. USED, refers to the state after the thread
id has been assigned. The HWTI is RUNNING after a RUN
command is issued to thecommand register. BLOCKED
is a specific case of RUNNING, namely when the HWTI is
waiting to own a mutex. Finally, EXITED is when the user
logic is done executing.

The argument register is used to allow the system to
pass one argument into the thread when the threadcreate()
API is executed from a SW thread. This register provides
consistency with the pthreads protocol, which only allows a
single argument to be passed into a thread. Theargument
register can hold either a data value or more traditionally
a pointer to a structure in global memory. When a RUN
command is issued to start the execution of the thread, the
value contained in theargument register is passed into
the user result register for the user thread before
theuser status is changed to RUN.

Theresult register allows the user thread to return re-
sults when a joinable thread executes the threadexit() API.
For consistency with pthreads, the result value should be a
pointer, however this is not required.

3.1.2 User Interface

The user interface registers, user status ,
user result , user opcode , user argument one ,
and user argument two , represented at the bottom
of Figure 3 are visible only to the hardware thread’s user
logic. These registers are not memory mapped or accessible
by other hthreads system services. The operation of these
registers form the functional equivalence of executing
a syscall for software threads running on a standard
CPU. General system services are requested through the
user opcode register with parameter data passed in us-
ing theuser argument registers. The analogy between
executing a syscall and interfacing theuser opcode
register is intentional and encapsulates the differences

4



void * simple_thread( void * arg ) {
int bound = (int) arg;
int x=0;
int i;

for ( i=0; i<bound; i++ ) {
x++;

}

return x;
}

Figure 4. Simple Thread Function Source
Code

between software and hardware interfaces within a syscall.
Encapsulating the platform specific differences entirely
within the syscall allows portability of the source code,
any differences are contained within the platform specific
HWTI code generation.

As an example, Figure 4 shows the C code for a simple
thread. The functional equivalent, in VHDL, targeting
the HWTI is partially shown in Figure 5. Note that
this example is kept simple for demonstrative purposes.
The HWTI contains the pre-defined interface signals
intrfc2thrd status , intrfc2 thrd result ,
thrd2intrfc opcode , thrd2intrfc argument1 ,
thrd2intrfc argument2 . These signals link the
HWTI user registers into the user thread’s VHDL code.

The user status register is updated by the HWTI
and controls the execution of the user thread. The al-
lowable status values are RESET, RUN, and ACK. As
seen in the simplethread example, Figure 5, the state
machine generated to control the user thread inputs the
intrfc2thrd status signal from thecommand reg-
ister to sequence the execution of the thread. The state ma-
chine controller waits in the reset state until a RUN com-
mand is issued. Once issued, the user thread begins au-
tonomous execution.

The user opcode , and user argument regis-
ters provide the syscall interface for the user thread.
Specific syscall functionality is specified by a unique
opcode shown in Table 1. For example when the user
thread has completed and executes a hthreadexit()
API, the opcode HTHREADEXIT is placed on the
thrd2intrfc opcode line and latched in the
user opcode register. In accordance with the stan-
dard pthreadexit() system call, the user thread may
pass one parameter back to the parent thread using
the HWTI’s user argument one register. The
thrd2intrfc argument registers are also used to
access global memory, in combination with the LOAD and
STORE opcodes.

The user result register has two uses; first to pass
initial arguments into the user thread and second to return
values back in response to a service request. As an example,
on a LOAD operation from global DRAM, the data results

ENTITY simple_thread IS
port (

clk : in std_logic;
intrfc2thrd_status : in std_logic_vector(0 to 3);
intrfc2thrd_result : in std_logic_vector(0 to 31);
thrd2intrfc_opcode : out std_logic_vector(0 to 7);
thrd2intrfc_argument_one : out std_logic_vector(0 to 31);
thrd2intrfc_argument_two : out std_logic_vector(0 to 31)

);
END ENTITY simple_thread;

ARCHITECTURE beh OF simple_thread IS
... constant & variable declaration ...
BEGIN

update : PROCESS
BEGIN
wait until rising_edge(clk);
IF intrfc2thrd_status = USER_STATUS_RESET THEN

... reset variables ...
ELSE

IF ((intrfc2thrd_status = USER_STATUS_RUN)
OR (intrfc2thrd_status = USER_STATUS_ACK)) THEN
CASE current IS

