
1

Extensible Processors for
MPSoC

David Andrews
Computer Engineering Group

University of Paderborn

dandrews@ittc.ku.edu

2

MPSoC Example Architecture

 Let’s Look at the Processing Resources…

3

MPSoC Processors

 How Many and What Type of Processors?
 Requirements From

 Performance
 Throughputs, Turnarounds

 Instruction Sets (Operations)
 Operations

– Arithmetic
– Data Transfer
– Special Custom

 Flexibility
 Programmability
 Re-use

 Cost
 Parts Cost
 Development Costs

 Supporting Development Environments
 Compilers, Debuggers, Run Time Systems

 Power/Size Constraints

 Always The Classic Tradeoff: Customization versus Specialization
 From : Cheap General Purpose Microprocessors
 Through : Semi Custom (Extensible) Microprocessors
 To: Fully Custom ASIC’s

4

Multiprocessor Implementations

5

Heterogeneity

6

Why Heterogenous Solutions ?

 Applications Requirements Dictate:

 General Purpose
 System Interface

 RTOS Host

 General System Processing

 Semi/Fully Custom
 Network and I/O Controllers

 Signal/Image Processing Data Paths

 Support Large Data Transfers

7

CPU Generalization/Customization Tradeoffs

8

MPSoC Heterogenous sysetm of IP’s

9

A Little Caution

 What We Are Considering Is Largely Acceleration of a
Portion of a Single Application.
 Programming Language Analysis

 Custom Processor Has 1 Program Counter
 Although Data Paths Will Be Custom, Still 1 execution stream

 Amdahls Law Applies

 Not Programming Model Acceleration (Yet)
 Operating System to “Bind” All Assets Together

 Programming Model to Delimit Independent Execution Streams

10

GP Processors

PROs:

 Good Scalability/Portability
 Software Easier to Develop/Expand/Port

 Easily Reprogrammable

 Economics
 Legacy Software Development/Debug Environments

 Cheap Components with Low NRE Costs

CONs:

 Low Performance
 Data Paths, Control Paths Generalized, Not Tuned to Anything

 Sequential, Limited ISA

11

Custom Circuits (ASIC’s)

PROs:
 High Performance

 Custom Data Paths, Control Paths Tailored to Your Application
 Tuned Clock Frequencies, Delays etc.

 RTL Design
 Low Level Descriptions in VHDL/Verilog
 Synthesis Tools Immature
 Verification Requires Long Cycles

CONs:
 Poor Scalability

 Custom Data Paths, Components Designed for Specific Application
Sizes.

 8 x 8 Image Filter Size Using Custom Tapped Delay Lines

 Economics
 Costly NRE
 Lack of Software Development/Debug Environments
 Life Cycles/Reuse Limited

12

Extensible Processor Alternatives

What we would Like is to merge best of both worlds

 General Purpose Microprocessors
 Reprogrammability: Reuse, Debug/Development

 Flexibility

 ASIC’s
 Performance Level of Customized Solutions

 Todays (Lectures) Answer: Extensible (Configurable) Processors
 Start With Familiar/Standard Computational Models.

 PC, SP, Register File, ALU’s, Decode Units
 Extend with Mix/Match of Custom Components

– Wider Data Paths
– Wider/More ALU’s
– Specialized Operations

 Reflect Extensions through Op_Codes

 Exploit Existing Compiler, Debug Environments

13

Key Questions for Extensible Processors

 What Target Characteristics of the Processor Can be
Configured and Extended
 Data Paths

 Registers

 Pipeline Stages

 Data Movement

 How Does System Engineer Capture Target Characteristics
 Design Tools

 Profiling

 Instruction Building

 What are Deliverables: Hardware and Software Components
 New Compiler/Linker

 Debuggers

 RTL Generation

14

Processor Configuration Criteria

 Configuration Mechanism Must Accelerate and Simplify the
Creation of Useful Characteristics
 Can’t Simply Be More Bureaucracy

