
 Fundamentals of VHDL Programming

Introduction:

 VHDL (Very High Speed IC Hardware description Language) is one of the
standard hardware description language used to design digital systems. VHDL can
be used to design the lowest level (gate level) of a digital system to the highest
level (VLSI module). VHDL though being a rigid language with a standard set of
rules allows the designer to use different methods of design giving different
perspectives to the digital system.

 Other than VHDL there are many hardware description languages available in
the market for the digital designers such as Verilog, ABEL, PALASM, CUPL, and etc
but VHDL and Verilog are the most widely used HDLs. The major difference between
hardware description programming languages and others is the integration of time.
Timing specifications are used to incorporate propagation delays present in the
system.

 Types of Representation:

VHDL representation can be seen as text file describing a digital system. The
digital system can be represented in different forms such as a behavioral model or a
structural model. Most commonly known as levels of abstraction, these levels help
the designer to develop complex systems efficiently.

Behavioral Model:

Behavioral level describes the system the way it behaves instead of a lower
abstraction of its connections. Behavioral model describes the relationship
between the input and output signals. The description can be a Register
Transfer Level (RTL) or Algorithmic (set of instruction) or simple Boolean
equations.

Register Transfer Level: RTL typically represents data flow within
the systems like data flow between registers. RTL is mostly used for design of
combinational logics.

Algorithmic Level: In this method, specific instruction set of
statements define the sequence of operations in the system. Algorithmic
level is mostly used for design of sequential logics.

Structural Model:

Structural level describes the systems as gates or component block
interconnected to perform the desired operations. Structural level is primarily
the graphical representation of the digital system and so it is closer to the
actual physical representation of the system.

VHDL Programming Structure:

Entity and Architecture are the two main basic programming structures in
VHDL.

Entity: Entity can be seen as the black box view of the system. We define the
inputs and outputs of the system which we need to interface.

Entity ANDGATE is

Port (A: in std_logic;

 B: in std_logic;

 Y: out std_logic);

 End entity ANDGATE;

Entity name ANDGATE is given by the programmer, each entity must have a
name. There are certain naming conventions which will be explained later in the
tutorial.

Architecture: Architecture defines what is in our black box that we
described using ENTITY. We can use either behavioral or structural models to
describe our system in the architecture. In Architecture we will have
interconnections, processes, components, etc.

Architecture AND1 of ANDGATE is

--declarations

Begin

--statements

Y <= A AND B;

End architecture AND1;

Entity name or architecture name is user defined. Identifiers can have
uppercase alphabets, lowercase alphabets, and numbers and underscore
(_).First letter of identifier must be an alphabet and identifier cannot end with
an underscore. In VHDL, keywords and user identifiers are case insensitive.
VHDL is strongly typed language i.e. every object must be declared.

Understanding through examples:

Note:

1) Every statement should end with a semi-colon

2) Statement followed by -- is a comment statement

Basic VHDL operations:

AND gate:

--This is a comment line. Welcome to VHDL programming

--The next two lines are the libraries that are included

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

--The andgate entity is defined. In this module A and B are defined as the
input ports of the

--half-adder and C is defined as the output port. The keyword in and out
following the colon

-- defines it as input and output ports respectively and these ports can
support std_logic data

--types defined by the library included above

entity andgate is

port (A,B:in std_logic;

 C:out std_logic);

 end andgate;

architecture b of andgate is

begin

--and is a basic VHDL operation. <= represents the signal assignment

C<=A and B;

end b;

Now lets implement an OR gate.

OR gate:

 LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 entity orgate is

 port (A,B:in std_logic;

 C:out std_logic);

 end orgate;

architecture b of orgate is

begin

C<=A or B;

end b;

Similarly you can try out other basic gates like NAND, NOR, XOR, NOT and
get familiarized with the entity and architecture declaration.

Models:

Implementation of Half Adder using Behavioral and Structural Models:

The section of VHDL code below implements the half –adder.

Behavioral Modeling of Half Adder

RTL:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

entity half_adder is
 port (A ,B:in std_logic;
 S, C:out std_logic);
end half_adder;

architecture behavioral of half_adder is
begin

-- Sum S is calculated as A xor B. The output is obtained after 5ns delay. --Similarly
carry C is obtained

-- after Xns might be used to specify the delays and it works fine with simulation.
But you might want to ---use the gate delays which will be added by default with
the ALTERA boards that you use for lab
 S<=A xor B after 5ns;
 C<=A and B after 5ns;
end a;

Algorithmic:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

entity half-adder is
port(A, B:in std_logic;
 S, C:out std_logic);
end half-adder;

architecture behavior of half-adder is
begin

--Process statement can be used for sequential statements and give a more
powerful description of

--behavior. In the following line sum denotes the name of the process and A,B are
the sensitivity list

--which defines when the process should be re-evaluated

sum: process(A,B)
begin

--If loop. Similar to other programming languages
if(A=B)then
S<='0';
else
S<=(A or B);
end if;
end process;
carry :process(A,B)
begin
case A is
when '0'=>C<=A;

when '1'=>C<=B;
end case;
end process;
end behavior;

Structural Approach:
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

entity half-adder is
port(A, B:in std_logic;
 S,C :out std_logic);
end half-adder;

entity andgate is
 port(X, Y:in std_logic;
 Z:out std_logic);
end andgate;

architecture behavioral of andgate is
begin
Z <= X and Y;
end behavioral;

entity xorgate is
 port(L, M:in std_logic;
 N:out std_logic);
end xorgate;

architecture behavioral of xorgate is
begin
S<=L xor M;
end behavioral;

architecture structural of half-adder is

--andgate is defined as a sub-block of the entity half-adder
--Component declaration

component andgate
port(X, Y:in std_logic; Z:out std_logic);
end component;

component xorgate
port(L, M:in std_logic; N:out std_logic);
end component;

begin
--Component Instantiation

--Port mapping of the input and output ports

A0:andgate port map(X=>A;Y=>B;Z=>C);
X0:xorgate port map(L=>A;M=>B;N=>C);

end structural;