WHEN N0 =>
IF intrfc2thrd_status = USER_STATUS_RUN THEN

current <= N8;
ELSE

current <= N0;
END IF;

... additional state machine logic ...

when final0 =>
-- call exit
thrd2intrfc_opcode <= OPCODE_HTHREAD_EXIT;
current <= final1;

when final1 =>
-- wait for exit ack
IF intrfc2thrd_status = USER_STATUS_ACK THEN

thrd2intrfc_opcode <= OPCODE_NOOP;
current <= final2;

ELSE
current <= final1;

END IF;
when final2 =>

-- idle until reset event
current <= final2;

END CASE;
END IF;

END IF;
END PROCESS;
END beh;

Figure 5. Automatically Generated VHDL
Code For Simple Thread

will be returned to the thread in this register.
The HWTI is implemented in 404 slices. This number

includes logic for the standard vendor supplied bus inter-
face (IPIF) and a minimal user logic thread that immediately
exits following a RUN command. The 404 slices represent
2% of all slices on our Virtex II Pro (XC2VP30). Timing for
each operation is listed in Table 2 and was recorded based
on a cycle accurate simulation.

4 Hthreads Design Flow

Figure 6 shows a high level overview of the hthread’s
design flow. A detailed description of the complete process
is beyond the scope of this paper. However, we provide a
short description of key points appropriate for generating
hardware and software threads, and linking in the appropri-
ate system services. As seen in Figure 6 the complete appli-
cation program is first translated into an architecture inde-
pendent intermediate form. Application threads that are to
be resident in hardware are then translated into a new hard-
ware intermediate form (HIF). The HIF, while not shown
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Syscall Description

NOOP An operation is not being requested
HTHREAD EXIT User thread finished executing and returns results inargument register
LOAD User thread requesting to read from memory
STORE User thread requesting write to memory
HTHREAD SELF Returns the threadid
HTHREAD YIELD No meaning for a hardware thread, resumes execution immediately
HTRHEAD MUTEX LOCK User thread requesting to lock a mutex
HTHREAD MUTEX UNLOCK User thread requesting to unlock a mutex

Table 1. HWTI System Calls

Command Clock Cycles Comment

Write to thread id register 5 Time from receiving the thread id to the time the system status changes to USED
Write RUN intocommandregister 5 Time from receiving RUN command to timeuser status register changes to

RUN
Write RESET tocommandregister 4 Time from receiving RESET command to timeuser status register changed

to UNUSED
LOAD 14 Time user thread issues LOAD opcode to time HWTI returnsuser status to

RUN including bus transaction
STORE 33 Time user thread issues STORE opcode to time HWTI returnsuser status

to RUN including bus transaction time
HTHREAD YIELD 5 Time from user thread issuing opcode to time HWTI returnsuser status to

RUN
HTHREAD SELF 5 Time from user thread issuing opcode to time HWTI returnsuser status to

RUN
HTHREAD MUTEX LOCK 20 Time from user thread issuing opcode to time HWTI returnsuser status to

RUN, including bus transaction time and Mutex Manager time
HTHREAD MUTEX UNLOCK 20 Time from user thread issuing opcode to time HWTI returnsuser status to

RUN, including bus transaction time and Mutex Manager time
HTHREAD EXIT 20 Time from user thread issuing opcode to time HWTI ends bus transaction with

Thread Manager and system status changes to EXIT

Table 2. HWTI Operation Timing

in this high-level design flow, is a more suitable intermedi-
ate representation for us to work with in performing certain
finite-state machine analysis and optimizations of user ap-
plications before being translated into VHDL. The VHDL
representation of a thread, or its user logic, is then linked
with other HW libraries in order to include system call and
other service component functionality. Once the inclusion
of HW libraries is complete, the newly created HW threads
are able to run through vendor-supplied synthesis tool flows.

The traditional software tool flow can execute in parallel
with the automatic generation of hardware-based threads.
In this flow, threads are linked in with the hthreads libraries.
Once the SW libraries have been included with the applica-
tion threads, traditional software compilation can occur to
produced an executable to run on the PowerPC processor
embedded within the Virtex II Pro FPGA. All of an appli-
cation’s threads are passed through the traditional software
compilation flow to allow for threads to be created and im-

plemented in either software or hardware.
The software and hardware tool flows operate in the ex-

act same manner; only their targets differ. The software tool
flow compiles to an assembly language target, and uses the
hthreads libraries (written in C) as system service mecha-
nisms. The hardware tool flow compiles to a VHDL target,
and uses the HW libraries which include system component
descriptions and the HWTI (written in VHDL) as system
service mechanisms.

