
Introduction to VHDL Modular design

Jorge Ortiz
October 2007

Generic procedure for any design implementation

1. Design Description: Figure out what problem you are trying to solve. What is it
supposed to accomplish? What different steps are needed? Can we use divide and
conquer to simplify particular parts of the design?

2. Interface Description: Your design will have input and output sources. Figure out
what they are, and how many bits each of them will need. Draw a block diagram
showing only the inputs (incoming arrows) and outputs (outgoing arrows) of your
design.

3. Problem Decomposition: Rarely will a design be atomic in nature. Figure out what
level of decomposition you need to be able implement your design’s main
components. Some examples of component implementation level (in decreasing order
of granularity) are listed below:

Your design components can be:

a. Other complex designs
For example CPU's have complex components like ALUs, Register Files,
Interface and Control.

b. Other simple designs
ALU's can be implemented from simple designs like adders, multipliers, and
bitwise Boolean operators.

c. Register Transfer Level
State Machines can be expressed as synchronous RTL registers and some
combinatorial logic.

d. Gate Level
Boolean expressions use gates like OR, AND and XOR to provide their
functionality

e. Transistor Level
Integrated circuits (IC's) would use a transistor description for their overall
design for implementation.

f. Silicon Level
Transistors, in turn, can be expressed as the connection of semiconductor
components.

Once you have decomposed your design into more manageable parts, you have to
implement each individual component. The steps to follow to create each component entity
will be exactly the same as what you did for your overall problem. Describe your component
design, establish the component interface, and decompose the entity into more components.
Repeat Steps 1-2-3 for each component until you have a component that does only one
particular operation (and does it well!). It's easier to evaluate the correct behavior of each
individual component. Further, each specialized component can be reused for further, or
different, designs.

There are two main ways to attack any design implementation:

Top-down
We know what the top level entity will do, how it will do it, and how each separate subsystem
will contribute to the solution, though we don't know how each component will work internally.
Therefore, we describe the top-level entity, and keep decomposing into components. Once
we know who all the components are, we implement their behaviors.

Bottom-up
We have the basic idea of what the top-level entity will do, but not how the components must
be organized. However, we have a good notion of what the components will be, so we
implement their behavior and use them iteratively in larger components until each subsystem
is fully implemented.

VHDL approach and examples

For this particular tutorial, we'll use the bottom-up approach. The bottom-level components
can be easily implemented in behavioral VHDL, though we don't know how to connect them
together to form larger components (that's why you are reading this!)

For this example let's take a seemingly difficult circuit, describe it, decompose it, and
implement it from the bottom-up.

1 - The top-level Entity

Step 1: Design Description: We will make an entity that will accept six bits of input, and output
the result of a 6-way XOR-gate applied to those 6 bits

Step 2: Interface Description: There's obviously only 1 bit of output. As for the inputs, you can
consider the 6 bits to be either (a) Six 1-bit inputs or (b) One 6-bit long input. Let's have the
interface be six 1-bit inputs (we will do the one 6-bit long input case at the end of this tutorial)

Entity Block Diagram 1
Inputs: U,V, W, X, Y, Z

Output: I

 X Y

 I

 Z U V W
my_xor6_gate

Step 3: Problem Decomposition: Clearly, an XOR gate would be needed somewhere in the
design. We're unsure which other components might be needed, so let's start by creating a 2-
bit XOR gate.

2- The 2-bit XOR Gate

Step 1: Design Description: An exclusive or gate between inputs A and B yields true
whenever only one of the inputs is true. This can be expressed as G = A xor B = A'B or AB'

Step 2: Interface Description: Let's use the names from step one.

Entity Block Diagram 2
Inputs: A and B, Output: G

 A B

 G

my_xor2_gate

Step 3: Problem Decomposition: Using the knowledge that VHDL has the keywords AND,
OR, and NOT, we can go ahead and implement this component behaviorally.

VHDL Implementation

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY my_xor2_gate IS
 PORT (
 A,B : IN STD_LOGIC;
 G : OUT STD_LOGIC);
END my_xor2_gate;

ARCHITECTURE Behavioral of my_xor2_gate IS
BEGIN
 G <= (A AND (NOT B)) OR ((NOT A) AND B);
END ARCHITECTURE Behavioral;

We have our first component! Let’s create another XOR gate with more inputs to reach our
goal of a 6-bit input XOR gate.