 Cost - Performance Ratios Also a Consideration

 Usually Requires Significant Program Analysis
 By Hand
 Compiler Assisted

 Generated Processor Should Include:
 Complete Hardware Descriptions

 Synthesizable Verilog/VHDL Descriptions

 Complete Software Development Tools
 Compilers
 Debuggers
 Assemblers
 RTOS’s

 Verification Software
 Simulation Models
 Diagnostics
 Test Benchs/Support

15

Selected Range of Offerings

 Non-Architectural Processor Configuration
 Not reflected within the ISA

 Cache Sizes, DMA’s

 Fixed Menu Processor Architecture Configurations
 Preset Range of Features From Menu’s

 Hw/Sw tools configured in parallel (hopefully from 1 user interface)

 User-Modifiable Processor RTL
 Processor Has Hardware Interface for Hand Addition/Modification of

Instructions.
 Generally Precludes Software Support from Compiler/Simulator/RTOS
 MIPS M4K

 Instruction-Set Description Language
 Automated Processor-Generation Tool Starts from ISA and Builds Silicon (RTL

Descriptions) and Software Support (Compilers/Simulators)
 Tensilica

 Fully Automated
 Compilation/Synthesis Tools Analyze and Profile Applications and Generate

Custom Everything

16

Example: M4K Core (MIPS Technologies)

www.mips.com/content/PressRoom/TechLibrary/WhitePapers/multi_cup

17

Tensilica’s Configurable Core

18

Tensilica Automatic Processor Generation

19

Development Tool Flow

 Several Interesting Options
 Start With Unaltered C/C++ Code

 Profile/Analyze
 Automatically Generate Core

 Create Custom Instructions
 TIE a C/Verilog Language

 Both Create “Updated” Tools
 Compiler, Simulator, RTOS

20

Modifications

 Fusion
 Identifies Instructions that can be combined

Add R1,R2,R3

Sll R1, R1, ##4

Create: Add_sll R1, R2, R3, #4 /* 1 clock cycle instruction

 Vector/SIMD
 Best Bet for Parallelization Using this Method

 Attacks Loops: Unroll and Create New Wider Register File + ALU’s of
Depth 2, 4, 8

 VLIW: Called “Flix” (Flexible Length Instruction Xtensions)
 32 or 64 bit VLIW Instruction:

 Can be multicycle

21

Fusion Example

 Compiler Identifies Based on Dependencies and Frequency Counts (I.e. loops)

 sub,abs,add,extui can be combined into a single instruction

 474 gates in 1 cycle

22

Flix Example

 VLIW Packing of Instructions
 Dependency Analysis

 Long Instructions Issued In Sequence

 Can Contain Fusion, SIMD Instructions

23

TIE Language

 Compiler Identifies Some Parallelism and Automatically
Creates New Instructions/Architectures in “TIE”

 User Can Also Operate In TIE

 Tie: Tensilica Instruction Extension Language
 Allows The Creation of New Custom Hardware Through ISA
 State Declarations: Can Add State Registers and Register Files
 Instruction Encodings and Formats - Operation Descriptions: Can

Have Up to Six Source and Destination Operands:
 GP Registers
 Newly Defined Registers
 New States

 TIE Feeds Back New Instructions/Types to Preprocessor Within C
Compiler Chain

24

Example

Regfile LR 16 128 1

Operation add128 {out LR sr, in LR ss, in LR st} {assign sr = st + ss;}

Main() {

int i;

LR src1[256], src2[256], dest[256];

for (i=0; i< 256; i++) dest[i] = add128(src1[i],src2[i]);

}

#Entries Width

Processor Generator Creates new Compiler with new data type LR
-will also generate new ld/st operations for this type

25

Performance

26

Another Example: Chess/Checkers

27

Configuration Capabilities

28

Processor Description Langauge nML

29

Chess