Once all threads, both hardware and software, have been
compiled, the entire system can be integrated by composing
the standard hthread’s hardware/software co-designed sys-
tem cores, the individual hardware thread implementations,
hardware and software library files, as well as the software
thread implementations into a single Xilinx Platform Stu-
dio (XPS) system. This system is built using the standard
Xilinx EDK toolset, which is used to create both a full bit-
stream and executable file to be downloaded into the recon-
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Figure 6. HW/SW Compilation

figurable platform for execution.
High-level synthesis (HLS) techniques used in the trans-

formation and partitioning of HLLs to hardware circuits has
been a hot research topic for many years. The hthreads com-
piler is not being designed in order to provide unparalleled
performance of hardware implementations of computations
described using HLLs. It is being developed in order to
closely target the interfaces provided by the hthreads run-
time system so that multithreaded programs can take great-
est advantage of the resources that hybrid CPU/FPGA sys-
tems offer. This allows the programmer to have a truly uni-
form view of computations in the hybrid system, allowing
the user to focus on how to express their program in a multi-
threaded environment rather than focusing on interfaces be-
tween hardware and software computations. Additionally,
the hthreads compiler will not focus on elaborate exploita-
tion of instruction-level parallelism (ILP) within a thread
because the hthreads system itself allows for the exploita-
tion of coarse-grained parallelism through actual concurrent
execution of threads and OS services. The hthreads run-
time system provides uniform, low overhead and low jitter
OS services to threads in a hybrid environment [4], while
the hthreads compiler enables the translation of threads ex-
pressed in HLLs to become autonomous circuits able to ex-
ecute in parallel within the run-time system. Together, the
run-time system and compiler provide the ability to exploit
both thread-level and instruction-level parallelism in a hy-
brid CPU/FPGA system while abstracting the interface be-
tween hardware and software computations through the use
of a uniform view of threads.

struct matrix {
Huint size;
Huint index;
Huint * X;
Huint * Y;
Huint * Z;

};

hthread_mutex_t matrixMutex;

int main( int argc, char *argv[] ) {
hthread_t hwThread, swThread;
hthread_attr_t hwAttr, swAttr;
struct matrix matrixData;
Huint i;

// Initialize the hybrid threads system
hthread_init();
hthread_mutex_init( &matrixMutex, NULL );

// Initialize the attributes for the threads
hthread_attr_init( &hwAttr );
hthread_attr_init( &swAttr );

// Hardware thread attributes need the HWT’s base address
hthread_attr_sethardware( &hwAttr, HWT_BASEADDR );
// Software thread uses default attributes.

// Initialize matrixData
initializeData( &matrixData );

hthread_create( &hwThread, &hwAttr, NULL, (void*)(&matrixData) );
hthread_create( &swThread, &swAttr, matrixAdd, (void*)(&matrixData) );

// Wait for the threads to exit
hthread_join( hwThread, NULL );
hthread_join( swThread, NULL );

// Clean up the attribute structure
hthread_attr_destroy( &hwAttr );
hthread_attr_destroy( &swAttr );

//Matrix add is now complete
return 1;

}

Figure 7. Matrix Add main Function

5 Hthreads Hardware/Software Thread Ex-
ample

To illustrate the use of our multithreaded programming
model, consider the matrix add process shown in Figure 7.
This example is kept simple to demonstrate two threads, one
hardware and one software, that work together, using equiv-
alent synchronization policies, to perform a matrix add. The
complete software thread source code is show in Figure 8.
The VHDL for this example is not shown as it is over 400
lines of source code. The VHDL code for this example was
written by hand and not generated by our C to VHDL trans-
lator (see Future Works section for status of our applica-
tion code translator) as this example was initially created
to test the HWTI entity interfaces. The VHDL code con-
tains the same system calls and interfaces as the software
version shown in Figure 8. At the start of execution, each
thread reads the passed in struct matrix, which contains in-
formation for the size and index of the arrays, as well as the
address location of the X, Y, and Z arrays. A global mutex
is used to protect the index variable, which identifies the el-
ement within the X and Y arrays that the thread is to operate
on.