3- The 3-bit XOR gate

Step 1: Design Description: We make use of the associativity property of XOR gates to figure
out that:

H = A xor B xor C = (A xor B) xor C = G xor C

Where ‘G’ can be the output of our 2-bit xor gate. Hence, we will use my_xor2_gate as a
COMPONENT for our ENTITY implementation of my_xor3_gate. We will then INSTANTIATE
it twice to make a 3-bit xor gate.

Step 2: Interface Description: Let's use the names from step one.

Entity Block Diagram 3
Inputs: A, B and C, Output: H

 A B

 H

 C
AxorB

my_xor2_gate
(ABC)

my_xor3_gate

my_xor2_gate
(AB)

A

B

G

A

B

G

Step 3: Problem Decomposition: We now use our previous my_xor2_gate design as a
component. This is called COMPONENT DECLARATION and it happens immediately after the
ARCHITECTURE declaration line. The component declaration should match exactly the entity
declaration that we made when creating the component.

Also, we need to refer to the ‘G’ output of the top-left my_xor2_gate (AB) by name
(because it is neither an input nor an output for the my_xor3_gate ENTITY), so we declare
a signal for it. The signal will be called AxorB. The SIGNAL DECLARATION happens also
immediately after the ARCHITECTURE declaration line.

Partial VHDL Implementation

ENTITY my_xor3_gate IS
 PORT (
 A,B,C : IN STD_LOGIC;
 H : OUT STD_LOGIC);
END my_xor3_gate;

ARCHITECTURE Structural of my_xor3_gate IS

 -- Component Declaration
 COMPONENT my_xor2_gate IS
 PORT (
 A,B : IN STD_LOGIC;
 G : OUT STD_LOGIC);
 END COMPONENT my_xor2_gate;
 -- Signal Declaration
 SIGNAL AxorB: STD_LOGIC;

BEGIN

 -- (...To be completed)

END ARCHITECTURE Structural;

Notice that now we are using a structural description of the architecture of this entity. This is
because we are using components instead of behavioral descriptions to describe how our
entity works. To use a structural architecture, we must do three things:

1- Component declaration (already done): This defines the input and output ports for the
component(s).

2- Component instantiation: For each component used, we assign a name to them. In the
above example, we use AB and ABC for the two my_xor2_gate’s.

3- Port mapping: We connect each port of each instantiated component. These
connections can be made directly to the encapsulating ENTITY’s inputs and outputs,
or to internal SIGNALS.

C omplete VHDL Implementation

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY my_xor3_gate IS
 PORT (
 A,B,C : IN STD_LOGIC;
 H : OUT STD_LOGIC);
END my_xor3_gate;

ARCHITECTURE Structural of my_xor3_gate IS

 -- Component Declaration
 COMPONENT my_xor2_gate IS
 PORT (
 A,B : IN STD_LOGIC;
 G : OUT STD_LOGIC);
 END COMPONENT my_xor2_gate;
 -- Signal Declaration
 SIGNAL AxorB: STD_LOGIC;

BEGIN
 -- Component Instantiation
 AB: my_xor2_gate
 PORT MAP (
 A => A,
 B => B,
 G => AxorB);

 ABC: my_xor2_gate
 PORT MAP (
 A => AxorB,
 B => C,
 G => H);

END ARCHITECTURE Structural;

Notice that Ports A and B of my_xor2_gate instance ‘AB’ connect directly to the entity’s
my_xor3_gate input ports A and B. The output port G of ‘AB’ connects to the signal ‘AxorB’.
In turn, port A of instance ‘ABC’ connects to signal ‘AxorB’ (connecting the two instances),
while port B of instance ‘ABC’ connects to the entity’s input Port C. The output G of instance
‘ABC’ connects to the overall entity output H.

Be sure to keep good track of component port names and entity port names, especially when
dealing with multiple instances of the same declared component.

We use the associativity property of XOR again to go directly to our final top-level
implementation.