The main thread first initializes the hthread system by
calling hthreadinit(), followed by the initialization of ma-
trixMutex and the attributes for hwThread and swThread.
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In our current version, the user software code must desig-
nate a thread as a hardware thread by specifying the hard-
ware threads’s base address. The base address is assigned
manually through Xilinx’s EDK tool. Once the main thread
initializes the matrixData, both threads are created with the
main thread passing a pointer to matrixData.

To create the hwThread, the main thread calls the Thread
Manager’s hthreadcreate function in order to create a join-
able thread. All Thread Manager functions are implemented
as LOAD operations over the system bus. Upon return,
the system sets the hwThread ID by writing to the HWTI’s
thread id register, sets the address of matrixData to the
HWTI’s argument register, and passes the base address
of hwThread to the Scheduler. The system then starts
hwThread by calling the Thread Manager’s addthread()
function. This in turn adds the hwThread ID to the sched-
ulers ready-to-run queue. The Scheduler, recognizing it as a
hardware thread, issues a RUN command to the hwThread’s
HWTI command register. The HWTI in turn, updates the
user result register to the value of theargument reg-
ister, which is the address of matrixData previously set by
the system. Finally, the HWTI allows the hardware thread’s
user logic to begin execution by changing the status of the
user status register to RUN from RESET.

The software thread, swThread, is started in similar
fashion. The system once again calls the Thread Man-
ager’s hthreadcreate function to create a joinable thread.
Upon return, the system initializes the new thread’s stack,
and passes the thread’s priority to the Scheduler. The
system then readies the software thread to run by again
calling the Thread Manager’s addthread() call. This in
turn add’s the swThread’s ID to the ready-to-run queue,
and forces the Scheduler to re-evaluate the nextthread
scheduling decision. When the next context-switch oc-
curs, the running thread is context-switched out in favor of
the next thread . In this example’s case, the context-
switch occurs in conjunction with the main thread calling
hthreadjoin. The swThread is then chosen as the highest
priority thread in the ready-to-run queue and will begin ex-
ecuting on the CPU.

The join operation, from a system’s perspective is iden-
tical, for both a hardware and software thread. To join on
the hwThread, the main thread calls the Thread Manager’s
join thread() function, encoding the hwThread ID, in the
address lines. The Thread Manager checks to see if the
child thread has exited, if not (as is likely the case), it re-
turns a signal to the CPU to tell it to perform a context-
switch. When the hwThread is done executing it sends
an exit thread() call to the Thread Manager. The Thread
Manager responds by adding the main thread ID, the par-
ent thread to hwThread, to the ready-to-run queue in the
Scheduler. When the main thread is running on the CPU
again, an almost identical process happens for joining on

the swThread. Since the swThread and hwThread operate
on the same data, they will end at nearly the same time. Af-
ter the main thread joins on both, the sum of the X and Y
matrix is stored in the Z matrix.

This example illustrates how the operations for creating,
joining communicating, and exiting are either identical or
analogous between threads running in software and threads
running in hardware. Figure 9 shows the timing reports for
this example. For comparative purposes we performed the
matrix add operations with combinations of between one
to four hardware and software threads. Figure 9 shows the
performances advantages gained by the hybrid thread sys-
tem. First, not surprisingly, we see that the hardware thread
outperforms the software thread running on the general pur-
pose CPU. For an array size of 100, the execution times for
one hardware thread and one software thread are 1.43 msec
and 5.02 msec respectively, yielding a speedup factor of 3.5.
For an array size of 25,000 the speedup increases to 9.4.

The difference between two threads being time sliced
and suffering context-switching time overhead on a CPU,
and the time for two parallel hardware threads running in
the hardware can also be seen by comparing the execu-
tion times and speedups for two software threads and two
hardware threads with the previous cases of one hardware
and one software thread. For an array size of 100, exe-
cution times of 1.5 msec and 8.43 msec for two hardware
and two software threads respectively, yield a speedup of
5.6. For an array size of 25,000 this speedup increases to
19. Since hardware threads do not share CPU resources
and are not time-sliced, hthreadyield() simply is ignored
during the VHDL generation process and thus does not in-
voke context switching overhead typically incurred on the
CPU. Thus these speedups increase when compared to the
speedups obtained using only a single thread.

Finally, an interesting comparison can be seen from the
execution times for runs with mixed numbers of hardware
and software threads. For all array sizes the execution times
using two hardware threads and two software threads ac-
tually increase when compared to using just two hardware
threads. This results from allowing a slower software thread
to lock a mutex thereby blocking one or both hardware
threads from continuing processing at faster rates. These
simple results indicate that Moore’s law applied to FPGAs
produces larger and faster devices, performance increases
can scale with the number of threads, This is in contrast
to software based threaded systems, where the creation of
additional threads can result in degraded performance due
to additional time slicing and context switching overhead.
This example, when implemented with two hardware mu-
texAdd threads, for the Xilinx Virtex II Pro (XC2VP30),
utilizes 11,658 slices (85% of available slices) and 34 block
RAMs (25% of available block RAMs). This includes all
supporting system IP components, such as the IPIF bus
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void * matrixAdd( void * inputData ) {
struct matrix * inputMatrix;
Huint size, index, x, y;

inputMatrix = (struct matrix *) inputData;
size = inputMatrix->size;
index = 0;

while ( index < size ) {
//Increment matrix.index, to tell the next thread what element to add
hthread_mutex_lock( &matrixMutex );
index = inputMatrix->index;
inputMatrix->index = index+1;
hthread_mutex_unlock( &matrixMutex );

if ( index < size ) {
x = inputMatrix->X[index];
y = inputMatrix->Y[index];
inputMatrix->Z[index] = x + y;
hthread_yield();

}
}

}

Figure 8. Software Thread source code for
matrixAdd

interface logic. The ELF file, compiled with the hthread
kernel, main function and mutexAdd software thread is
233KB.

6 Status and Future work

Within our hthreads system, the first version of the
HWTI included support for the most common system calls.
However the HWTI does not yet support the creation of new
threads from within a hardware thread. Thus, all threads,
whether resident in either hardware or software, must be
created by a software thread. When the HWTI is fully com-
pleted, we envision the hardware compilation process deter-
mining which system calls a thread makes, and only include
the VHDL functionality in the HWTI for those calls. Cur-
rently all system calls are included within the HWTI when
the user thread is instantiated.

We are currently working on a second version of a C to
VHDL compiler, to enable a full end-to-end synthesis ca-
pability from C and pthreads. In our initial prototype, we
compiled the C application code to C– [14] as an interme-
diate form. Our objective was to then translate C– to Pow-
erPC code and, for threads selected to run in the FPGA, to
translate C– to VHDL. Although we were successful in de-
veloping a C– to VHDL translation capability [12], we felt
that C– did not possess all the attributes we desired in a
true architecture independent form. We began investigating
other available intermediate forms such as GIMPLE [15]
and SUIF [21]. We have since began work on a new trans-
lator from GIMPLE, gcc’s internal intermediate form, to re-
place C–. However, GIMPLE like most intermediate forms
[15, 21, 14] assumes a CPU compilation target, and is, by
its self, not perfectly suited for VHDL translation. To over-
come this problem we are creating a new intermediate form
called HIF, or Hardware Intermediate Form generated di-

rectly from GIMPLE. HIF gives us the ability to optimize
the data and control flow graphs specifically for customized
circuits in VHDL [19]. Furthermore a HIF to VHDL trans-
lator will be HWTI-aware and can import any needed li-
brary calls, into the HWTI. A more detailed description of
the HIF grammar and additional examples may be found in
[13].

7 Conclusion

In this paper, we have presented hthreads, a unifying
multithreaded programming model for controlling hard-
ware and software threads running across the CPU/FPGA
boundary. Hthreads provides system service libraries that
encapsulate platform specific operations under pthreads
compatible API’s. This allows threads specified from a sin-
gle pthreads multithreaded application program to be com-
piled to run on the CPU or synthesized to run on the FPGA.
To support the abstraction of the CPU/FPGA component
boundary, we have created the hardware thread interface
(HWTI) component that frees the designer from having to
specify and embed platform specific instructions to form
customized hardware/software interactions. Instead, the
hardware thread interface supports the generalized pthreads
API semantics. This approach follows accepted practices
within the high performance computing community that can
bring both accessibility and portability to the reconfigurable
computing domain. Our ability to allow multiple execution
threads to exist within the FPGA also provides a new mech-
anism to exploit the full potential of the FPGA.
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