 A B

 H

 C

AxorB

my_xor2_gate
(ABC)

my_xor3_gate

my_xor2_gate
(AB)

A

B

G

A

B

G

4 - The top-level Entity (revised)

Step 1: Design Description: We will make an entity that will accept six bits of input, and output
the result of a 6-way XOR-gate applied to those 6 bits

Step 2: Interface Description: There's obviously only 1 bit of output. As for the inputs, you can
consider the 6 bits to be either (a) Six 1-bit inputs or (b) One 6-bit long input. Let's have the
interface be six 1-bit inputs (we will do the one 6-bit long input case at the end of this tutorial)

Entity Block Diagram 4
Inputs: U,V, W, X, Y, Z

Output: I

 X Y

 I

 Z U V W
my_xor6_gate

Step 3: Problem Decomposition: Using the associativity of XOR, we can see that:

I = U xor V xor W xor X xor Y xor Z = (U xor V xor W) xor (X xor Y xor Z)

So we can use both of our previous components, my_xor2_gate and my_xor3_gate to
accomplish this.

Entity Block Diagram 5
Inputs: U,V, W, X, Y, Z

Output: I

 X Y

 I

 Z U V W

my_xor3_gate
(UVW)

my_xor3_gate
(XYZ)

my_xor2_gate
(UVWXYZ)

UxorVxorW XxorYxorZ

A B C A B C

H H

A B

G

my_xor6_gate

Complete VHDL Implementation

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY my_xor6_gate IS
 PORT (
 U,V,W,X,Y,Z: IN STD_LOGIC;
 I : OUT STD_LOGIC);
END my_xor6_gate;

ARCHITECTURE Structural of my_xor6_gate IS

 -- Component Declaration

 COMPONENT my_xor2_gate IS
 PORT (
 A,B : IN STD_LOGIC;
 G : OUT STD_LOGIC);
 END COMPONENT my_xor3_gate;

 COMPONENT my_xor3_gate IS
 PORT (
 A,B,C : IN STD_LOGIC;
 H : OUT STD_LOGIC);
 END COMPONENT my_xor3_gate;

 -- Signal Declaration
 SIGNAL UxorVxorW: STD_LOGIC;
 SIGNAL XxorYxorZ: STD_LOGIC;

BEGIN
 -- Component Instantiation
 UVW: my_xor3_gate
 PORT MAP (
 A => U,
 B => V,
 C => W,
 H => UxorVxorW);
 XYZ: my_xor3_gate
 PORT MAP (
 A => X,
 B => Y,
 C => Z,
 H => XxorYxorZ);

 UVWXYZ: my_xor2_gate
 PORT MAP (
 A => UxorVxorW,
 B => XxorYxorZ,
 G => I);
END ARCHITECTURE Structural;

 X Y

 I

 Z U V W

my_xor3_gate
(UVW)

my_xor3_gate
(XYZ)

my_xor2_gate
(UVWXYZ)

UxorVxorW XxorYxorZ

A B C A B C

H H

A B

G

my_xor6_gate

We used multiple components (that we created from the bottom-up) to accomplish our final design.
Additionally, our new entity my_xor6_gate can be used as a component for higher input XOR gates or
different designs. If we hadn’t used modular design, our final equation for I = fn(U,V,W,X,Y,Z) would
have been long, ugly and prone to error.

For completeness, here is how the final design looks like (considering that the my_xor3_gate
components are composed of my_xor2_gates)

 X Y

 I

 Z U V W

AxorBxorC DxorExorF

my_xor2_gate

my_xor2_gate

my_xor2_gate

my_xor2_gate

my_xor2_gate

my_xor6_gate

5 - The top-level Entity (using one 6-bit input)

VHDL has support for the XOR keyword (and now we tell you!). It also has support for
STD_LOGIC_VECTORs, which means multiple bits can addressed as one input/output/signal. Further,
we can address each individual bit of a STD_LOGIC_VECTOR.

Hence, the top level implementation could have been implemented behaviorally as shown below:

Behavioral VHDL Implementation

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY my_xor6_gate IS
 PORT (
 X : IN STD_LOGIC_VECTOR(5 DOWNTO 0);
 Y : OUT STD_LOGIC);
END my_xor6_gate;

ARCHITECTURE Behavioral of my_xor6_gate IS
BEGIN
 Y <= X(5) XOR X(4) XOR X(3) XOR X(2) XOR X(1) XOR X(0);
END ARCHITECTURE Structural;

